
Supplementary Information of “Multi-modal
Representation Learning for Predicting

Molecule-Disease Relation”

1 Supplementary Note: Architecture of the Fea-
ture Extractor

Feature Extractor We train a deep neural network to learn molecule multi-
modal representation from molecule chemical structures represented by SMILES.
In the SMILES, there are 64 unique tokens, e.g., “C”, “=”, etc., which are mapped
to 64 integers accordingly. The feature extractor consists of an embedding layer,
two 1-dimensional convolution layers, and a bi-directional GRUs layer. The
embedding layer embeds each input integer to an 8-dimensional vector. The two
1-d convolution layers are with kernel sizes of 7 and 96 units. The bi-directional
GRUs layer is with 128 hidden units with an “average” merge mode. The feature
extractor is shared by indication and side effects.

Fusion Network The fusion network consists of two fully-connected (FC)
layers. For both the input molecule representation and disease embedding,
we first map them into 64-dimensional vectors separately using one FC layer.
Instead of directly merging them, we find such a strategy works better as they
are from different input spaces. Then they are fused using another FC layer into
a 128-dimensional relation representation.

Classifier The classifier is composed of two fully-connected layers. The first
layer consists of 48 units and the other is the output layer of 1 unit.

Discriminator The embedding discriminator is used to guide the feature
extractor to map the “unmapped” novel molecules onto the same EHR embedding
space and the relation discriminator is to encourage the predictor to generalize to
novel molecule-disease combinations. Both consist of two fully-connected layers
and one output layer, with 512, 512, and 1 units each layer for the embedding
discriminator and 128, 128, and 1 for the relation discriminator.
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Table 1: Comparison results evaluated in ROC-AUC of M2REMAP using
different feature extractors for drug-indication prediction on PrimeKG [3] and
side effects prediction on SIDER(Zhang) [4, 5].

Method PrimeKG SIDER 4.1
Transformer [1] 0.853 0.886

MPNN [2] 0.860 0.907
CNN+Bi-GRUs 0.882 0.901

Comparison of Feature Extractors We have studied different baseline
feature extractors which include the proposed CNN+bi-GRUs and Transformer
[1], both of which receive molecular SMILE, and MPNN [2] which works on
molecular graphs. The results in Table 1 show that the proposed feature extractor
achieves the best performance on PrimeKG [3] for predicting drug indications
and attains comparable performance to that of MPNN on the SIDER(Zhang)
[4, 5] for predicting drug side effects. For consistency, we use the proposed
feature extractor across all experiments.
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Figure 1: Pipeline of of M2REMAP to predict potential molecules for COVID-19.
We first learn a new set of EHR embedding using 4CE data which includes
concepts of COVID-19. Then, we transform 4CE embeddings to VA CDW
embeddings and infer the relations between COVID-19 and Drugbank molecules.

2 Supplementary Note: Molecules for COVID-19
The pipeline to predict potential molecules for COVID-19 is illustrated in Figure
1. We first obtain a set of 200-dimensional embedding using the EHR data from
the Consortium for Clinical Characterization of COVID-19 by EHR (4CE) Phase
2.2 [6]. It includes EHR data of COVID-19 patients from above 200 hospitals in 8
countries. Since the 4CE data is COVID-specific and contains only a small group
of concepts and drugs, we map the 4CE embedding to the VA CDW embedding
for relation inference. There are 2105 shared diagnostic concepts between 4CE
and VA CDW EHR data. We train a multi-layer perception network (MLP)
to learn the mapping from 4CE embedding to VA embedding via supervised
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Figure 2: The top 20 molecules predicted for COVID-19 by M2REMAP (the
red we find literature supports).

(a) Molecules and EHR concepts (b) Molecules and diseases

Figure 3: Embedding visualization of all Drugbank molecules and clinical con-
cepts. In (a), we show the predicted EHR embedding of Drugbank molecules.
In (b) we visualize several typical diseases represented using Phecodes and the
molecules that are literature-validated to be cancer-therapeutic.

regression using the 2105 shared codes as labels. We use the mean squared error
as the training objective for the regression. The MLP regression network consists
of two layers, namely a hidden layer with 200 units and an output layer with 100
units. In the 4CE, there are 5 concepts that are related to COVID-19, namely
“PCR positive”, “PCR negative”, “U07.1”, “COVID viral” and “COVID vaccine”.
Among them, we empirically find that “PCR positive” works better and thus
represents COVID-19 using this concept. We use the M2REMAP trained on the
annotated drug indications from PrimeKG [3] to predict the relations between
COVID-19 and all Drugbank molecules [7].
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(a) DB06623 (Flupirtine) (b) DB13324 (Tetrazepam)

(c) DB01283 (Lumiracoxib) (d) DB09004 (Clobutinol)

Figure 4: Side effects predictions by M2REMAP of the 4 drugs that are withdrawn
recently and have no reports in the SIDER 4.1 dataset [5] (the red are related
to the cause of withdrawal).

