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siVAE PCA

Fig. S1. Non-linear dimensionality reduction methods generate cell embedding spaces in
which cells of the same cell type cluster more tightly. Scatterplots show embedding spaces
generated using t-SNE, siVAE, and PCA trained on the fetal liver atlas dataset. Cells are

colored based on cell type.
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Fig. S2. Clustering performance of cell embeddings are consistent across clustering
metrics. Bar plots indicate clustering performance based on either nearest neighborhood
classification or ARI. For “All”, all cell types were used without considering differences in the
number of cell types (unbalanced accuracy), whereas "Balanced” measures accuracy normalized

by size for each cell type.
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Fig. S3. Clustering accuracy of cell embeddings are consistent across the different cell
types. Bar plots indicate clustering accuracy for each cell type in the FetalLiverAtlas dataset,
ordered by decreasing number of cells.
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Fig. S4. Negative log likelihoods achieved by different methods on the fetal liver atlas
dataset. Bar plot indicates the negative log likelihood (nll) for different models that use a negative
binomial distribution as the output layer of the neural network.
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Fig. S5. Increasing the weight of the siVAE interpretability term leads to lower performance.
We trained siVAE with varying weight on the interpretability term (y) on the fetal liver atlas dataset.
The bar plot shows (left) reconstruction loss and (right) clustering accuracy of the embedding
space based on cell type labels, measured with a k-nearest neighbor classifier.
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Fig. S6. siVAE achieves classification accuracy comparable to a canonical VAE on imaging
datasets. Bar plot indicating classification accuracy on three imaging datasets. Each model was
trained with an imaging dataset, and clustering accuracy of the embedding space based on image
label was measured with k-nearest neighbors.
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Fig. S 7. Classification experiments on three imaging datasets. Line plots indicate
classification accuracy of methods trained on three imaging datasets, while varying the number
of embedding dimensions. Classification was performed on the embeddings of each model using
k-nearest neighbors in a 5-fold cross validation framework.
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Fig. S8. Intuitive visualization of feature embeddings using MNIST digit images. To provide
a visual comparison of feature attributions, we trained siVAE to perform dimensionality reduction
on a subset of the MNIST dataset consisting of black and white digits. We focused on the digits
1 and 6 to ensure a human-visible separation of digits along individual embedding dimensions.
(a) Scatterplot of feature embeddings inferred by siVAE trained on the one and six digits from the
MNIST dataset. (b) Visualization of interpretations learned for each of the two dimensions (axes)
from (a), for siVAE, Gene Relevance, DeepLIFT and grad*input.
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Fig. S9. Visualization of feature attributions across methods. Visualization of feature
attributions (or embeddings in the case of siVAE) for different methods when trained on the MNIST
dataset with all digits. Individual images represent the feature attributions (or embeddings for
SiVAE) for one embedding dimension. Attribution score represents the contribution of individual
features (pixel) to each embedding dimension. Feature attribution methods and gene relevance
scores were computed on the trained siVAE model to make them comparable. siVAE
interpretations are in better agreement with feature attribution methods (median Spearman p =
0.89, p=1.07e-11) compared to Gene Relevance (median Spearman p = 0.12, p=0.14).
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Fig. S10. Runtimes of siVAE and feature attributions are consistent across batches.
Scatterplot where each point is a batch forward pass through the siVAE model, followed by the
feature attribution operation. The y-axis is the execution time (mean=5.76 mins, std dev=0.35
mins), and the x-axis is the batch number.
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Fig. S11. Co-expressed gene modules cluster in the feature embedding space. Scatter
plots show the feature embeddings of siVAE when trained on a dataset simulated from a
hypothetical genome containing 300 genes, and in which the underlying gene network consists
of five communities of co-regulated genes, and one group of disconnected nodes. (a) Nodes are
colored based on which community they originate from. (b) Nodes are colored based on their
reconstruction loss averaged across cells after training.
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Fig. S12. Disconnected genes cluster towards the origin only when the interpretability
term has non-zero weight. Scatter plots show the feature embeddings of siVAE when trained
on a dataset simulated from a hypothetical genome containing 300 genes, and in which the
underlying gene network consists of five communities of co-regulated genes, and one group of
