Biophysical Journal, Volume 122

Supplemental information

Thermodynamic determination of RNA duplex stability in magnesium

solutions

Sebastian J. Arteaga, Miranda S. Adams, Nicole L. Meyer, Katherine E. Richardson, Scott Hoener, and Brent M. Znosko

FIGURE S1. Melting temperatures (T_m) for $(5'-CGCGCG-3')_2$ and $(5'-ACUUAAGU-3')_2$ in buffered solutions at pH 6.5, 7.0, 7.6, 8.3, and 12.1. Data was acquired following the same melt scheme outlined in the Optical Melting Studies section of the Materials and Methods in the main text. *MeltWin v3.5* (15) was used to fit the data from the melt curves to an assumed two-state model and construct a T_m^{-1} vs ln C_T plots. Data from the T_m^{-1} vs ln C_T plots were used to determine the T_m of each duplex at 0.1 mM.

FIGURE S2. Liquid chromatography chromatograms for (5'-CGCGCG-3')₂ before and after melting experiments. The before melting in (A) 10.0 mM MgCl₂ with 2 mM Tris and (B) in standard 1.0 M NaCl buffer chromatograms. Additionally, after melting in (C) 10.0 mM MgCl₂ with 2 mM Tris and (D) in 1.0 M NaCl standard buffer chromatograms.

FIGURE S3. Liquid chromatography chromatograms for (5'-ACUUAAGU-3')₂ before and after melting experiments. The before melting in (A) 10.0 mM MgCl₂ with 2 mM Tris and (B) in standard 1.0 M NaCl buffer chromatograms. Additionally, after melting in (C) 10.0 mM MgCl₂ with 2 mM Tris and (D) in 1.0 M NaCl standard buffer chromatograms.

FIGURE S4. Leave-one-out analysis with updated coefficients for Eq. 7 and Eq. 12. The sequences excluded in each of the leave-one-out analyses are shown on the horizontal axis. The updated coefficients used in the Eq. 7 (left) and Eq. 12 (right) leave-one-out analysis are shown as circles with the actual, proposed coefficients shown as squares. Coefficients are numbered in the order they appear in the equations.

TABLE S1. Experimental RNA Thermodynamic Parameters for Duplexes Subjected to Forward and Reverse Optica	al Melting
Experiments in Buffers Containing Magnesium and Standard Conditions.	

