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MOTIVATION Uncovering the structure of biological networks can provide valuable insights into the ge-
netic underpinning of many diseases and opportunities to discover novel drug targets. However, learning
the structure of such networks from multimodal genomic data remains challenging. We sought to develop
a method for gene regulatory inference and learning from genomic data using a Bayesian approach and
apply it to normal and liver cancer data.
SUMMARY
Despite the abundance of multimodal data, suitable statistical models that can improve our understanding of
diseases with genetic underpinnings are challenging to develop. Here, we present SparseGMM, a statistical
approach for gene regulatory network discovery. SparseGMM uses latent variable modeling with sparsity
constraints to learn Gaussian mixtures from multiomic data. By combining coexpression patterns with a
Bayesian framework, SparseGMMquantitatively measures confidence in regulators and uncertainty in target
gene assignment by computing gene entropy. We apply SparseGMM to liver cancer and normal liver tissue
data and evaluate discovered gene modules in an independent single-cell RNA sequencing (scRNA-seq)
dataset. SparseGMM identifies PROCR as a regulator of angiogenesis and PDCD1LG2 and HNF4A as regu-
lators of immune response and blood coagulation in cancer. Furthermore, we show that more genes have
significantly higher entropy in cancer compared with normal liver. Among high-entropy genes are key
multifunctional components shared by critical pathways, including p53 and estrogen signaling.
INTRODUCTION

Many diseases have significant genetic underpinnings that

determine both the underlying pathology and potential targets

for therapy. One important example where an understanding of

the molecular mechanism can aid treatment is cancer. Cancer

is a disease of the genome whereby genetic and epigenetic

events in certain genes, referred to as driver genes, are causal

of a specific cell status that escapes normal physiological regu-

lation and immune surveillance, leading to cancer. Altered driver

genes cause dysregulation of biological pathways, downstream

changes in gene expression, and cell signaling in a manner that

increases cell growth and proliferation. Typically, cancer driver

genes fall under the classes of master regulators, such as tran-
Cell Re
This is an open access article under the CC BY-N
scription factors, DNA-damage repair, and cell-cycle genes,

among others. With the high rate of genetic mutations in cancer,

identifying cancer driver genes represents an important

challenge. The introduction of new molecular technologies in

the 2010s, such as next-generation sequencing, resulted in a

surge in the availability of genomic and transcriptomic data.

This increasing availability of multimodal data is exemplified by

public projects such as The Cancer Genome Atlas1 (TCGA), a

large-scale genome sequencing collaborative effort that aims

to accelerate our understanding of the molecular basis of can-

cer. In TCGA, over 10,000 primary cancer and matched normal

samples were characterized, spanning 33 cancer types, gener-

ating over 2.5 petabytes of genomic, epigenomic, transcrip-

tomic, and proteomic data. Similarly, the Genotype-Tissue
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Expression2 (GTEx) is a resource of genetic variation and expres-

sion of 54 tissue types in a large population of healthy individuals.

Although the GTEx subject population does not contain disease

samples, understanding the genetic and genomic variations in

healthy tissue can help gain useful insight into genetic diseases

and their molecular features. For instance, GTEx data were used

to identify the role of a novel coronary artery disease risk gene3

and for detecting pathogenic gene variants related to rare ge-

netic disorders,4 and GTEx data were successfully combined

with TCGA data to develop prognostic markers of acute myeloid

leukemia (AML).5 Leveraging these large size multimodal data-

sets to make significant biological discoveries and extract clini-

cally actionable information is only possible through developing

suitable statistical models and machine learning algorithms.

Gene regulatory networks (GRNs) are one class of tools

that can be applied to genomic data to improve our understand-

ing of systems biology and uncover the molecular basis of

disease. Network methods can be used to model gene-level

relationships and protein-protein and cell-cell interactions.

Several approaches to integrating multiomic data,6 as well as

learning GRNs, exist,7 including graph-8,9 and module-based

methods.10–12 In graph methods, a graph is created based on

the expression data, and then the graph is analyzed to extract

subnetworks, with hub genes assumed to be regulators of target

genes in these subnetworks. Hub genes are a subset of highly

connected genes, relative to the other, less connected, down-

stream targets. Such a scale-free network structure mimics the

nature of biological networks. Graph methods were used to

discover major gene hubs in human B cells.8 They were also

used to identify new molecular targets in glioblastoma.13

GENIE314 andGRNBoost215 build GRNs using variable selection

with ensembles of regression trees and gradient-boosting pro-

ducing and produce directed graphs of regulatory interactions.

Module-based methods typically cluster coexpressed genes

directly into gene modules and, as a second step, identify regu-

lators of these gene modules. Examples of module-based

methods include CONEXIC,16 AMARETTO,17,18 and CaMoDi,12

which have been shown to be more robust and better recapitu-

late underlying biology than graph-based methods.10 In a previ-

ous study, we developed AMARETTO,17,18 a module-based tool

that clusters coexpressed genes and assigns each module to its

regulators using sparse linear regression. AMARETTO outper-

forms other methods in its ability to leverage information from

copy-number variation and methylation data to improve the dis-

covery of regulators and their assignment to gene modules. The

genomic and epigenetic events inform the choice of candidate

drive genes, which are used then as features selected by sparse

linear regression (LASSO). The resultingmodules are functionally

annotated using gene set enrichment analysis (GSEA)19 tech-

niques, elucidating the role of driver genes in cancer develop-

ment and progression. In later work,11 AMARETTO was

extended to construct a pancancer module network that con-

firms the common cancer pathways in different cancer types

and uncovers a driver gene of smoking-induced cancers, as

well as another driver gene involved in anti-viral immune

response exhibited by some cancers. AMARETTO has also

been extended to linking genomic and imaging phenotypes

from cellular and tissue images.20
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In this work, we present SparseGMM, a module network

approach in a Bayesian framework, whereby the clustering of

target genes and the assignment of regulators are combined in

one step, which allows genes to be associated with multiple

modules simultaneously. The assignment of a regulator to its

modules can be thus calculated with a confidence interval.

More specifically, we use Gaussian mixture model (GMM) infer-

ence, where the mixture mean is represented as a weighted

sparse vector of regulator expression level. This novel frame-

work tackles an important limitation in module-based methods

by allowing probabilistic assignments of target genes tomodules

and significance estimates of individual regulator coefficients.

We show an improved performance in sparsity, compared with

previous methods, choosing fewer genes as true regulators

and confirming biological knowledge of the scale-free nature of

gene networks.

We apply this new algorithm to GTEx data from healthy liver

tissue, as well as hepatocellular carcinoma (HCC) samples

from TCGA liver hepatocellular carcinoma (LIHC). Our algorithm

can recover healthy tissue modules such as energy metabolism

pathways and cancer-specific modules involved in antigen pre-

sentation, immune response, and blood coagulation. We also

discover common modules in healthy liver and HCC responsible

for inflammation and steroid biosynthesis, among others.

Further, we use a publicly available single-cell dataset of

CD45+ immune cells21 to evaluate immune-related modules

discovered using the bulk sequencing data. The single-cell eval-

uation of immunemodules was able to decouple distinct myeloid

and lymphoid biological processes in the HCC micro-environ-

ment. Our results demonstrate the ability of our method to

represent GRNs as potentially overlapping gene modules as

demonstrated on bulk and single-cell RNA sequencing (RNA-

seq) data.

