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Fig. S1. Non-linear dimensionality reduction methods generate cell embedding spaces in 

which cells of the same cell type cluster more tightly. Scatterplots show embedding spaces 

generated using t-SNE, siVAE, and PCA trained on the fetal liver atlas dataset. Cells are 

colored based on cell type.  

  



 

Fig. S2.  Clustering performance of cell embeddings are consistent across clustering 

metrics. Bar plots indicate clustering performance based on either nearest neighborhood 

classification or ARI. For “All”, all cell types were used without considering differences in the 

number of cell types (unbalanced accuracy), whereas "Balanced” measures accuracy normalized 

by size for each cell type.  

  



 

Fig. S3. Clustering accuracy of cell embeddings are consistent across the different cell 

types. Bar plots indicate clustering accuracy for each cell type in the FetalLiverAtlas dataset, 

ordered by decreasing number of cells. 

  



 

 

Fig. S4. Negative log likelihoods achieved by different methods on the fetal liver atlas 

dataset.  Bar plot indicates the negative log likelihood (nll) for different models that use a negative 

binomial distribution as the output layer of the neural network. 

  



 

Fig. S5. Increasing the weight of the siVAE interpretability term leads to lower performance. 

We trained siVAE with varying weight on the interpretability term (𝛾) on the fetal liver atlas dataset.  

The bar plot shows (left) reconstruction loss and (right) clustering accuracy of the embedding 

space based on cell type labels, measured with a k-nearest neighbor classifier. 

  



 

Fig. S6. siVAE achieves classification accuracy comparable to a canonical VAE on imaging 

datasets. Bar plot indicating classification accuracy on three imaging datasets. Each model was 

trained with an imaging dataset, and clustering accuracy of the embedding space based on image 

label was measured with k-nearest neighbors. 

  



 

Fig. S 7.  Classification experiments on three imaging datasets. Line plots indicate 

classification accuracy of methods trained on three imaging datasets, while varying the number 

of embedding dimensions. Classification was performed on the embeddings of each model using 

k-nearest neighbors in a 5-fold cross validation framework.  

  



 

 

Fig. S8. Intuitive visualization of feature embeddings using MNIST digit images. To provide 

a visual comparison of feature attributions, we trained siVAE to perform dimensionality reduction 

on a subset of the MNIST dataset consisting of black and white digits. We focused on the digits 

1 and 6 to ensure a human-visible separation of digits along individual embedding dimensions. 

(a) Scatterplot of feature embeddings inferred by siVAE trained on the one and six digits from the 

MNIST dataset. (b) Visualization of interpretations learned for each of the two dimensions (axes) 

from (a), for siVAE, Gene Relevance, DeepLIFT and grad*input. 

  



 

Fig. S 9.  Visualization of feature attributions across methods. Visualization of feature 

attributions (or embeddings in the case of siVAE) for different methods when trained on the MNIST 

dataset with all digits. Individual images represent the feature attributions (or embeddings for 

siVAE) for one embedding dimension. Attribution score represents the contribution of individual 

features (pixel) to each embedding dimension. Feature attribution methods and gene relevance 

scores were computed on the trained siVAE model to make them comparable. siVAE 

interpretations are in better agreement with feature attribution methods (median Spearman 𝜌 =
0.89, p=1.07e-11) compared to Gene Relevance (median Spearman 𝜌 = 0.12, p=0.14). 

  



 

Fig. S 10.  Runtimes of siVAE and feature attributions are consistent across batches. 

Scatterplot where each point is a batch forward pass through the siVAE model, followed by the 

feature attribution operation. The y-axis is the execution time (mean=5.76 mins, std dev=0.35 

mins), and the x-axis is the batch number. 

  



 

Fig. S11. Co-expressed gene modules cluster in the feature embedding space.  Scatter 

plots show the feature embeddings of siVAE when trained on a dataset simulated from a 

hypothetical genome containing 300 genes, and in which the underlying gene network consists 

of five communities of co-regulated genes, and one group of disconnected nodes. (a) Nodes are 

colored based on which community they originate from. (b) Nodes are colored based on their 

reconstruction loss averaged across cells after training. 

  



 

Fig. S12. Disconnected genes cluster towards the origin only when the interpretability 

term has non-zero weight.  Scatter plots show the feature embeddings of siVAE when trained 

on a dataset simulated from a hypothetical genome containing 300 genes, and in which the 

underlying gene network consists of five communities of co-regulated genes, and one group of 

disconnected nodes. Scatterplots show the feature embeddings of siVAE with (𝛾 = 0.05) and 

without (𝛾 = 0) the interpretability term. Top row: nodes are colored based on which community 

they belong to. Bottom: nodes are colored by reconstruction error after training.  

 



 

Fig. S13. Marker gene sets for different cell types defined in CellTypist overlap strongly. 

Heatmap indicates the overlap in marker gene sets between pairs of cell types, when using 

CellTypist annotations at the (a) higher hierarchy or (b) lower hierarchy. Additionally, overlap 

between MSigDB marker gene sets and CellTypist (higher hierarchy) gene sets are shown in 

(c); Table S3 indicates how we combined MSigDB sets to produce marker gene sets.  