RNA				Analysis of	curve fits		Analys	sis of $T_{\rm m}$ ⁻¹ vs. ln C	C _T Plot	
Sequence	Exper. ^c	[Salt]	ΔH°	ΔS°	ΔG°_{37}	$T_{\rm m}{}^{\rm a}$	ΔH°	ΔS°	ΔG°_{37}	$T_{\rm m}{}^{\rm a}$
$(5' \text{ to } 3')^{b}$			(kcal/mol)	(cal/K·mol)	(kcal/mol)	(°C)	(kcal/mol)	(cal/K·mol)	(kcal/mol)	(°C)
	Forward	10.0 mM MgCl ₂	-57.2 ± 2.7	-153.6 ± 8.4	$\textbf{-9.59} \pm 0.16$	59.8	$\textbf{-59.9} \pm 1.8$	-161.6 ± 5.4	$\textbf{-9.75}\pm0.12$	59.6
000000	Reverse	10.0 mM MgCl ₂	$\textbf{-58.6} \pm 2.2$	-158.0 ± 7.0	$\textbf{-9.62} \pm 0.08$	59.4	$\textbf{-60.8} \pm 2.9$	-164.5 ± 8.7	$\textbf{-9.74} \pm 0.19$	59.2
CGCGCG	Forward	1.0 M NaCl	$\textbf{-56.5} \pm \textbf{4.2}$	$\textbf{-152.5} \pm 12.9$	$\textbf{-9.17} \pm 0.20$	57.4	$\textbf{-59.9} \pm 1.5$	-163.1 ± 4.6	$\textbf{-9.31} \pm 0.08$	57.0
	Reverse	1.0 M NaCl	$\textbf{-57.1} \pm 2.4$	$\textbf{-154.1} \pm 7.3$	$\textbf{-9.26} \pm 0.16$	57.8	$\textbf{-56.7} \pm 1.4$	-153.2 ± 4.2	$\textbf{-9.21} \pm 0.08$	57.6
	Forward	10.0 mM MgCl ₂	$\textbf{-61.5}\pm8.4$	$\textbf{-177.8} \pm 26.9$	$\textbf{-6.36} \pm 0.07$	40.5	-58.3 ± 6.5	-167.8 ± 21.0	$\textbf{-6.26} \pm 0.08$	40.2
	Reverse	10.0 mM MgCl ₂	$\textbf{-59.4} \pm 8.1$	-171.1 ± 25.5	$\textbf{-6.32} \pm 0.20$	40.4	$\textbf{-52.2} \pm 1.5$	-148.2 ± 4.7	$\textbf{-6.21} \pm 0.00$	40.2
ACUUAAGU	Forward	1.0 M NaCl	$\textbf{-63.3} \pm 7.8$	$\textbf{-183.9} \pm \textbf{24.9}$	$\textbf{-6.30} \pm 0.14$	40.1	$\textbf{-52.4} \pm 3.3$	$\textbf{-148.8} \pm 10.6$	$\textbf{-6.24} \pm 0.03$	40.4