Further, contrary to previous methods, the probabilistic

assignment approach taken by SparseGMM is potentially supe-

rior for modeling genes with multiple biological functions. Thus,

we define the entropy of a gene to be the entropy of the

estimated module-assignment probability and show that it can

then be used as an indicator of a multifunctional biological role

based on joint membership to two or more modules. These

multifunctional genes could in turn translate to multifunctional

proteins having central roles in the crosstalk between two or

more pathways in cancer cells and, thus, become attractive tar-

gets for overcoming drug resistance through compensation

mechanisms. We show that high-entropy genes are more com-

mon in cancer samples than in healthy tissue, and we associate

them with crosstalk between several pathways including TP53,

interferon gammam, and tumor necrosis factor a (TNF-a). Our

analysis of high-entropy genes exemplifies ways in which major

cancer pathways share key multifunctional components.

RESULTS

Here, we present a new method, SparseGMM, which uses a

Bayesian latent variable approach to model the relationship be-

tween regulators and downstream target genes (see STAR

Methods and Methods S1). To validate our approach, we apply

our method to two bulk gene expression liver datasets of normal
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liver. Gene modules in normal tissue were constructed using

publicly available data from GTEx project, while cancer modules

were constructed using HCC data from TCGA project (Figure 1).

We used community detection methods to screen genemodules

for robustness and to uncover shared biology between normal

liver tissue and liver cancer. Next, we evaluated these commu-

nities in an independent single-cell dataset containing CD45+ im-

mune cells from patients with HCC cancer and analyzed the

expression of these communities in different immune cell

populations.

Technical validation
For both TCGA1 and GTEx2 data, we compared SparseGMM

with AMARETTO17 and showed improved performance in terms

of sparsity of regulators for various choices of the regularization

parameter values (Figure 2; Table S1). AMARETTO was selected

as, to our knowledge, it is the current state-of-the-art method for

module-based GRN inference. Analyzing sparsity performance

in GTEx and TCGA data, SparseGMM outperforms

AMARETTO for all choices of the regularization parameter,

lambda, with sparser solutions being more desirable.22 The

mean number of regulators per module, with sparsity parameter

lambda = 500, is 21.27 for SparseGMM, comparedwith 84.14 for

AMARETTO usingGTEx data (p < 0.05, independent t test). Simi-

larly using TCGAdata, themean number of regulators is 38.20 for

SparseGMMcompared with 196.33 for AMARETTO (p < 0.05, in-

dependent t test). For robustness measured using the adjusted

Rand index (ARI) onmodules frommultiple runs on each dataset,

both datasets show similar performance with an increasing trend

as the regularization parameter increases. On the other hand,

bothmethods show a gradual decrease in R2 with increased reg-

ularization for both datasets. SparseGMM performs better than

AMARETTO for lower values of lambda. Module size increases

with regularization for both datasets. At lambda = 5e3,

SparseGMM has larger module sizes than AMARETTO. At

values of lambda >500, the module sizes are too large for prac-

tical functional annotation and discovery. Overall, the sparsity

performance of SparseGMM was superior for all tested values

of the regularization parameter. SparseGMM performed consis-

tently when applied to two other datasets from TCGA: lung

adenocarcinoma (LUAD) and head and neck squamous cell car-

cinomas (HNSCs) (Figure S1). Acceptable module sizes and

R-squared were seen for lambda = 500 and lower similarly, while

acceptable ARI values were seen at 500 and higher. These re-

sults dictated the choice of lambda = 500 in subsequent

analyses.

Further, we compared SparseGMM with GRNBoost215 to

evaluate its performance against top existing GRN tools.

GRNBoost2 is a gradient-boosting method. It uses an efficient

algorithm developed for scaling up regulatory network inference

based on the GENIE314 architecture. GENIE3 was the best
Figure 1. Overview of study and the SparseGMM method

SparseGMMuses a graph-based Bayesian framework combined with coexpressi

modules. To measure robustness, we ran SparseGMM several times, generating

cancer gene expression profiles. To screen for robust modules and identify norm

robustmodules that are consistently discovered in every run. Next, we performed

we used publicly available perturbation experiments that identify experimental ta
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performer in the DREAM4 In Silico Multifactorial challenge. We

compared SparseGMM with GRNBoost2 using several criteria

(see STAR Methods). First, we looked at the ability of each

method to uncover true regulatory relationships by comparing

the number of true regulators discovered by each method in

three different TCGA datasets: LUAD, LIHC, and HNSC. Using

the Library of Integrated Network-Based Cellular Signatures

(LINCS) data, we found that SparseGMM consistently filters for

more true regulators by selecting fewer regulators than

GRNBoost2. On the other hand, the number of true regulator

relationships discovered by SparseGMM is higher than

GRNBoost2 for all three datasets. The percentages of true regu-

lators to selected regulators in SparseGMM are 20.17%,

17.14%, and 12.65% for LUAD, HNSC, and LIHC, respectively,

while in GRNBoost2, the percentages are 7.99% (p =

7.75e�11), 9.15% (p = 0.078), and 8.09% (p = 0.014), respec-

tively. We also compared the runtime for both methods and

found that SparseGMM was consistently superior. We used

the average number of target genes per regulator to compare

module sizes. GRNBoost2 module sizes were consistently too

large for practical functional annotation and discovery. The re-

sults of the comparison are summarized in Figure S2.

Liver cancer and healthy livers share an angiogenesis
community
From the combined analysis of normal liver and liver cancer tis-

sue, we discovered 72 communities containing normal liver

modules, cancer modules, and communities that combined

normal and cancer modules (Figure 3). We defined robust com-

munities to be those with an average pairwise Jaccard index

R0.7 between each two modules. We found 22/72 such com-

munities and were able to reliably identify the biological function

of 15/22 robust communities (see STARMethods; Table S2). We

used the LINCS database to validate the uncovered regulatory

relationships.

Although many of the regulators (Table S3) do not have corre-

sponding LINCS perturbation experiments, 9 communities (out

of 11 non-immune highly robust communities) had at least one

regulator validated using LINCS perturbation experiments. For

immune communities, we were able to identify known regulators

using evidence from previous studies (Table S3). We also used

Re-Map, a database of transcriptional regulators peaks derived

from DNA-binding sequencing experiments, to validate our

robust community regulators. The Re-Map database contained

data for 10 regulators from six robust communities.23 The Re-

Map results showed that we were able to validate six out of

ten regulators with Re-Map data, including HNF4A (Table S4).

We hypothesized that SparseGMM could be useful to find com-

munities shared by both HCC and healthy tissues, leading to the

identification of highly conserved functions in HCC.We therefore

investigated the shared GTEx and TCGAmodules, revealing four
on pattern to connect sparse sets of regulators to their downstream target gene

multiple gene networks from each of two datasets with normal liver and liver

al-cancer shared biology, we ran a community detection algorithm to group

functional gene set enrichment analysis usingMSigDB gene collections. Finally,

rgets to validate SparseGMM regulators.
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Figure 2. Performance comparison between SparseGMM and AMARETTO at different regularization values

Comparison shown for TCGA HCC (A–D) and GTEx (E–H) liver data.

(A and E) Robustness of clustering is evaluated using adjusted Rand index.

(B and F) Validation of regulators is represented by R-squared.

(C and G) Degree of sparsity is evaluated using statistics on the number of drivers.

(D and H) Module size informs the choice of regularization parameter value.

See also Figure S1 and S2 and Table S1.
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robust communities enriched in functions important for physio-

logical liver regeneration upon damage and tumor growth,

including angiogenesis, cell cycle/DNA replication, ribosome,

and sterol biosynthesis (Table S2).