3 Supplementary Note: Embedding Visualization
of Novel Molecules

We visualize all EHR concepts and Drugbank molecules to show that M2REMAP
successfully transforms novel molecule chemical structures to the EHR embedding
space using the deep neural network. As shown in Figure 3 (a), the Drugbank
molecules majorly follow the same embedding distribution as the clinical concepts.
This facilitates M2REMAP to generalize to novel molecules to infer their relations
with EHR diseases. Then, in Figure 3 (b), we visualize the molecules that are
predicted to be therapeutic to cancers and are validated via literature reviews.
Also, we visualize several representative diseases represented by diagnosis codes
and 2% of the randomly selected Drugbank molecules. The results are consistent
with the observations that molecules and the related indications tend to be close
in the embedding space. For example, Vanoxerine (DB03701) is close to liver
cancer and chronic hepatitis and is shown to treat hepatocellular carcinoma in
[8].

4 Supplementary Note: Sampling of Negative
Drug-Disease Relations

We select negative molecule-disease relation per the EHR embedding similarity.
For each molecule, we require the selected negative side effects or indications
to be dissimilar to any of the reported. Different threshold values are used for
indications and side effects. For side effects, the threshold value is 0.2. For
indications, the threshold value is 0.5.
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5 Supplementary Note: Training Algorithm
The training details of the deep neural network to learn molecule-disease relations
are provided in Algorithm 1.

Algorithm 1 Training the molecule-disease relation prediction network.
Require: D with EHR semantic embeddings, Dlabel with labeled drug-disease

relations, Ddb with Drugbank molecule chemicals, Dmapped containing the
molecules with EHR embedding;

Ensure: Optimal E, M, P, D, Drela;
1: θE,θM,θP,θD ←− initialize network parameters;
2: repeat
3: xun ←− random mini-batch molecule from Ddb;
4: (xm, em) ←− random mini-batch molecule-embedding pairs from Dmapped;
5: (xl, edl

,yl) ←− random mini-batch molecule-disease-label triplets from
Dlabel;

6: eun ←− random mini-batch semantic embedding from D;
7: edun←− random mini-batch disease embedding from D;
8: L ←− (M(E(xm))− em)2 //embedding loss of mapped molecules;
9: Lemb

novel ←− log[D(M(E(xun)))] + log[1 −D(eun)] //embedding loss of un-
mapped molecules;

10: Lrela
novel ←− log[Drela(P(E(xun), edun

))] + log[1−Drela(P(E(xl), edl
))] //loss

of novel molecule-disease pairs;
11: ←− −yl ∗ log(P(E(xl), edl

))− (1−yl)∗ log(1−P(E(xl), edl
)) //prediction

loss;
12: // update parameters according to gradients;
13: θE

+←− −▽θE +βL+ γLemb
novel // update E;

14: θM
+←− −▽θM L // update M;

15: θP
+←− −▽θP +δLemb

novel // update P;
16: θD

+←− −▽θD −Lemb
novel // update D;

17: θDrela

+←− −▽θDrela
−Lrela

novel // update Drela;
18: until deadline

6 Supplementary Note: Hyper-parameters Selec-
tion

We describe the selection of hyper-parameters β, γ, and δ, which balance the
multiple objectives to train the model. We perform a grid search with 5-fold
validations to find the selection. The values range from 0 to 1 with a span
of 0.05. Finally, we get β = 0.8 for embedding learning of mapped molecules,
γ = 0.5 for embedding learning of novel unmapped molecules, and δ = 0.1 for
relation learning of novel molecule-disease combinations. We aim to guide relation
learning using the EHR semantic information. Thus, only the embedding learning
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Figure 5: Prediction results of M2REMAP on the 10 drugs with annotations
collected from clinicaltrials.

objective Lemb is applied to the model when the training progress m, which
increases from 0 to 1 as the training progresses, is smaller than 0.2. Further, we
progressively increase the importance of adversarial generalization losses, Lemb

novel

and Lrela
novel, to prevent training instability. We set Lemb

novel = 0.5 ∗ ( 2
1+exp(h·m) − 1)

and Lrela
novel = 0.1 ∗ ( 2

1+exp(h·m) − 1), where h = −10 and m denotes the training
progress.