	Reverse	1.0 M NaCl	$\textbf{-59.2}\pm6.9$	$\textbf{-170.6} \pm 22.2$	$\textbf{-6.33} \pm 0.04$	40.5	$\textbf{-53.9} \pm \textbf{4.2}$	$\textbf{-153.5} \pm 13.8$	$\textbf{-6.25} \pm 0.05$	40.4

^aCalculated for 0.1 mM oligonucleotide concentrations based on the $T_{\rm m}^{-1}$ vs ln $C_{\rm T}$ plots.

^bAll oligonucleotides are forming self-complementary duplexes in solution.

^cForward and reverse optical melting experiments followed the same heating rate as mentioned in the optical melting studies section of the Materials and Methods.

RNA				Analysis of c	curve fits	Analysis of $T_{\rm m}^{-1}$ vs. ln $C_{\rm T}$ Plot					
Sequence (5' to 3') ^b	Oligo.°	[Salt]	ΔH° (kcal/mol)	$\frac{\Delta S^{\circ}}{(\text{cal/K}\cdot\text{mol})}$	ΔG°_{37} (kcal/mol)	$T_{\rm m}^{\rm a}$ (°C)	ΔH° (kcal/mol)	ΔS° (cal/K·mol)	ΔG°_{37} (kcal/mol)	$T_{\rm m}^{\rm a}$ (°C)	
CCCCCC	Reused	10.0 mM MgCl ₂	$\textbf{-58.5}\pm6.9$	$\textbf{-156.9} \pm 20.9$	$\textbf{-9.80} \pm 0.48$	60.5	$\textbf{-59.9} \pm 5.0$	$\textbf{-161.3} \pm 15.2$	$\textbf{-9.86} \pm 0.33$	60.3	
CGCGCG	Fresh	10.0 mM MgCl ₂	$\textbf{-57.3} \pm 2.7$	$\textbf{-154.1} \pm 8.3$	$\textbf{-9.54} \pm 0.12$	59.4	$\textbf{-62.7} \pm 2.4$	$\textbf{-170.4} \pm 7.3$	$\textbf{-9.86} \pm 0.16$	59.2	
	Reused	10.0 mM MgCl ₂	$\textbf{-69.9} \pm 8.7$	$\textbf{-204.6} \pm 28.0$	$\textbf{-6.42} \pm 0.08$	40.4	$\textbf{-69.9} \pm 1.8$	-204.8 ± 5.6	$\textbf{-6.34} \pm 0.01$	40.0	
ACUUAAGU	Fresh	10.0 mM MgCl ₂	-59.6 ± 6.4	-171.9 ± 20.7	-6.32 ± 0.06	40.4	-56.1 ± 2.1	-160.8 ± 6.9	-6.25 ± 0.02	40.2	

TABLE S2. Experimental RNA Thermodynamic Parameters for Reused or Fresh Duplexes in the Melt Scheme.