 

Fig. S14. Clustering of marker genes based on CellTypist markers is more pronounced 

using the higher hierarchy of cell types compared to the lower hierarchy of cell types. 

Scatter plot shows the feature embeddings of siVAE and PCA trained on the fetal liver dataset, 

where each point represents a marker gene. (a) Scatterplot of siVAE feature embeddings, 

where colors are based on the higher hierarchy cell types. (b) Scatterplot of PCA loadings of 

genes, where colors are based on the higher hierarchy cell types. (c) Scatterplot of siVAE 

feature embeddings, where colors are based on the lower hierarchy cell types. (d) Scatterplot of 

PCA loadings of genes, where colors are based on the lower hierarchy cell types.  

  



 

Fig. S15. High correlation between ground truth degree centrality (DC) and siVAE-

estimated reconstruction accuracy. Scatter plot shows the correlation between predicted 

degree centrality (measured as reconstruction accuracy) and ground truth degree centrality for 

siVAE with and without (𝛾 = 0) the interpretability term.  

  



 

Fig. S16. siVAE predicts genes with higher ground truth degree centrality compared to 

other methods. Line plot indicates the cumulative ground truth degree centrality of the (a) top 

20 and (b) top 2000 genes ranked in decreasing order of largest predicted degree centrality by 

each method.  

  



 

Fig. S17. Both dimensionality reduction based approaches and explicit GCN inference 

based approaches predict neighborhood genes that equally explain the variance in 

expression of query genes. Bar plot indicates the prediction accuracy (% of variance 

explained) of the neighborhood gene sets when predicting each query gene, averaged over the 

152 query genes with highest predicted degree centrality across tested methods. Blue bars 

denote methods based on siVAE with the interpretability term, and orange bars denote methods 

based on siVAE without interpretability term. Green bars denote methods based on applying 

feature attribution to scVI. Red bars indicate GCN inference based methods. Purple and brown 

bars denote approaches where GRN inference methods were applied to data sampled from a 

siVAE model trained on the original dataset, with and without the interpretability term 

respectively. Finally, pink bars denote methods based on siVAE with varying numbers of 

embedding dimensions. 

  



 

Fig. S18. Overlap between neighborhood genes identified by different methods.  Heatmap 

indicates the Jaccard index quantifying the overlap between the neighborhood genes detected 

by each method.  

  



 

Fig. S19. Cell lines separate by differential efficiency in the cell line embedding space. 

Scatter plots of embeddings of cell line-specific gene co-expression networks implicitly learned 

by siVAE, and colored based on neuronal differentiation efficiency. (a) siVAE was trained on the 

FPP cell type from all donor lines. PC-1 is strongly correlated with efficiency (Spearman 𝜌 =
0.62,P=3.0x10-5). (b) siVAE was trained on the FPP cell type from only those donor lines that 

were successfully differentiated. PC-1 is still strongly correlated with efficiency (Spearman 𝜌 =

0.59,P=4.8x10-4). (c) siVAE was trained on the P_FPP cell type from all donor lines. PC-1 is 

strongly correlated with efficiency (Spearman 𝜌 = 0.55,P=4.2x10-3). (d) siVAE was trained on 

the P_FPP cell type from only those donor lines that were successfully differentiated. PC-1 is 

still strongly correlated with efficiency (Spearman 𝜌 = 0.53, P=0.019). 

  



 

Fig. S20. Correlation between mitochondrial genes’ degree centrality and neuronal 

differential efficiency is not driven by change in average expression levels. (left) Scatter 

plot showing correlation between each MT gene’s degree centrality (y-axis) versus efficiency (x-

axis). Individual points represent an MT gene for a specific cell line; points are colored based on 

the mitochondrial gene identity. (right) Same as left, but the y-axis represents mean expression 

of a MT gene in a cell line. 

  



 

Fig. S21. Number of edges between mitochondrial genes is significantly smaller for cell 

lines with higher efficiency. (left) Scatter plot showing negative correlation between the 

number of edges between mitochondrial genes (y-axis) versus differentiation efficiency (x-axis). 

Individual points represent a gene for a specific cell line. The number of edges per cell line was 

calculated from the gene network inferred from either siVAE or CLR. (right) Same as left, but 

the y-axis represents the number of edges between one mitochondrial gene and one non-

mitochondrial gene. 

 

 

  



 

 

Fig. S22. Single variant testing does not detect any associations between mitochondrial 

variants and differentiation efficiency. Heatmap indicates the presence of a variant in a cell 

line. Cell lines are sorted according to their neuronal differential efficiency. Hierarchical 

clustering is performed on the columns for variants. Column colorbar shows the result of Wilcox 

rank sum tests. 

  



 

Fig. S23. Schematic of the siVAE neural network. Neural network setup and operations for 

siVAE including the cell-wise encoder-decoder on top in blue, and the feature-wise encoder-

decoder on bottom in orange. Layers are labeled with variables consistent with the Methods 

section of the main text. 