We highlight a shared angiogenesis community that is en-

riched in gene sets that relate to vasculature development,

extension of new blood vessels from existing capillaries into
vascular tissues, and movement of an endothelial cell to form

an endothelium. LINCS perturbation data confirm 2/2 regulators

(Table 1). The first is NPDC1, a neural factor, which downregu-

lates cell proliferation.24 Secondly, PROCR25 is a receptor of

activated protein C, which has a documented role in inhibiting

metastasis26 and limiting cancer cell extravasation through

S1PR1.27 Interestingly, S1PR1 is also a regulator in this
Cell Reports Methods 3, 100392, January 23, 2023 5



Figure 3. Sparse GMM module network

Left: a sample module network obtained through community detection algorithm to cancer and normal liver modules after running SparseGMM with different

initializations. Right: the community detection clusters robust modules together into distinct subnetworks. Subnetworks at the periphery represent robust

modules. Subnetworks are then functionally annotated using gene set enrichments analysis applied to MSigDB gene sets. Highlighted here are robust modules

from normal liver and liver cancer, as well as shared communities that contain modules occurring in normal and cancer tissue.
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community with well-documented roles in angiogenesis and liver

fibrosis28–31 but was not validated due to lack of perturbation

experimental data in the LINCS database. PROCR was also

shown to induce endothelial cell proliferation and angiogenesis32

and identified as a biomarker of blood vascular endothelial stem

cells33 and a potential cancer biomarker.34 Among the shared

regulators between cancer and normal samples is LDB2, a tran-

scription factor, which regulates the expression of DLL4,35,36 a

notch ligand involved in angiogenesis; DLL4 negatively regulates

endothelial cell proliferation and migration and angiogenic

sprouting.36

Antigen presentation and blood coagulation are robust
communities revealed by SparseGMM in HCC
After applying SparseGMM only to HCC gene expression data,

we discovered five robust communities enriched in pathways

with important roles in the interaction between hepatocytes

and the immune system: antigen presentation, interferon

signaling, myeloid and CD4 and CD8 T cells, and blood coagula-

tion (Figure 3; Table S2).

The antigen presentation community included 34 target genes

that are directly involved in the process of antigen processing

and presentation by the HLA complex to the T cell receptor

(TCR) present on the surface of immune cells (Figure S3). This

community is regulated by the PDCD1LG2 gene, encoding PD-

L2, an immune checkpoint receptor of PD-1, and a recently

adopted revolutionary immunotherapy drug target in patients

with HCC. In our analyses, PDCD1LG2 appeared as one of the

regulators of the myeloid community, while PDCD1 regulated

the T cell community (Table S3; Figure S3).

Next, we highlight the community enriched in pathways

related to components of the blood coagulation system and

the clotting cascade (Figure 4B). This community is also enriched

in processes involved in the maintenance of an internal steady

state of lipid and sterol, which interact with the coagulation

system.37,38 Of the 31 regulators in this community, LINCS

experimental data were available for 13 genes, and 6 (46%)
6 Cell Reports Methods 3, 100392, January 23, 2023
genes were validated (Table 1). Among these, HNF4A is the

main transcriptional regulator in hepatocytes and regulates

multiple coagulation genes.39–43 Other validated regulators of

this community include EPB41L4B, which promotes cellular

adhesion, migration, and motility in vitro and is reported to play

a role in wound healing.44,45 SparseGMM also correctly identi-

fied SERPINC1 as a regulator of this community. While there

are no LINCS perturbation experiments for SERPINC1, the

regulatory role of this member of the serpin family in blood coag-

ulation cascade has been well documented in previous

studies.46,47 These results show that the clotting system is

robustly regulated in HCC. While the impact of impaired liver

function on blood coagulation is evident, the specific role of

this pathway in HCC progression is largely unexplored.

SparseGMM identifies potential modules of hepatic
differentiation and metabolism in healthy livers
We found six communities that highlight important normal liver

functions. GSEA results reveal six distinct functions: hepatic

differentiation and metabolism; lipid and protein catabolism;

complement; cancer and vesicle trafficking; myofibril formation;

and FGFR1 signaling. For example, we highlight the hepatic dif-

ferentiation and metabolism community, an important pathway

capturing the liver’s unique metabolic functions. Specifically,

LINCS perturbation experiments validated 50% of regulators

(5 out of 10 with available LINCS data) in this community

(Table 1). Confirmed regulators in this community include two

enzymes: BDH1, a short-chain dehydrogenase that catalyzes

the interconversion of ketone bodies produced during fatty

acid catabolism,48 and HADH, which is responsible for the

oxidation of straight-chain 3-hydroxyacyl-coenzyme As (CoAs)

as part of the b-oxidation pathway49–51 (Figure 4C). Five target

genes in this community were reported as part of a transcrip-

tomic signature of obesity-related steatosis in rat hepatocytes,

with functions related to mitochondrial and peroxisomal oxida-

tion of fatty acids, and detoxification.52 Additionally, it was

shown that Bdh1-mediated b-hydroxybutyrylation potentiates



Table 1. LINCS validation of robust normal liver and liver cancer communities

Community Main pathway/gene set Jaccard index LINCS-validated regulators

Normal communities

61 complement pathway 0.7 FGB

11 REACTOME _DIGESTION 1 GFOD1

62 myofibril formation 0.8 DLX3

71 hepatic differentiation and metabolism 0.8 BPHL, BDH1, HADH, HSD17B8, KLHDC9

Cancer communities

72 blood coagulation 0.7 ABCG5, HNF4A, SLC25A13, EPB41L4B, BHMT2, PDXP

Shared Communities

15 GO polysomal ribosome 0.8 IRAK1

17 angiogenesis 0.8 PROCR, NPDC1

21 cell cycle/DNA replication 0.9 BRCA1, CDC20, CDCA8, CDK2, CEP55, HSF2,

CDK6, ALDH4A1, MCM7

23 sterol biosynthesis 0.9 SREBF2, ACAT2, NSDHL

Robust communities were defined by having a Jaccard index R0.7. Main pathway of each community was revealed through gene set enrichment

analysis of SparseGMM modules in GTEx and TCGA data against MSigDB collections. Validation of regulators is established with an adjusted p

<0.05. See also Tables S2 and S3.
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propagation of HCC stem cells53 and that deletion of Bdh1

causes low ketone body level and fatty liver during fasting.54

Moreover, Bdh1 overexpression ameliorates hepatic injury in a

metabolic-associated fatty liver disorder (MAFLD) mouse

model.55 These findings point to SparseGMM-identified hepatic

differentiation andmetabolism genes as potential bona fide tran-

scriptional biomarkers of hepatic differentiation and metabolism

in healthy livers.

SparseGMM decouples distinct myeloid and lymphoid
biological processes in HCC micro-environment, blood,
and normal liver
We next evaluated the highly robust communities in an indepen-

dent singe-cell RNA dataset of CD45+ immune cells for patients

with HCC from five immune-relevant sites: tumor, adjacent liver,

hepatic lymph node (LN), blood, and ascites.21 We used Seurat

to cluster the cells and comparedmarkers of Seurat clusters with

markers of various immune cells to identify the different cell

types in the tumor samples of three patients (Figure S4; see

STAR Methods). Overall, we found that 4 out of 9 communities

expressed in the single-cell dataset were cell-type specific

(Figures 5A, 5B, and S4). These communities were the CD4

and CD8 T cell community, myeloid community, cell-cycle com-

munity (specific to T cells and dendritic cells), and community 60

(specific to T cells).

The expression of target genes from communities 67 and 68

distinguished CD4 and CD8 T cells from myeloid cells, respec-

tively (Figures 5A–5C) with a similar expression pattern in im-

mune cells from blood and normal liver tissue (Figure S5). CD4

and CD8 T cells (myeloid cells) expressed a significantly larger

number of genes from the CD4 and CD8 T cell community

(myeloid cell community) than other cell types (adjusted

p < 0.05, chi-squared test), confirming that the communities

are cell-type specific. Additionally, we observed a subset of

T cells that specifically express genes from the cell-cycle

community (adjusted p < 0.05 chi-squared test). As expected,

the cell-cycle community gene expression was lower
(p < 2.22e�16, independent t test) in the G1 phase than in the

proliferating G2M and S phases (Figure 5D). When comparing

this community’s average expression in cells from different envi-

ronments, we found a higher level of cell-cycle gene expression

in tumor-derived immune cells than in normal immune cells

(p < 2.22e�16, independent t test; Figure S5).