^aCalculated for 0.1 mM oligonucleotide concentrations based on the $T_{\rm m}^{-1}$ vs ln $C_{\rm T}$ plots.

^bAll oligonucleotides are forming self-complementary duplexes in solution.

^cReused oligonucleotide in the melt scheme corresponds to performing an optical melting experiment where previously melted oligonucleotide samples were diluted and melted again at a different concentration. Fresh oligonucleotide in the melt scheme corresponds to performing an optical melting experiment where fresh, never melted oligonucleotide samples were used at each concentration.

			Analysis of	curve fits		Analysis of $T_{\rm m}$ -1 vs. ln $C_{\rm T}$ Plot				
	52 G 212	ΔH°	ΔS°	ΔG°_{37}	$T_{\rm m}^{\ c}$	ΔH°	ΔS°	ΔG°_{37}	$T_{\rm m}^{c}$	
Sequence ^a	$[Mg^{2+}]$	(kcal/mol)	(cal/K·mol)	(kcal/mol)	(C)	(kcal/mol)	(cal/K·mol)	(kcal/mol)	(C)	
	0.5 mM	-56.8±7.4	-155.4±22.8	-8.59 ± 0.31	53.8	-62.2±4.1	-172.1±12.7	-8.78 ± 0.18	53.3	
	1.5 mM	-59.4 ± 8.0	-161.6±24.5	-9.31±0.38	57.2	-60.3±2.3	-164.3±6.9	-9.35±0.11	57.1	
CGCGCG	3.0 mM	-55.3±2.2	-148.4 ± 7.1	-9.25 ± 0.08	58.4	-58.1±5.1	-156.8±15.7	-9.40 ± 0.32	58.3	
	10.0 mM	-58.5±6.9	-156.9 ± 20.9	$-9.80{\pm}0.48$	60.5	-59.9 ± 5.0	-161.3±15.2	-9.86±0.33	60.3	
	1 M NaCl ^b	-53.8	-144.2	-9.08	57.9	-54.5	-146.4	-9.12	57.8	
	0.5 mM	-56.1±9.2	-150.8 ± 28.1	-9.37±0.51	58.9	-57.6±5.2	-155.5±15.9	-9.37±0.32	58.2	
	1.5 mM	-54.3±2.7	-143.9±8.1	-9.64±0.15	61.4	-56.5±0.9	-150.7±2.6	-9.77 ± 0.06	61.2	
CGGCCG	3.0 mM	-55.5±7.7	-146.5±22.6	-10.12 ± 0.69	63.9	-55.6±3.9	-146.7±11.6	-10.07 ± 0.30	63.6	
	10.0 mM	-55.2±4.1	-145.0±12.1	-10.25 ± 0.32	65.0	-55.5±3.6	-145.9 ± 10.8	-10.25±0.26	64.9	
	1 M NaCl ^b	-56.6	-150.0	-10.11	63.3	-54.1	-142.6	-9.90	63.2	
	0.5 mM	-59.6±7.5	-162.3±22.6	-9.29±0.46	57.0	-60.9 ± 5.9	-166.1±17.9	-9.34±0.34	56.9	
	1.5 mM	-60.8 ± 8.6	-164.6±25.7	-9.78 ± 0.70	59.5	-59.8 ± 14.9	-161.4±44.4	-9.70 ± 1.40	59.4	
GCGCGC	3.0 mM	-60.6 ± 4.0	-163.1±12.1	-10.04 ± 0.25	61.0	-62.0±2.8	-167.4±8.4	-10.13 ± 0.17	61.0	
	10.0 mM	-59.3±6.1	-158.3±18.3	-10.19 ± 0.47	62.6	-60.2 ± 7.5	-161.2±22.2	-10.22 ± 0.59	62.3	
	1 M NaCl ^b	-61.2	-164.0	-10.38	62.8	-64.3	-173.4	-10.56	62.5	
	0.5 mM	-55.0±5.0	-150.5 ± 15.4	-8.36±0.25	52.9	-60.1±3.2	-166.3±9.9	-8.50±0.12	52.3	
	1.5 mM	-54.5±2.7	-147.4±8.5	-8.79 ± 0.12	55.8	-55.8±2.4	-151.4±7.5	-8.83 ± 0.10	55.6	
ACCGGU	3.0 mM	-59.6±9.1	-162.1±27.6	-9.30±0.53	57.1	-58.7±7.8	-159.5±23.9	-9.21±0.46	56.8	
	10.0 mM	-59.6±9.2	-161.0±28.2	-9.64 ± 0.50	59.1	-63.0±2.7	-171.8±8.2	-9.74±0.13	58.4	
	1 M NaCl ^b	-53.2	-144.9	-8.26	52.8	-59.8	-164.5	-8.51	53.9	
	0.5 mM	-49.9±7.0	-139.2±22.2	-6.70±0.15	43.5	-48.6±3.6	-135.1±11.6	-6.65±0.10	43.3	
	1.5 mM	-46.9 ± 3.2	-127.8 ± 10.0	-7.28 ± 0.15	48.0	-52.8±4.7	-146.7±14.9	-7.33±0.15	47.0	
AGCGCU	3.0 mM	-48.5±4.8	-132.1±14.9	-7.55 ± 0.26	49.5	-51.3±2.9	-140.7±9.3	-7.61 ± 0.10	49.2	
	10.0 mM	-52.0±6.2	-141.6±18.9	-8.10±0.34	52.1	-54.3±3.0	-148.9±9.4	-8.13±0.12	51.7	
	1 M NaCl ^b	-50.9	-137.9	-8.13	52.7	-50.1	-135.7	-7.99	52.0	
	0.5 mM	-54.2±2.4	-155.3±7.8	-5.99 ± 0.06	38.8	-53.3±1.5	-152.5±4.9	-5.96 ± 0.02	38.7	