disconnected nodes. Scatterplots show the feature embeddings of siVAE with (y = 0.05) and
without (y = 0) the interpretability term. Top row: nodes are colored based on which community
they belong to. Bottom: nodes are colored by reconstruction error after training.
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Fig. S13. Marker gene sets for different cell types defined in CellTypist overlap strongly.
Heatmap indicates the overlap in marker gene sets between pairs of cell types, when using
CellTypist annotations at the (a) higher hierarchy or (b) lower hierarchy. Additionally, overlap
between MSigDB marker gene sets and CellTypist (higher hierarchy) gene sets are shown in
(c); Table S3 indicates how we combined MSigDB sets to produce marker gene sets.
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Fig. S14. Clustering of marker genes based on CellTypist markers is more pronounced
using the higher hierarchy of cell types compared to the lower hierarchy of cell types.
Scatter plot shows the feature embeddings of siVAE and PCA trained on the fetal liver dataset,
where each point represents a marker gene. (a) Scatterplot of siVAE feature embeddings,
where colors are based on the higher hierarchy cell types. (b) Scatterplot of PCA loadings of
genes, where colors are based on the higher hierarchy cell types. (c) Scatterplot of siVAE
feature embeddings, where colors are based on the lower hierarchy cell types. (d) Scatterplot of
PCA loadings of genes, where colors are based on the lower hierarchy cell types.
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Fig. S15. High correlation between ground truth degree centrality (DC) and siVAE-
estimated reconstruction accuracy. Scatter plot shows the correlation between predicted
degree centrality (measured as reconstruction accuracy) and ground truth degree centrality for
siVAE with and without (y = 0) the interpretability term.
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each method.
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Fig. S17. Both dimensionality reduction based approaches and explicit GCN inference
based approaches predict neighborhood genes that equally explain the variance in
expression of query genes. Bar plot indicates the prediction accuracy (% of variance
explained) of the neighborhood gene sets when predicting each query gene, averaged over the
152 query genes with highest predicted degree centrality across tested methods. Blue bars
denote methods based on siVAE with the interpretability term, and orange bars denote methods
based on siVAE without interpretability term. Green bars denote methods based on applying
feature attribution to scVI. Red bars indicate GCN inference based methods. Purple and brown
bars denote approaches where GRN inference methods were applied to data sampled from a
siVAE model trained on the original dataset, with and without the interpretability term
respectively. Finally, pink bars denote methods based on siVAE with varying numbers of
embedding dimensions.
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Fig. S18. Overlap between neighborhood genes identified by different methods. Heatmap
indicates the Jaccard index quantifying the overlap between the neighborhood genes detected
by each method.
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Fig. S19. Cell lines separate by differential efficiency in the cell line embedding space.
Scatter plots of embeddings of cell line-specific gene co-expression networks implicitly learned
by siVAE, and colored based on neuronal differentiation efficiency. (a) siVAE was trained on the
FPP cell type from all donor lines. PC-1 is strongly correlated with efficiency (Spearman p =
0.62,P=3.0x10®). (b) siVAE was trained on the FPP cell type from only those donor lines that
were successfully differentiated. PC-1 is still strongly correlated with efficiency (Spearman p =
0.59,P=4.8x10"%). (c) siVAE was trained on the P_FPP cell type from all donor lines. PC-1 is
strongly correlated with efficiency (Spearman p = 0.55,P=4.2x1073). (d) siVAE was trained on
the P_FPP cell type from only those donor lines that were successfully differentiated. PC-1 is
still strongly correlated with efficiency (Spearman p = 0.53, P=0.019).
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Fig. S20. Correlation between mitochondrial genes’ degree centrality and neuronal
differential efficiency is not driven by change in average expression levels. (left) Scatter
plot showing correlation between each MT gene’s degree centrality (y-axis) versus efficiency (x-
axis). Individual points represent an MT gene for a specific cell line; points are colored based on
the mitochondrial gene identity. (right) Same as left, but the y-axis represents mean expression
of a MT gene in a cell line.
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Fig. S21. Number of edges between mitochondrial genes is significantly smaller for cell
lines with higher efficiency. (left) Scatter plot showing negative correlation between the
number of edges between mitochondrial genes (y-axis) versus differentiation efficiency (x-axis).
Individual points represent a gene for a specific cell line. The number of edges per cell line was
calculated from the gene network inferred from either siVAE or CLR. (right) Same as left, but
the y-axis represents the number of edges between one mitochondrial gene and one non-
mitochondrial gene.