Finally, the percentages of variance explained in average

target gene expression by regulator expression (R2) were

0.53%, 0.80%, and 0.80% in CD4 and CD8 T cell, myeloid,

and cell-cycle communities, respectively, demonstrating the ac-

curacy of the inferred regulatory programs. These results further

support the robustness of communities identified in bulk RNA-

seq data.

Gene entropy identifies key elements of cancer pathway
crosstalk
Both in liver physiology and liver cancer, functional crosstalk,

defined as the interaction between two pathways belonging to

different cell processes, is a natural way of responding to

new environmental challenges. Previous studies reported cross-

talk between major cancer pathways such as p53 and nuclear

factor kB (NF-kB)/TNF-a56,57 and p53 and estrogen.58

Furthermore, this crosstalk between pathways represents

compensation mechanisms by which a cancer cell can generate

resistance to the blockage of a specific gene or pathway.59,60We

hypothesized that gene entropy (Methods S1), which is a

measure of uncertainty in its assignment to a gene module,

could be interpreted as a proxy for multiple module membership

and thus be used to unveil the elements of hidden crosstalk in

cancer.

We calculated the average entropy of each target gene over

multiple runs of SparseGMM on TCGA and GTEx samples

from the genes’ posterior probability (see STAR Methods). We

set an entropy threshold of 1, which corresponds to the

maximum possible value of entropy between two modules, to

identify genes with uncertainty in module assignment. We found

that for target genes with entropy >1, TCGA target genes
Cell Reports Methods 3, 100392, January 23, 2023 7
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Figure 4. Heatmap of coexpression patterns in target genes of sample modules and graph of regulatory relationships

Regulator genes are shown in red and target genes are shown in green.

(A) Shared communtiy between HCC and normal liver: PROCR and NPDC1 regulate target genes of the angiogenesis community.

(B) Liver cancer: HNF4A and other regulators control coagulation factors and apolipoproteins involved in blood coagulation community.

(C) Normal liver community: BDH1 and HADH regulate a group of Acyl-CoA dehydrogenases and a group of cytochrome P450 enzymes involved in hepatic

differentiation and metabolism.

See also Figure S3 and Table S2, S3, and S4.
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showed significantly higher degree of entropy when compared

with GTEx (p < 2.22e�16, independent t test; Figure 6A). This

difference in entropy distribution reflects the heterogeneity of

cancer tissue compared with normal healthy tissue.

We then analyzed the distribution of community membership

among high-entropy genes in TCGA. Interestingly, genes

with high entropy clustered in a few communities such as p53-

related networks, NF-kB/TNF-a response, response to inter-

feron-g, estrogen response, and bile acid metabolism

(Figure 6B). p53 harbors a loss-of-function mutation in around

one-third of patients with HCC.61 Most HCCs originate in an in-

flammatory liver background such as hepatitis C or B chronic

infection or non-alcoholic steatohepatitis (NASH),62 and bile
8 Cell Reports Methods 3, 100392, January 23, 2023
acid composition has been related to HCC.63 Finally, estrogen

signaling has been studied in liver cancer as a potential protec-

tive factor and as one of the reasons HCC is more frequently

seen in males than in females.64 Altogether, these results sug-

gest an unbiased efficient capturing of clinically relevant

pathway crosstalk by SparseGMM. If multifunctional, the genes

captured by our method in each crosstalk could be important for

identifying key targets for an efficient therapeutic disruption of

cancer growth.

Next, we studied in detail the detected highly entropic genes

within crosstalk. We found 15 high-entropy genes that were

assigned to both estrogen-mediated signaling and p53 commu-

nities. One of these genes, GREB1 is an estrogen-regulated



A B

C D

Figure 5. Single-cell evaluation of highly robust communities

(A) Top, left to right: average expression of the T cell, myeloid, and cell-cycle community and cell types. Bottom, left to right: number of genes expressed in T cell,

myeloid, and cell-cycle community in their corresponding cell type versus average number of genes expressed in other cell types.

(B) Top: cell-type annotation. Bottom: most significant gene set enrichments for the three communities.

(C) Heatmap of target genes of T cell and myeloid communities in different single-cell populations.

(D) Boxplot of cell cycle phase versus expression of cell-cycle community target genes. Higher expression of cell-cycle genes corresponds to proliferative G2M

and S phases.

See also Figures S4 and S5.
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gene that is expressed in estrogen receptor a (ERa)-positive

breast cancer cells modulating its function and promoting

cancer cell proliferation.65 The expression of GREB1 is

controlled by a p53 target.66 Similarly, IGFALS is another high-

entropy gene with assignment to both p53 and estrogen

signaling communities. This is consistent with the fact that
IGFALS interacts with a p53 target67,68 and has a role in regu-

lating ERs in breast cancer.69–72 Additionally, we examined

more closely the crosstalk between p53 and NF-kB/TNF-a path-

ways. PAX8, a transcription factor expressed in 90% of high-de-

gree serous carcinoma,73 is among the highly entropic genes

identified by SparseGMM as participating in both p53- and
Cell Reports Methods 3, 100392, January 23, 2023 9
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Figure 6. Analysis of high-entropy genes

(A) Boxplot showing difference inmean entropy distribution for high-entropy target genes in GTEx and TCGA, reflecting heterogeneity of cancer samples. Entropy

is calculated from the posterior probability of target genes in each dataset, and the mean is calculated over several runs of SparseGMM on each dataset.

(B) Distribution of communities of high-entropy genes.

(C–E) Expression of communities with high-entropy genes.
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TNF-a/NF-kB1-related signaling. Interestingly, we found a signif-

icant correlation between average target gene expression of p53

and NF-kB/TNF-a pathways (Figure 6C; Pearson correlation =

0.46 confidence interval [CI] [0.37–0.53], p < 2.2e�16). Previous

studies also showed that p53 and NF-kB/TNF-a coregulate

proinflammatory gene responses in human macrophages.74

We observed significant correlation between the TNF-a-induced

NF-kB community and the myeloid community (Figure 6D; Pear-

son correlation = 0.48, CI [0.41–0.56], p < 2.2e�16). The p53-NF-

kB/TNF-a crosstalk is also implicated in increased invasive-

ness.75 We found a significant correlation between the NF-kB/

TNF-a community and the epithelial-to-mesenchymal transition

(EMT) and cancer stemness community (Figure 6E; Pearson cor-

relation = 0.53, CI [0.45–0.60], p < 2.2e�16). Accordingly,

SparseGMM is able not only to infer key regulators and their

downstream gene modules but also potentially identify key

multifunctional components shared by critical cancer pathways

based on their entropy.
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DISCUSSION

SparseGMM has a unique capability to infer GRN relationships

from bulk RNA-seq data while assigning target genes to multiple

gene modules and sparse sets of regulators to their respective

modules. As a result, SparseGMM accurately models the

scale-free nature of biological networks, as well as the molecular

heterogeneity of biological tissue and the versatile roles of a sub-

set of genes in different biological pathways.