TABLE S3. Experimental RNA Thermodynamic Parameters for Duplex Formation.

CACGUG	1.5 mM	-56.1±4.2	-159.8 ± 13.3	-6.52 ± 0.08	41.7	-52.7±2.0	-149.2±6.4	-6.46 ± 0.03	41.7
enecce	3.0 mM	-56.5 ± 2.8	-160.3 ± 8.8	-6.81 ± 0.08	43.3	-56.5 ± 1.4	-160.2±4.5	-6.78 ± 0.02	43.2
	10.0 mM	-56.8 ± 5.7	-160.3 ± 17.8	-7.09 ± 0.19	44.9	-55.3±3.5	-155.5±11.2	-7.05 ± 0.09	44.9
	1 M NaCl ^b	-55.3	-156.8	-6.68	42.8	-50.3	-141.0	-6.59	42.7
	0.5 mM	-52.4±3.5	-150.3 ± 11.1	-5.81±0.19	37.8	-51.8±4.4	-148.3 ± 14.1	-5.83±0.12	37.9
	1.5 mM	-54.6±7.9	-155.3±25.3	-6.41±0.11	41.2	-53.8±2.0	-153.0±6.3	-6.32 ± 0.02	40.8
CAGCUG	3.0 mM	-54.4±3.6	-153.9±11.6	-6.65 ± 0.06	42.6	-54.7±2.0	-155.1±6.3	-6.61±0.02	42.4
	10.0 mM	-54.9±4.0	$-154.4{\pm}12.6$	$-7.04{\pm}0.10$	44.9	-54.7±1.5	-153.9±4.8	-6.99 ± 0.02	44.7
	1 M NaCl ^b	-50.2	-140.0	-6.78	44.0	-51.6	-144.7	-6.68	43.1
	0.5 mM	-58.8±5.4	-166.8 ± 17.2	$-7.04{\pm}0.13$	44.3	-62.4±2.5	-178.4 ± 8.1	-7.02 ± 0.04	43.9
	1.5 mM	-59.6±4.6	-167.9 ± 14.7	-7.48 ± 0.14	46.7	-62.0±4.9	-175.8±15.5	-7.48 ± 0.14	46.3
CCAUGG	3.0 mM	-60.7 ± 4.2	-170.3 ± 13.5	-7.83 ± 0.08	48.4	-64.8±2.4	-183.5±7.6	-7.88 ± 0.06	47.9
	10.0 mM	-60.5 ± 6.9	-168.6±21.8	-8.23±0.17	50.7	-64.0 ± 2.8	-179.6±8.9	-8.26 ± 0.08	50.1
	1 M NaCl ^b	-61.0	-172.5	-7.49	46.6	-56.9	-159.9	-7.30	46.3
	0.5 mM	-56.3±3.0	-156.3±9.6	-7.77 ± 0.11	49.0	-61.4±3.2	-172.7 ± 10.2	-7.86 ± 0.08	48.4
	1.5 mM	-56.6±6.0	$-156.0{\pm}18.2$	-8.20 ± 0.35	51.5	-59.5±3.6	-165.1±11.1	-8.31±0.12	51.4
CCUAGG	3.0 mM	-60.9 ± 5.6	-168.5 ± 17.6	-8.61±0.16	52.7	-62.3±3.4	-173.1±10.6	-8.61±0.13	52.3
	10.0 mM	-56.6±9.2	-154.3±28.7	-8.78 ± 0.29	55.0	-60.3±6.1	-165.8 ± 19.1	-8.84 ± 0.26	54.2
	1 M NaCl ^b	-59.7	-166.5	-8.06	49.9	-54.1	-149.1	-7.80	50.0
	0.5 mM	-54.4±3.8	-155.2±12.6	-6.29 ± 0.27	40.5	-53.4±6.9	-152.0±22.2	-6.27±0.27	40.5
	1.5 mM	-54.1±4.7	-152.6±14.8	-6.76 ± 0.14	43.3	-59.0±3.2	-168.6 ± 10.4	-6.76 ± 0.05	42.8
CUGCAG	3.0 mM	-58.1±7.4	-164.5±24.1	-7.13 ± 0.09	44.9	-66.1±3.0	-189.8±9.7	-7.18 ± 0.05	44.2
	10.0 mM	-57.9±4.1	-162.5 ± 12.8	-7.52±0.13	47.2	-59.7±2.4	-168.2 ± 7.7	-7.53 ± 0.06	46.9
	1 M NaCl ^b	-54.5	-153.0	-7.05	45.0	-55.4	-155.7	-7.11	45.3
	0.5 mM	-57.4±4.1	-164.1±13.2	-6.56 ± 0.10	41.8	-56.6±2.8	-161.4±8.9	-6.51±0.04	41.6
	1.5 mM	-57.9±3.5	-163.3 ± 11.2	-7.22 ± 0.05	45.5	-60.4 ± 2.4	-171.5±7.6	-7.24 ± 0.04	45.2
GACGUC	3.0 mM	-60.5 ± 3.5	-171.2 ± 11.6	-7.43 ± 0.10	46.2	-65.2±3.9	-186.1±12.4	-7.48 ± 0.09	45.8
	10.0 mM	-60.6±4.2	-169.8 ± 13.3	$-7.90{\pm}0.09$	48.8	-64.6 ± 2.8	-182.6±8.8	-7.96 ± 0.08	48.4
	1 M NaCl ^b	-57.3	-161.0	-7.37	46.4	-58.1	-163.5	-7.35	46.2
GAGCUC	0.5 mM	-55.8±2.7	-159.2±8.6	-6.48 ± 0.10	41.5	-54.7±2.3	-155.4±7.5	-6.45±0.03	41.4