1 (FDR > 0.05) not significant
B (FDR < 0.05) significant
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Fig. S22. Single variant testing does not detect any associations between mitochondrial
variants and differentiation efficiency. Heatmap indicates the presence of a variant in a cell
line. Cell lines are sorted according to their neuronal differential efficiency. Hierarchical
clustering is performed on the columns for variants. Column colorbar shows the result of Wilcox
rank sum tests.



Encoder Decoder

Encoder Decoder

Fig. S23. Schematic of the siVAE neural network. Neural network setup and operations for
SiVAE including the cell-wise encoder-decoder on top in blue, and the feature-wise encoder-
decoder on bottom in orange. Layers are labeled with variables consistent with the Methods

section of the main text.



2500 0.8
w
] >
o o 074
= 20001 g 054
2 g
5 ® 05
3 15001 c
2 2 4]
c o
§ 1000 ‘E 0.3
— v
- @ 024
& 500 o
= 0.14
0.0
o 2 = g g
8 &8 § & s 7 8 8
a ]} I I=1 a a4 & ~
a £ ) ~ £ a = &
£ e & @ ] E a a
o E = = w a E
@ @ E [ w @ 13
@ @ £ @ e
[ H w
Reduction method Reduction method

Fig. S24. Choice of method for reducing the number of inputs to the siVAE feature-wise
encoder-decoder network is robust to reduction method and number of reduced
dimensions. Two reduction methods, PCA and downsampling, were used to reduce the input
dataset size. We varied the number of PCs for PCA, and the number of retained features for the
downsampling approach; the numbers chosen are indicated in the method name. (top) Bar plot
showing test reconstruction loss of siVAE. (bottom) Bar plot showing classification accuracy of
SiVAE.
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Fig. S25. Train/test losses for LDVAE and scVI. Line plot of train and test losses for LDVAE
and scVI as a function of epoch, confirming convergence of the models.



Dataset name Encoder architecture | # of latent dimension | Decoder architecture
MNIST 512-128 {2,5,10,20} 128-512
Fashion-MNIST 512-128 {2,5,10,20} 128-512
CIFAR-10 1024-512-128 {2,5,10,20} 128-512-1024
Fetal liver atlas 1024-512-128 {2,64} 128-512-1024
1.3 Million Brain Cells 2048-1024-512 {20,128,512} 512-1024-2048
SCATAC-Seq 1024-512-128 {20} 128-512-1024
NeurDiff 1024-512-128 {32} 128-512-1024

Table S1: Architectures used for training on different datasets. For the encoder and decoder
architectures, each number separated by a dash indicates the number of nodes for a single layer.
# of latent dimensions indicates the set of all numbers of latent dimensions that were tested
throughout the experiments.



Dataset name # Class # Sample # Feature

MNIST 10 60,000 784
Fashion-MNIST 10 60,000 784
CIFAR-10 2 10,000 3,072
Fetal liver atlas 40 100,000 2,000
1.3 Million Brain Cells NA 1,308,421 27,998
SCATAC-Seq NA 8,000 244,544
NeurDiff (FPP) 41 109,483 3,362
NeurDiff (P_FPP) 27 85961 3,308

Table S2: Metadata on the datasets used in our study.




MSigDB meta-marker set

FetalLiverAtlas cell type

MSigDB gene sets

Hepatocytes

Hepatocytes

Aizarani_Liver_C11 Hepatocytes 1
Aizarani_Liver_C30_Hepatocytes 4
Aizarani_Liver_C17_Hepatocytes 3
Aizarani_Liver C14 Hepatocytes 2

Kupffer cells

Kupffer cells

Aizarani_Liver_C6_Kupffer_Cells_2
Aizarani_Liver_C2_Kupffer_Cells_1
Aizarani_Liver_C31_Kupffer_Cells_5
Aizarani_Liver_C25_Kupffer_Cells_4
Aizarani_Liver C23 Kupffer Cells_3

B cells (MHC Il Positive) Pro B cell Aizarani_Liver_C34_MHC_ll_pos_B_cells
Pre B cell Aizarani_Liver C38 Resident B cells 3
Pre pro B cell Aizarani_Liver C8 Resident B cells 1
Aizarani_Liver C22 Resident B cells 2
NK/NKT cells NK Aizarani_Liver C28 NK_NKT cells 6
Mono-NK Aizarani_Liver_ C1 NK_NKT cells_1
Mac NK Aizarani_Liver_C12_NK_NKT cells_4

Aizarani_Liver_C5 NK_NKT cells_3
Aizarani_Liver_C3_NK_NKT cells_2
Aizarani_Liver_C18 NK_ NKT cells 5

Table S3. Mapping of marker gene sets from MSigDB that were matched to the cell type
labels in the fetal liver dataset. Cell type category represents our higher-level grouping of the
Aizarani cell types into larger categories for visualization.




Supplementary Note 1. Visual validation of feature attribution from the imaging dataset.
We performed the same comparison on the MNIST imaging dataset as we did on Fetal Liver
Atlas dataset by calculating feature attributions. With the imaging dataset, we were able to
visualize the interpretation as an image, where contribution of individual features (pixel) is
represented on a color scale (Fig. S8). We found that again siVAE interpretations agreed more
strongly with the neural net attribution methods (median Spearman correlation of 0.48, P=2.4e-
27) compared to Gene Relevance (median Spearman correlation of 0.35, P=0.10).



Supplementary Note 2. Mitochondrial variant association testing for iPSC cell lines. We
tested the possibility that mitochondrial variants could be associated with differentiation
efficiency. We obtained variant calls for the iPSC cell lines in NeurDiff dataset from the HipSci
repository, then performed Wilcoxon rank sum test on single variants and gene-based burden
testing on variants grouped by gene. However, there were neither single variants nor grouped
variants that were significantly correlated with efficiency based on their adjusted P-value
(Supplementary Fig. S23).