SparseGMM accomplishes this goal by combining coexpres-

sion- and graph-based approaches in a Bayesian setting to

model the relationships between downstream target genes and

their regulator genes. SparseGMM enforces a sparsity

constraint, which reduces overfitting and increases the interpret-

ability of regulatory relationships by restricting the number of

regulators in each module. This sparsity in regulator selection

achieves an improvement in prioritizing potential therapeutic tar-

gets and discovering new regulator genes.
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We demonstrated the utility and reliability of SparseGMM by

applying it to datasets of normal and cancerous liver tissue

and employing community detection methods to screen gene

modules for robustness and for shared biology between normal

liver tissue and liver cancer. We then used GSEA to functionally

annotate highly robust modules. Despite the complex physi-

ology of the liver, from metabolism and immunity to protein

synthesis, SparseGMM recovered important physiological

functions that are active in healthy and cancerous liver tissue.

SparseGMM also recovered themolecular similarities and differ-

ences between the biological processes in healthy and cancer

tissues. This has implications on our understanding of the mech-

anisms of cancer development and progression. Further,

SparseGMM was able to identify new and known regulators of

normal liver physiology and hepatocarcinogenesis such as

BDH1 and HNF4A. To validate the resulting new associations

between regulators and downstream targets, we used experi-

mental genetic perturbation data from the LINCS. While our

analysis of the LINCS datasets validates results in liver cells,

different experimental models are required to validate the identi-

fied immune regulatory relationships. Although we do not vali-

date the immune modules in this work, the discovery of several

communities with immune function and their subsequent verifi-

cation in an independent single-cell dataset reflects the ability

of SparseGMM to decouple biological processes related to

distinct immune cell populations.

Thanks to the Bayesian nature of the proposed algorithm,

SparseGMM can probabilistically assign each target gene to

multiple modules and the uncertainty in gene assignment can

be measured using the information theoretic measure of entropy

as a proxy for a gene’s versatile functions and capturing potential

crosstalk between biological pathways. In our results,

SparseGMM identified GREB1 and IGFALS as high-entropy

genes that were assigned to both p53 and estrogen signaling

communities. The plausibility of a GREB1-p53 interaction is

supported by the fact that the phosphorylation of PBX homeo-

box interacting protein 1 (HPIP), a target of p53, is necessary

for estrogen-mediated GREB1 expression.66 On the other

hand, IGFALS was previously reported to form a complex with

IGFBP-3, a well-known target of p53,67,68 which has growth

inhibitory and pro-apoptotic properties.76 IGFALS was also

reported to regulate ERs in breast cancer.69–72 Importantly, we

also examined crosstalk between p53 and another significant

pathway, NF-kB/TNF-a. Previous studies have shown that

TNF-induced, NF-kB-directed gene expression relies on p53,57

but the significance and specific mechanisms of this interaction

are not fully explained. We identified PAX8, a high-entropy gene

that belongs to both pathways and that encodes a transcription

factor. While PAX8 binding is inhibited by TNF-a,77 its pro-prolif-

erative role relies on p53-p21.78

SparseGMM was able to identify PROCR as a regulator of an

angiogenesis community shared between normal liver and liver

cancer. In liver cancer tissue, SparseGMM recovered an antigen

processing and presentation community, regulated by

PDCD1LG2, that encodes a key immunotherapy drug target in

HCC and an immune checkpoint receptor of PD-1. Interestingly,

PDCD1LG2 was also a regulator of the myeloid community iden-

tified by SparseGMM. In normal liver, SparseGMM identified a
hepatic differentiation and metabolism community regulated

by BDH1, a short-chain dehydrogenase, which catalyzes the

interconversion of ketone bodies produced during fatty acid

catabolism.48 Lastly, the discovery of several communities with

immune function and their subsequent verification in single-cell

data reflect the ability of SparseGMM to decouple biological

processes related to distinct immune cell populations.

In summary, SparseGMM employs a coexpression-based

GRN inference approach in a Bayesian framework from bulk

transcriptomic data and achieves superior performance

compared with state-of-the-art module-based GRN inference

methods and identifies important biological pathways, and cor-

responding gene regulators, as exemplified by application to

human liver healthy and diseased tissue.

Limitations of the study
In framing this work, we note limitations mainly with respect to

biological validation. First, while we were able to leverage sin-

gle-cell data to verify immune communities, the validation of

regulatory relationships in these communities cannot be per-

formed using cancer cell line data such as the perturbation

experiment datasets used in this study. Future directions include

biological validation of regulatory relationships in immune

communities. Second, while the regulatory evidence from the

cell line perturbation experiment data used presents strong

evidence for the regulatory relationships discovered in normal

and cancer liver cell types, relevant functional assays are still

required to confirm the nature of regulatory relationships

uncovered by our method.
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METHOD DETAILS

Data preprocessing
Gene modules in normal tissue were constructed using publicly available data from GTEx project, while cancer modules were con-

structed using HCC data from TCGA project.The datasets were preprocessed and provided in,79 in which they provided reference

RNA-seq expression levels from healthy human tissue that can be compared with the expression levels found in human cancer

tissue.

A list of candidate genes was obtained from previously generated AMARETTO17 data objects extracted using the TFutils R pack-

age.80 In addition, genes whose gene expression can be explained using changes in copy number variation81 or methylation82 status

from the TCGA dataset were extracted using the AMARETTO package. The combined list of genes was used as an initial candidate

regulator gene list. Next, the top 75% varying genes were identified to each dataset separately. Of the top 75%, the top 2000 genes

that are also present in the candidate regulator genes list were used to build the regulator gene matrix, the rest were regarded as

target genes. The gene expression data matrix was centered to mean 0 and standard deviation 1 and then split into a regulator

gene matrix and a target gene matrix. A similar approach was used to preprocess and build the input data matrices from the

GTEx dataset. Overall, the TCGA contained 8017 protein-coding genes including 2000 candidate drivers, while the GTEx network

contains 10804 protein-coding genes including 1800 candidate drivers.

Implementation and technical validation
We implemented SparseGMM (Methods S1) in Python. SparseGMMwas run 5 times on each data set with different seeds to evaluate

the robustness of the method. We first split both data sets into training (70%) and test (30%) sets. Four different metrics were
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employed to validate the performance of SparseGMM: 1) Adjusted index (ARI) to measure robustness, 2) R-Squared to measure

goodness of fit, 3) Number of selected regulators to measure sparsity, and 4) Size of module to evaluate the sensitivity of module

size to the regularization parameter lambda. The values of lambda above 5000 produced very large modules and were excluded

from further analysis. Values below 50 were also excluded due to low adjusted rand index. Lambda values examined were 50,

275, 500, 2750 and 5000 were used. The output of different seeds was also used to filter the generated modules using cAMARETTO

as explained below. The input number of clusters used was 150 as it resulted an average size of 60 genes per cluster and reduced

false positive results in downstream functional gene set enrichments (Figures 2D and 2H).

Comparison of SparseGMM to existing GRN methods
We compared the performance of SparseGMM toGRNBoost2 in three data sets LUAD, LUHC andHNSC using several criteria: 1) the

number and percentage of true regulators validated against LINCS data, 2) runtime 3) the size of modules, and 4) sparsity. To

measure the ability of each method to uncover true regulatory relationships we performed GSEA of SparseGMM modules for

each regulator against corresponding the downstream targets in LINCS data. Similarly, we compared downstream targets of

GRNBoost2 to LINCS downstream of each regulator. The types of LINCS perturbation experiment data used were 1) Consensus

signature from shRNAs targeting the same gene and 2) cDNA for overexpression of wild-type gene. The Fast Gene Set Enrichment

Analysis tool was used to test for significance in enrichment. For each TCGA data set, the corresponding cell lines used are shown in

Figure S2. We used a p value <0.05 as a threshold for validated regulators and used the Bonferroni method for multiple hypothesis

correction.83 To compare the number of validated regulators in both methods we used a chi-squared test. Since GRNBoost2 does

not build sparsely regulated gene modules, we used the number of regulators per target gene as a proxy for sparsity and the number

of target gene per regulator as a proxy for module size and compared the distribution of these metrics (Figure S2).