	1.5 mM	-59.7±6.5	-169.2 ± 20.8	-7.17 ± 0.10	45.0	-61.7±2.9	-176.0±9.2	$-7.14{\pm}0.05$	44.5
	3.0 mM	-57.4±4.3	-161.1±13.5	-7.49 ± 0.18	47.1	-61.2±2.5	-173.1±8.1	-7.53 ± 0.05	46.7
	10.0 mM	$-57.0{\pm}3.6$	-158.7 ± 11.5	-7.79 ± 0.09	48.9	-61.3±2.4	-172.2 ± 7.6	-7.87 ± 0.07	48.5
	1 M NaCl ^b	-58.3	-163.0	-7.75	48.4	-62.3	-175.3	-7.98	48.6
	0.5 mM	-55.9±4.7	-160.0 ± 14.8	-6.28±0.16	40.4	-56.1±4.5	-160.7±14.4	-6.23±0.12	40.1
	1.5 mM	-58.1±5.7	-165.2±17.9	-6.90±0.15	43.7	-58.9±3.9	-167.7±12.3	-6.85 ± 0.08	43.3
GCAUGC	3.0 mM	-56.6±9.0	-159.4±28.4	-7.20 ± 0.20	45.6	-58.6±2.3	-165.8±7.2	-7.15 ± 0.04	45.0
	10.0 mM	-58.1±5.6	-162.9±17.6	-7.59±0.19	47.6	-58.3±3.5	-163.7±11.1	-7.52 ± 0.10	47.2
GCAUGC - AACUAGUU - ACUAUAGU - ACUUAAGU -	1 M NaCl ^b	-59.6	-168.4	-7.41	46.3	-62.3	-177.2	-7.38	45.7
	0.5 mM	-58.6±4.2	-169.8±13.6	-5.99±0.14	38.7	-55.6±3.3	-160.1±10.9	$-6.00{\pm}0.08$	38.8
	1.5 mM	-60.9 ± 7.1	-174.8±23.0	-6.73±0.14	42.5	-64.0±3.2	-184.6±10.4	-6.69 ± 0.04	42.0
AACUAGUU	3.0 mM	-61.7±6.2	-176.9±19.9	-6.88±0.11	43.2	-58.7±1.6	-167.0±5.1	-6.86 ± 0.02	43.4
	10.0 mM	-61.5±5.7	-174.4 ± 18.0	-7.43±0.12	46.1	-61.1±2.8	-173.3±8.9	-7.36 ± 0.05	45.8
	1 M NaCl ^b	-55.2	-155.0	-7.13	45.4	-54.6	-153.0	-7.16	45.7
	0.5 mM	-60.7 ± 3.5	-176.8±11.3	$-5.90{\pm}0.05$	38.2	-60.2 ± 2.0	-175.3±6.6	$-5.89{\pm}0.03$	38.1
	1.5 mM	-63.9±4.3	-184.9±13.8	-6.54±0.10	41.2	-64.8 ± 3.0	-188.0±9.7	-6.51±0.04	41.0
ACUAUAGU	3.0 mM	-65.7±4.4	-189.3±14.1	-6.94 ± 0.07	43.1	-63.2±2.4	-181.6±7.7	-6.89 ± 0.03	43.1
ACUAUAGU	10.0 mM	-69.4±4.0	-199.8±12.9	-7.39 ± 0.09	44.9	-68.7±2.8	-197.7±9.1	-7.35 ± 0.05	44.7
	1 M NaCl ^b	-61.4	-175.0	-7.12	44.5	-59.2	-168.4	-6.98	44.0
	0.5 mM	-55.5±8.9	-163.5±29.3	-4.76±0.30	32.0	-51.1±5.9	-149.2 ± 19.4	-4.85 ± 0.22	32.1
	1.5 mM	-54.1±7.8	-156.6±25.4	-5.55±0.15	36.3	-57.3±4.4	-167.0±14.2	-5.47 ± 0.09	35.9
ACUUAAGU	3.0 mM	-65.1±6.4	-190.4±20.7	-6.01±0.13	38.6	-59.4±3.7	-172.1±11.9	$-5.97{\pm}0.06$	38.5
	10.0 mM	-69.9 ± 8.7	-204.6 ± 28.0	-6.42 ± 0.08	40.4	-69.9±1.8	-204.8 ± 5.6	-6.34 ± 0.01	40.0
	1 M NaCl ^b	-49.4	-139.0	-6.29	40.9	-47.2	-132.4	-6.16	40.3
	0.5 mM	-59.6±2.8	-175.2±9.1	-5.28 ± 0.03	35.0	-61.1±1.4	-180.0±4.8	-5.27 ± 0.04	34.9
	1.5 mM	-62.1±4.9	-181.4±15.8	-5.82 ± 0.08	37.7	-61.4±2.2	-179.2±7.2	-5.83 ± 0.03	37.8
AGAUAUCU	3.0 mM	-62.9±3.5	-182.3±11.2	-6.33±0.09	40.2	-63.6±2.3	-184.9±7.5	-6.29 ± 0.02	40.0
	10.0 mM	-62.1±4.0	-178.1±12.8	-6.83±0.07	42.9	-57.1±1.2	-162.2±3.9	-6.78 ± 0.01	43.1
	1 M NaCl ^b	-63.4	-183.0	-6.64	41.8	-64.5	-186.8	-6.58	41.4