  



 

Fig. S24. Choice of method for reducing the number of inputs to the siVAE feature-wise 

encoder-decoder network is robust to reduction method and number of reduced 

dimensions. Two reduction methods, PCA and downsampling, were used to reduce the input 

dataset size. We varied the number of PCs for PCA, and the number of retained features for the 

downsampling approach; the numbers chosen are indicated in the method name. (top) Bar plot 

showing test reconstruction loss of siVAE. (bottom) Bar plot showing classification accuracy of 

siVAE. 

  



 

Fig. S25. Train/test losses for LDVAE and scVI. Line plot of train and test losses for LDVAE 

and scVI as a function of epoch, confirming convergence of the models.  

  



Dataset name Encoder architecture # of latent dimension Decoder architecture 

MNIST 512-128 {2,5,10,20} 128-512 

Fashion-MNIST 512-128 {2,5,10,20} 128-512 

CIFAR-10 1024-512-128 {2,5,10,20} 128-512-1024 

Fetal liver atlas 1024-512-128 {2,64} 128-512-1024 

1.3 Million Brain Cells 2048-1024-512 {20,128,512} 512-1024-2048 

scATAC-Seq 1024-512-128 {20} 128-512-1024 

NeurDiff 1024-512-128 {32} 128-512-1024 

 
Table S1: Architectures used for training on different datasets. For the encoder and decoder 
architectures, each number separated by a dash indicates the number of nodes for a single layer. 
# of latent dimensions indicates the set of all numbers of latent dimensions that were tested 
throughout the experiments. 
 
  



 

Dataset name # Class # Sample # Feature 

MNIST 10 60,000 784 

Fashion-MNIST 10 60,000 784 

CIFAR-10 2 10,000 3,072 

Fetal liver atlas 40 100,000 2,000 

1.3 Million Brain Cells NA 1,308,421 27,998 

scATAC-Seq NA 8,000 244,544 

NeurDiff (FPP) 41 109,483 3,362 

NeurDiff (P_FPP) 27 85961 3,308 

 
Table S2: Metadata on the datasets used in our study. 
 
  



 

MSigDB meta-marker set  FetalLiverAtlas cell type MSigDB gene sets 
Hepatocytes Hepatocytes Aizarani_Liver_C11_Hepatocytes_1 

Aizarani_Liver_C30_Hepatocytes_4 
Aizarani_Liver_C17_Hepatocytes_3 
Aizarani_Liver_C14_Hepatocytes_2 

Kupffer cells Kupffer cells Aizarani_Liver_C6_Kupffer_Cells_2 
Aizarani_Liver_C2_Kupffer_Cells_1 
Aizarani_Liver_C31_Kupffer_Cells_5 
Aizarani_Liver_C25_Kupffer_Cells_4 
Aizarani_Liver_C23_Kupffer_Cells_3 

B cells (MHC II Positive) Pro B cell 
Pre B cell 
Pre pro B cell 

Aizarani_Liver_C34_MHC_II_pos_B_cells 
Aizarani_Liver_C38_Resident_B_cells_3 
Aizarani_Liver_C8_Resident_B_cells_1 
Aizarani_Liver_C22_Resident_B_cells_2 

NK/NKT cells NK 
Mono-NK 
Mac NK 

Aizarani_Liver_C28_NK_NKT_cells_6 
Aizarani_Liver_C1_NK_NKT_cells_1                              
Aizarani_Liver_C12_NK_NKT_cells_4                             
Aizarani_Liver_C5_NK_NKT_cells_3                              
Aizarani_Liver_C3_NK_NKT_cells_2                              
Aizarani_Liver_C18_NK_NKT_cells_5                             

Table S3. Mapping of marker gene sets from MSigDB that were matched to the cell type 
labels in the fetal liver dataset. Cell type category represents our higher-level grouping of the 
Aizarani cell types into larger categories for visualization. 
  



Supplementary Note 1. Visual validation of feature attribution from the imaging dataset. 

We performed the same comparison on the MNIST imaging dataset as we did on Fetal Liver 

Atlas dataset by calculating feature attributions. With the imaging dataset, we were able to 

visualize the interpretation as an image, where contribution of individual features (pixel) is 

represented on a color scale (Fig. S8). We found that again siVAE interpretations agreed more 

strongly with the neural net attribution methods (median Spearman correlation of 0.48, P=2.4e-

27) compared to Gene Relevance (median Spearman correlation of 0.35, P=0.10). 

  



Supplementary Note 2. Mitochondrial variant association testing for iPSC cell lines. We 

tested the possibility that mitochondrial variants could be associated with differentiation 

efficiency. We obtained variant calls for the iPSC cell lines in NeurDiff dataset from the HipSci 

repository, then performed Wilcoxon rank sum test on single variants and gene-based burden 

testing on variants grouped by gene. However, there were neither single variants nor grouped 

variants that were significantly correlated with efficiency based on their adjusted P-value 

(Supplementary Fig. S23).  

 

 