7 Supplementary Note: Side Effect Validation on
clinical-trials Meta-analysis

To further evaluate the performance of side effect predictions, we manually create
a small dataset of gold-standard labels on drug side effects, named SIDER-CT,
based on literature reviews of clinical-trials meta-analysis results [9, 10, 11] for
additional validations. It includes 257 negative drug-side-effect pairs and 103
positive pairs from 10 drugs.

We train M2REMAP on SIDER 4.1 with the 10 drugs removed and evaluate
the performance by combining the reports from SIDER 4.1 and SIDER-CT. For
each drug, the negative side effects are obtained only from the SIDER-CT while
the positives are from both datasets. As shown in Figure 5, M2REMAP achieves
a decent average ROC-AUC of 0.805.
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(b) Indications(a) Drugs

Figure 6: Analysis of PRC-AUC gains brought by EHR semantic embedding
in predicting drug indications. The bar width is proportional to the number of
drugs/diseases contained in each group category.

8 Supplementary Note: Analysis of Improvements
from EHR Semantic Embedding

We study how EHR semantic embedding vectors improve drug-disease predictions.
We visualize the performance gain in PRC-AUC, namely Pgain = Pfull/(Pfull −
Pbase), where Pfull denotes the PRC-AUC of the full model of M2REMAP that
exploits semantic embedding vectors and Pbase is the PRC-AUC of baseline model
without EHR semantics. We visualize the performance gain by drug/disease
groups. For drugs, we map them to RxCUI 1 and get their hierarchy. Each is
mapped to the corresponding LEVEL1 concept, which consists of 14 groups such
as “sensory organs”, “respiratory system”, etc. For indications/side effects, we
map the CUIs to the ICD-10-CM, which includes 21 topics such as “neoplasms”,
“nervous-system diseases”, etc. For each drug/disease group, we report the
average PRC-AUC gain after introducing the EHR semantic embedding.

In Figure 6, we show the PRC-AUC gains in the drug indication prediction
by performing 10-fold validations on the PrimeKG. For groups with less than 5
drugs/diseases observed, they are moved to an extra “others” group. 10 drug
groups benefit from the introduction of EHR embedding and the top 3 are
“musculo-skeletal system”, “respiratory system”, “nervous system”. The 2 groups
that suffer performance drops are “dermatologicals” and “others”. Among the 10
indication disease groups observed, 8 of them benefit from the EHR embedding
and the most significant are “nervous system diseases” and “metabolic diseases”.

1https://mor.nlm.nih.gov/RxNav/
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(b) Side effects(a) Drugs

Figure 7: Analysis of PRC-AUC gains brought by EHR semantic embedding
in predicting drug side effects. The bar width is proportional to the number of
drugs/diseases contained in each group category.

3 diseases suffer performance drug, namely “circulatory system diseases”, “others”,
“infections and parasitic diseases”.

In Figure 7, we show the PRC-AUC gains in the drug side effect prediction
on the SIDER(Zhang) and report the results of the test drugs. For drug groups
with less than 5 drugs and side effect groups with less than 10 side effects, they
are moved to an extra “others” group. The 11 drug groups observed all benefit
from the EHR embedding and the improvements from “respiratory system” and
“dermatologicals” are the most significant. Among the 10 groups of side effects
that are observed, 9 of them benefit from the EHR embedding. And the top
group is “eye/ear diseases”, followed by “mental disorders” and “blood/immune
diseases”. Only the “others” group slightly suffers a performance drop.

9 Supplementary Note: Sensitivity Analysis on
the Dimensionality of Semantic Embedding

We perform sensitivity analysis on the dimensionality of embedding vectors. As
shown in Tabel 2, the performances are comparable between the 50-dimensional
and 100-dimensional EHR embedding vectors but become poorer as we increase
the dimensions to 300 or 500. To be consistent, we use 100-dimensional embedding
vectors across all experiments.
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Table 2: Comparison results evaluated in PRC-AUC of M2REMAP using different
dimensionality of semantic embedding vectors for drug-indication prediction on
PrimeKG [3] and side effects prediction on SIDER(Zhang) [4, 5].

Dimensionality PrimeKG SIDER(Zhang)
500 0.652 0.510
100 0.649 0.513
300 0.636 0.505
500 0.627 0.497
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