^aSequences are written 5' to 3' and form self-complementary duplexes in solution. ^bAll 1 M NaCl data is in 1 M NaCl with no magnesium and are from Xia et al. (1) except for GCGCGC which is from Chen and Znosko (9).

^cCalculated at 0.1 mM oligomer concentration based on the $T_{\rm m}^{-1}$ vs ln $C_{\rm T}$ plots.

Eq no.	Name	NameRef no.Equation				
DNA/F	RNA $T_{\rm m}$ Correction Factors ^{<i>a</i>}	_				
S 1	Schildkraut-Lifson T_m equation ^{c,h}	2	$T_m(2) = T_m(1) + 16.6 \log \frac{6 N a^+ \dot{b}}{6 N a^+ \dot{b}}$	42.8 °C		
S2	Wetmur $T_{\rm m}$ equation ^{c,h}	3	$T_{m}(2) = T_{m}(1) + 16.6 \log \frac{\oint Na^{+} \dot{\mathbf{y}} \left(1 + 0.7 \oint Na^{+} \dot{\mathbf{y}}\right)}{\oint Na^{+} \dot{\mathbf{y}} \left(1 + 0.7 \oint Na^{+} \dot{\mathbf{y}}\right)}$	38.9 °C		
S3	Frank-Kamenetskii T _m equation ^{c,h}	4	$T_m(2) = T_m(1) + (7.95 - 3.057 fGC) \ln \frac{\oint Na^+ \dot{\mathbf{t}}_2}{\oint Na^+ \dot{\mathbf{t}}_2}$	35.5 °C		
S4	Marmur-Schildkraut-Doty $T_{\rm m}$ equation ^{c,h}	5&6	$T_m(2) = T_m(1) + (8.75 - 2.83 fGC) \ln \frac{\oint Na^+ \dot{b}}{\oint Na^+ \dot{b}}$	41.3 °C		
S5	$T_{\rm m}$ and 12.5log[Na ⁺] equation ^{c,h}	7	$T_m(2) = T_m(1) + 12.5 \log \frac{\oint Na^+ \dot{\mathbf{b}}}{\oint Na^+ \dot{\mathbf{b}}}$	31.8 °C		
S6	SantaLucia T_m equation ^{c.g.h}	8	$\frac{1}{T_m(2)} = \frac{1}{T_m(1)} + \frac{0.368(N_{bp} - 1)}{\Delta H^{\circ}} \ln \left[\frac{ Na^+ _2}{ Na^+ _1} \right]$	18.8 °C		
S 7	Chen T_m quadratic equation ^{<i>d</i>,<i>h</i>}	9	$T_m(2) = T_m(1) + (2.675 - 1.842 fGC) \ln \frac{\oint Na^* \dot{\underline{\mathbf{U}}}}{\oint Na^* \dot{\underline{\mathbf{U}}}} - 0.7348 \left(\ln^2 \oint Na^* \dot{\underline{\mathbf{U}}}_2 - \ln^2 \oint Na^* \dot{\underline{\mathbf{U}}}\right)$	36.3 °C		