Robust module recovery via community detection
To detect robust modules, we used the community-AMARETTO (cAMARETTO) package20 to build communities among modules

discovered by running SparseGMM with different seeds on the same data set. cAMARETTO identifies gene modules and their

regulators that are shared and distinct across multiple regulatory networks. Specifically, cAMARETTO takes as input multiple

networks inferred using the sparseGMM algorithm. cAMARETTO can learn communities or subnetworks from regulatory networks

derived from multiple cohorts, diseases, or biological systems. To do this cAMARETTO uses the Girvan-Newman ‘‘edge between-

ness community detection’’ algorithm.84 The cAMARETTO algorithm consists of 1) constructing a master network composed of

multiple regulatory networks followed by 2) detecting groups (communities) of modules that are shared across systems, as well

as highlighting modules that are system-specific and distinct. By applying cAMARETTO to modules discovered by running

SparseGMM with different seeds on the same data set, modules that are consistently discovered by SparseGMM will be grouped

in the same subnetwork or community, i.e., copies of the same module will be clustered in a distinct community. cAMARETTO

parameters used were p value = 0.01 and intersection = 10. When running cAMARETTO on a single data set (either GTEx or

TCGA), we filtered for communities of size 5, one from each run and further narrowed down results by Jaccard index R0.7. In

contrast, for communities with both TCGA and GTEx modules, communities of size 10 were selected. The selected communities

were used as input to the GSEA function of cAMARETTO.

Single cell transcriptomic evaluation
We evaluated the highly robust communities in an independent singe cell RNA data set with samples from immune-relevant sites in

five HCC patients: tumor, adjacent liver, hepatic lymph node (LN), blood, and ascites (Accession number: GSE140228, Gene Expres-

sion Omnibus).21 This data set contains only purified CD45+ immune cells and no other cell types. We focused on expression in tumor

core to evaluate our communities, which was available from three patients. Preprocessing procedure was as follows: single cells

were processed through the GemCode Single Cell Platform using the GemCode Gel Bead, Chip and Library Kits (103 Genomics,

Pleasanton) as per the manufacturer’s protocol.85 The cells were partitioned into Gel Beads in Emulsion in the GemCode instrument,

where cell lysis and barcoded reverse transcription of RNA occurred, followed by amplification, shearing and 30 adaptor and sample

index attachment. Libraries were sequenced on an Illumina Hiseq 4000. We used Seurat to analyze the data set.86 To perform quality

control of the data,87 we filtered genes that were expressed in less than 40 cells and cells that had fewer than 1000, greater than 5000

genes, and cells with a proportion of transcripts mapping to mitochondrial genes greater than 5%.86,88,89 We then scale the data and

apply PCA, then clustering and UMAP using the top 10 PCA dimensions. We use the resulting Seurat clusters and PanglaoDB cell

markers to identify cell marker expression.90 We compared the average expression of cell type markers to annotate cells and

compared Seurat clusters to PanglaoDB annotations to assign an immune cell type to each cluster in the core tumor samples. To

evaluate the expression of our communities, and the cell-type specificity of each community, we compared the number of genes

expressed from each community in each cell type to the average number of genes expressed in other cell types using a chi-squared

test. We used Seurat to score the cell cycle phase of cells.
e2 Cell Reports Methods 3, 100392, January 23, 2023
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Gene set enrichment analysis
We then applied GSEA using MSigDB collections (Hallmarks and C1-5) to functionally annotate each of the communities. A p val-

ue<1e-5, adjusted for testing of multiple hypotheses using the Benjamini-Hochberg method, was selected to filter enriched datasets.

Biological validation
To experimentally validate regulators of the discovered communities, we interrogated the robust regulators, defined as regulators

consistently associated with the same community by SparseGMM across all runs, against publicly available genetic perturbation

studies in the Library of Integrated Network-Based Cellular Signatures (LINCS) database. In this validation experiment we leveraged

the HEPG2 liver cell line data. The types of perturbation experiments used were 1) Consensus signature from shRNAs targeting the

same gene and 2) cDNA for overexpression of wild-type gene. The Fast Gene Set Enrichment Analysis tool was used to test for

significance in enrichment. To empirically derive p values, we permuted 1000 lists of genes of the same size as the community target

sets for each community and for each regulator. Regulator-gene set pairs which had a corresponding p value<0.05, adjusted for

testing of multiple hypotheses using the Benjamini-Hochberg method, were considered validated cellular signatures in either of

the two signature types.

We also used Re-Map,23 a database of transcriptional regulators peaks derived curated from DNA-binding sequencing experi-

ments to validate our robust community regulators. We restricted our analysis to experiments on the HEPG2 liver cell line data.

We used a hypergeometric test91 to test for significance between Re-Map data and our data. We used the Bonferroni method83

to correct for multiple comparisons.
Cell Reports Methods 3, 100392, January 23, 2023 e3
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Supplementary Figure 1: Performance of SparseGMM at different regularization values. Related 
to Figure 2. Comparison shown for TCGA LUAD (A-D) and TCGA HNSC (E-H) data. (A,E) 
Robustness of clustering is evaluated using adjusted Rand index. (B,F) Validation of regulators is 
represented by adjusted R-squared. (C,G) Degree of sparsity is evaluated using statistics on the 
number of drivers. (D,H) Module size informs the choice of regularization parameter value. 
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Supplementary Figure 2: SparseGMM achieves superior performance compared to GRNBoost2. 
Related to Figure 2. (A) Summary of comparison between SparseGMM and GRNBoost2. The 
total number of regulators represents the number of regulators selected by each method from 
the set of candidate regulators for which there are LINCS experimental data. (B) Distributions of 
p-value results from validation using the Fast Gene Set Enrichment Analysis tool. Results shown 
for both methods on the TCGA data sets: LIHC, HNSC and LUAD. (C) Distribution of modules size 
for SparseGMM and GRNBoost2. The number of target genes per regulators is used as a proxy 
for module size in GRNBoost2. (C) Distribution of the number of regulators per module for 
SparseGMM and GRNBoost2. The number of regulators per target gene is computed for 
GRNBoost2. 
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Supplementary Figure 3: Co-expression patterns of target genes in highly robust communities. 
Related to Figure 4. (A) normal liver communities: Lipid and protein catabolism, complement, 
vesicle trafficking, myofibril formation, and FGFR1 signaling. (B) Cancer communities: antigen 
presentation, interferon signaling, T cell and myeloid. (C) Shared communities: cell cycle and 
ribosome - protein synthesis. (D) Correlation between vascular development and EMT 
communities in TCGA samples 
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Supplementary Figure 4: Cell type identification based on Panglao DB markers: comparison 
with original data annotation and Seurat-based clustering. Related to Figure 5. (A) Average 
expression of different cell type Panglao DB markers.  (B) Original cell type assignments. (C) 
Seurat clusters (D) Cell type specific expression of communities 21 (dendritic cells) and 60 (T 
cells).   
  



  
Supplementary Figure 5: Comparison of gene expression in different tissues. Related to Figure 
5. (A) Expression of cell-type specific robust communities. Similar expression patterns of T cell 
and myeloid communities occur in cancer, normal and blood tissue. Cell cycle genes are 
significantly more expressed in subpopulation of immune cell in tumor samples.  Top, left to 
right expression in blood samples of target genes in T cell, myeloid and cell cycle community, 
and cell type assignment. Bottom, left to right normal samples of target genes in in T cell, 
myeloid and cell cycle community, and cell type assignment. (B) Average expression of cell cycle 
community target genes in blood, normal and cancer immune cells.   
 



Supplementary Table 1: Comparison of SparseGMM to AMARETTO at different regularization 

values: 50, 500 and 5000. Robustness of clustering is evaluated using adjusted Rand index. 

Validation of regulators is represented by R-squared. Degree of sparsity is evaluated using 

statistics on the number of drivers. Module size informs the choice of regulatization parameter 

value. Standard Deviation (std dev). Related to Figure 2.    
Adjusted 
Rand Index 

R-Squared Module Size Number of 
Drivers 

GTEx  sparseGMM Mean 0.29 0.97 72.02 37.87 
50 std dev 0.01 0.01 36.09 8.60 

p-value 3.99E-44 7.77E-32 1.00E+00 6.87E-222 
sparseGMM Mean 0.34 0.91 97.68 21.27 

500 std dev 0.02 0.10 53.32 9.24 

p-value 5.96E-25 7.52E-05 9.57E-45 0.00E+00 
sparseGMM mean 0.42 0.78 679.43 30.15 

5000 std dev 0.07 0.24 382.79 10.80 
p-value 1.30E-01 5.42E-13 3.57E-45 2.54E-185       

AMARETTO Mean 0.40 0.93 72.02 84.14  
std dev 0.02 0.13 29.18 46.92       

TCGA  sparseGMM Mean 0.31 0.96 53.44 86.19 
50 std dev 0.01 0.02 23.54 18.63 

p-value 9.77E-32 6.82E-04 1.00E+00 6.53E-297 
sparseGMM Mean 0.33 0.92 54.31 38.20 

500 std dev 0.02 0.08 21.65 12.64 
p-value 3.06E-30 1.21E-63 3.30E-01 0.00E+00 

sparseGMM Mean 0.41 0.82 178.13 27.09 
5000 std dev 0.03 0.19 87.42 12.55 

p-value 3.47E-01 1.82E-48 5.96E-111 0.00E+00       

AMARETTO Mean 0.40 0.97 53.44 196.33  
std dev 0.02 0.06 26.81 90.69 

 
 



Supplementary Table 4: ReMap validation of robust normal liver and liver cancer communities. 
Robust communities were defined by having Jaccard Index >= 0.7.  Main pathway of each 
community was revealed through gene set enrichment analysis of SparseGMM modules in GTEx 
and TCGA data against MSigDB collections. Validation of regulators is established with an 
adjusted p-value < 0.05. Related to Figure 4.  

 
Community Main pathway/Gene set Jaccard Index ReMap-validated Regulators 

 Cancer Communities   

72 Blood coagulation 0.7 HNF4A 
 Shared Communities   

23 Sterol biosynthesis 0.9 SREBF2 
21 Cell Cycle/DNA replication 0.9 BRCA1, HMGXB4, HSF2, ZNF652 

 



Methods S1: Model for Sparse Gaussian
Mixtures

Related to STAR Methods

1 Model

We propose a Bayesian generative model to learning the regulatory

relationships among genes. In the context of gene regulatory networks, we

classify genes into one of two types: target genes and regulator genes.

Regulator genes are genes undergoing genomic events that are relevant to

cancer progression or tumor growth. Target genes are genes whose

expression is controlled by regulator genes, and which contribute to the

biological processes responsible for cancer progression. Each group of target

genes is regulated by a small set of regulator genes.

This model can be formulated as follows: X
T
= [x1x2..xi..xN ] is a gene

expression matrix X 2 RN⇥M
, where N is the number of target genes and

M is the number of subjects, G is a regulator expression matrix 2 RM⇥P

where M is the number of subjects and P is the number of regulator genes.

Finally, � 2 RP⇥K
is a weight matrix, where K is the number of gene

modules. The mean of each Gaussian component is a vector of weights

passed through a constant regulator gene expression matrix:

z ⇠ Cat(⇡)

xi|zi = k ⇠ N (G�k, �kI),

where zi is the latent indicator of the mixture component that generated

gene i. The expression of gene i is a sample from a Gaussian with mean

equal to the weights, �k passed through a constant regulator gene

expression matrix G. �k is the variance of the Gaussian mixture component



k and ⇡ is the parameter of the categorical distribution. Thus,

✓k = [�k, �k].

Our Bayesian approach combines Gaussian mixtures with `1-norm

regularization to enforce sparsity on the regulator weights, resulting in a

small set of regulators for each mixture component. We develop an

expectation-maximization (EM)-based algorithm to obtain a maximum a
posteriori (MAP) estimate the Gaussian mixture of parameters. This is

detailed in the following sections.

2 Gaussian Mixtures for Gene Regulatory

Networks

Mixture models are useful for representing data that are generated from

di↵erent distributions, such as multimodal data. The data is assumed to be

generated from a mixture of components, each with specific parameters

that specify its distribution. The goal is to estimate these parameters using

the observed data without observing the true component membership of

the data points, which is a hidden or latent variable of our model. In a

mixture model with K distributions zi 2 {1, . . . , K}, point xi is generated

from distribution k with likelihood p(xi|zi = k). zi has the distribution

p(zi) = Cat(⇡) and the K distributions are mixed as follows:

p(xi|✓) =
KX

k=1

⇡kp(xi|✓k), (1)

where ✓ are the parameters to be estimated for k = 1 : K, ✓ is

[✓1 . . .✓k . . .✓K ]. ⇡k is the mixing weight of base distribution k, 0 < ⇡k < 1

and
PK

k=1 ⇡k = 1. For example, a mixture of Gaussian distributions would

be modeled as follows:

p(xi|✓) =
KX

k=1

⇡kN (xi|µk,⌃k). (2)

Point i can then be assigned to a component using the MAP or ML

estimate of the parameter ✓ is needed.

To obtain this estimate, we fit the model for the data D, using the iterative

expectation-maximization (EM) algorithm applied to the likelihood

function. The EM algorithm, consists of two steps. In the first (E) step the

missing values are inferred using parameter estimates from the previous



iteration. In the second (M) step, the likelihood function is maximized with

respect to model parameters, giving new parameter estimates, which are

improved with each subsequent iteration until convergence.

Using this model to cluster the data involves calculating the posterior

probability p(zi = k|xi,✓
t�1

), the posterior probability that point i is

generated from distribution k or the responsibility of cluster k for point i:

rik , p(zi = k|xi,✓
(t�1)

), (3)

where t is the current iteration number. This can be expanded as:

rik =
p(zi = k|✓t�1

)p(xi|zi = k,✓t�1
)P

k0 p(zi = k0|✓t�1
)p(xi|zi = k0,✓t�1

)
. (4)

To derive the objective function, we first look at the complete log likelihood

of the data, which is defined as:

`c(✓) ,
NX

i=1

log[p(xi, zi|✓)]. (5)

Since the cluster assignments, zi are not observed the expected likelihood is

used. This is defined as:

Q(✓,✓t�1
) = E[`c(✓)|D,✓t�1

], (6)

where we take the expectation to account for the fact that zi is not

observed.

Specifically in the case of GMM, this gives:

Q(✓,✓t�1
) =

NX

i=1

KX

k=1

rik log[⇡ikp(xi|✓k)]. (7)

Now, a MAP estimate can be performed on the above equation in the M

step, obtaining ✓t
. In the case of Gaussian mixtures, each class conditional

density is a Gaussian distribution and ✓ is made up of the mean and

variance of each distribution and this estimate is iteratively improved .

Upon convergence, the final iteration T gives the final estimate ✓T
.

We can apply this model to gene regulatory networks. In this case, the

average expression of target genes is the mean of the mixture component,

which corresponds to a gene module. The mean of the component is a

linear function of the regulator genes regulating that module. Equation (7)

then becomes:



Q(✓,✓t�1
) =

NX

i=1

KX

k=1

rik log[⇡ikN (xi|G�k, �
2
k)]. (8)

3 MAP Estimation - `1-norm

Regularization and Sparse GMM

MAP estimation with the right prior can be useful when we would like to

avoid over-fitting of parameter estimates, which can occur in the case of

Maximum Likelihood Estimation (MLE). Adding parameter priors, (8)

becomes:

Q(✓,✓t�1
) =

NX

i=1

KX

k=1

rik log[⇡ikN (xi|G�k, �
2
k)] + log(p(✓)). (9)

The parameters of the GMM to be estimated are ✓k = [�k, �k] and ⇡k for

k = 1 : K. In our problem, we are more interested in discovering the

regulatory relationships between regulator and target genes, so we use a

zero-mean Laplace prior for the weights �k and use uniform priors for �k

and ⇡k. Uniform priors will give the same result as MLE estimates, while

the Laplace prior will give a regularized MAP estimate. Specifically, a

Laplace prior is commonly chosen where a sparse solution is desired as it

corresponds to `1-norm regularization. A sparse solution can improve our

understanding of gene regulatory relationships, as we hypothesize that only

a few regulator genes regulate each module.

The expected likelihood function from (9) is updated to be:

Q(✓,✓t�1
) =

NX

i=1

KX

k=1

rik log[⇡ikN (xi|G�k, �
2
k)]+

+ log[Lap(�k|0, 1/�k)] + log(p(�k) + log(p(⇡k)), (10)

where

log(p(✓)) =
NX

i=1

KX

k=1

log[Lap(�k|0, 1/�k)] + log(p(�k) + log(p(⇡k)). (11)

Thus, we define a sparse Gaussian Mixture model as a Gaussian mixture

model, where the mean of each Gaussian component is a random vector of

weights sampled from a Laplace distribution with zero mean and passed

through a constant matrix.



4 Hierarchical Bayes modeling

Using a Laplace prior directly results in an `1-norm, which does not give a

closed form solution during optimization.

We follow an approach similar to the EM for lasso approach [S26]. We then

utilize the representation of a Laplace distribution as a Gaussian Scale

Mixture (GSM) [S27, S28].

Lap(�p|0, 1/�) =
�

2
e
��|�p| =

Z
N (�p|0, ⌧ 2p )Ga(⌧

2
p |1,

�
2

2
)d⌧

2
p . (12)

This is an example of a hierarchical Bayes model, where we include a

prior on the hyperparameter ⌧
2
of the prior distribution p(✓). In this case,

the hyperprior is the Gamma distribution with scale parameter
�2

2 . The

expected complete data log likelihood is given by:

Q(✓,✓t�1
) =

NX

i=1

KX

k=1

rik log[⇡ikN (xi|G�k, �
2
k)]

+

Z
log[N (�k|0,D⌧k)[

X

p

Ga(⌧
2
kp|1, �2/2)]]d⌧kp + log(p(�k) + log(p(⇡k)),

(13)

where D⌧k is diag(⌧
2
kp) for p = 1 : K. The objective function then becomes:

Q(�k, �k) =

NX

i=1

[rik[�n log �k�
1

2�2
k

||xi�G�k||22+log(⇡ik)]�
1

2
�
T
k ⇤k�k)d⌧ ]+c,

(14)

where: ⇡ik is the marginal probability of component zi = k, ⇤k = diag(1/⌧
2
kp)

for p = 1 : K and c =
PK

k=1

R
[log(p(⌧kp))]d⌧ + log(p(�k) + log(p(⇡)).

5 EM Algorithm

E step: We evaluate: E(
1
⌧2 ) and rik. From the expected complete data

likelihood equation (14), the expected value of ⇤k is

E[⇤k|�̂k, x, �̂k] = �diag(|�̂�1
1k |...|�̂

�1
Pk |). (15)

and the responsibilities are:

rik =
⇡kp(xi,�k, �k)P
k0 ⇡k0p(xi, �k, �k)

, (16)



where:

p(xi|G,�k, �k) = N (xi|G�k, �kIN), (17)

and

p(�k|⌧k) = N (�k|0,D⌧k). (18)

M step: Using a sparse learning approach [S29]. We estimate model

parameters ⇡k,�k and �k by optimizing the expected complete likelihood

function with respect to each of the parameters, after substituting E(
1
⌧2 )

and rik obtained in the E step, taking derivative wrt �k

r�k
lc =

NX

i=1

rik[G
T
xi �G

T
G�k]� �k⇤k�k] = 0

(

NX

i=1

rikG
T
G+ �k⇤k)�k =

NX

i=1

rik(G
T
xi)

[(rk
T
1)G

T
G+ �k⇤k]�k = (G

T
X

T
)rk

,

where rk is the responsibility vector of component k 2 RN

�̂k = ((rk
T
1)G

T
G+ �k⇤k)

�1
(G

T
X

Trk). (19)

Taking the derivative wrt �k yields

�̂k =

PN
i=1 rik||xi�G�̂k||22

M(rkT1)
. (20)

Taking the derivative wrt ⇡k yields the same result as a GMM:

⇡̂k =
rT
k 1

N
. (21)

6 Implementation for Numerical Stability

Since we expect most �k to be equal to zero, and to make the matrix under

the inverse numerically stable, we use the SVD decomposition of G as follows:

G = UDV
T
, (22)

and

 = diag(|�jk|/�). (23)



Taking the derivative wrt �k:

argmax
�k

NX

i=1

1

2
rik[

1

�k
||xi � UDV

T�k||22]�
1

2
�
T
k ⇤�k (24)

NX

i=1

rik[�(UDV
T
)
T
(xi � UDV

T�k)] + �k⇤�k = 0 (25)

NX

i=1

rik(UDV
T
)
T
xi = �̂k⇤�k +

NX

i=1

rik[(UDV
T
)
T
(UDV

T
)�k] (26)

V DU
T
X

Trk = [�̂k⇤+ (rk
T
1)V D

2
V

T
]�k (27)

�̂k =
1

[rkT1]
(
�̂k⇤

[rkT1]
+ V D

2
V

T
)
�1
V DU

T
X

Trk. (28)

�̂k =
1

[rkT1]
(
�̂k⇤

[rkT1]
+ V D

2
V

T
)
�1
(V D)

2
(D

�2
V

T
)(V DU

T
)X

Trk

=
1

[rkT1]
(
�̂k⇤

[rkT1]
+ V D

2
V

T
)
�1
(V D

2
)D

�1
U

T
X

Trk

=
1

[rkT1]
(
�̂k⇤V D

�2

[rkT1]
+ V D

2
V

T
V D

�2
)
�1
D

�1
U

T
X

Trk.

Thus, we are able to remove ⇤ from the inverse:

=
1

[rkT1]
 V V

T
 

�1
(
�̂k⇤V D

�2

[rkT1]
+ V )

�1
D

�1
U

T
X

Trk

=
1

[rkT1]
 V (

�̂k⇤V D
�2

[rkT1]
+ V

T
 V )

�1
D

�1
U

T
X

Trk. (29)

�̂k =
1

[rkT1]
 V (

�̂k⇤V D
�2

[rkT1]
+ V

T
 V )

�1
D

�1
U

T
X

Trk. (30)

This computation of �̂k avoids numerical instability.



7 Target Gene Entropy

The model allows us to calculate the entropy of each target genes using the

conditional distribution of the latent indicator zi. This is given by:

H(Zi) =

KX

k=1

riklog2(rik), (31)

where

rik , p(zi = k|xi,✓). (32)

Since entropy is a measure of uncertainty, we hypothesized that gene en-

tropy, or uncertainty in assignment to a gene module, could be interpreted

as a proxy for multiple module membership, and thus be used to unveil the

elements of hidden crosstalk in cancer.
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