S 8	Chen $1/T_m$ quadratic equation ^{<i>d.g.h</i>}	9	$\frac{1}{T_m(2)} = \frac{1}{T_m(1)} + \left(2.297 fGC - 2.886\right)' 10^{-5} \ln \frac{\cancel{9}Na^+\cancel{1}}{\cancel{9}Na^+\cancel{1}} + 7.575' 10^{-6} \left(\ln^2\cancel{9}Na^+\cancel{1}-\ln^2\cancel{9}Na^+\cancel{1}\right)$	33.3 °C		
S9	Peyret-SantaLucia equation ^{<i>e,g,i</i>}	10	$\frac{1}{T_m(Mg^{2+})} = \frac{1}{T_m(1 \ M \ Na^+)} + \frac{0.368(N_{bp} - 1)}{\Delta H^\circ} \times \ln\left(3.3\sqrt{Mg^{2+}}\right) + \left[Mon^+\right]$	5.0 °C		
S10	Ahsen-Wittwer-Schütz equation ^{e,g,i}	11	$\frac{1}{T_m(Mg^{2+})} = \frac{1}{T_m(1 \ M \ Na^+)} + \frac{0.368(N_{bp} - 1)}{\Delta H^{\circ}} \times \ln\left(3.79\sqrt{Mg^{2+}}\right) + \left[Mon^+\right]$	4.5 °C		
S11	Tan-Chen equation ^{fj}	12	$\frac{1}{T_m(Mg^{2+})} = \frac{1}{T_m(1 \ M \ Na^+)} - \frac{0.00322(N_{bp} - 1)}{\Delta H^\circ} \times \left(-\frac{0.6}{N} + 0.025 \ln\left[Mg^{2+}\right] + 0.0068 \ln^2\left[Mg^{2+}\right] + \frac{\left(\ln\left[Mg^{2+}\right] + 0.38 \ln^2\left[Mg^{2+}\right]\right)}{N^2} \right)$	2.6 °C		
S12	Mitsuhashi equation ^{e,i}	13	$T_m(Mg^{2+}) = T_m(1 \ M \ Na^+) + 16.6 \log\left(4\sqrt{\frac{2}{8}Mg^{2+}}\right) + \frac{1}{8}Mon^+$	10.6 °C		

TABLE S4. Previously Published DNA/RNA Correction Factors

S13	Owczarzy magnesium T_m correction factor equation ^{<i>e</i>,<i>g</i>}	14	$\frac{1}{T_m(Mg^{2+})} = \frac{1}{T_m(1 \ M \ Na^+)} + 3.92 \ ' \ 10^{-5} - 9.11 \ ' \ 10^{-6} \ln \acute{g}Mg^{2+} \acute{h} + fGC(6.26 \ ' \ 10^{-5} + 1.42 \ ' \ 10^{-5} + $	ln∤ 2.8 °C
DNA/I	RNA ΔG°_{37} Correction Factors ^{<i>a</i>}			
S14	SantaLucia ΔG°_{37} equation ^{c,h}	8	$\Delta G^{\circ}_{37}(2) = \Delta G^{\circ}_{37}(1) - 0.114 \times (N_{bp} - 1) \ln \left[\frac{Na^{+}}{Na^{+}} \right]_{2}$	3.66 kcal/mol
S15	Chen ΔG°_{37} derived equation ^{<i>d</i>}	9	$\Delta G^{\circ}_{37}(2) = \Delta G^{\circ}_{37}(1) - 310.15 \times \Delta H^{\circ} \times \left[(2.297 fGC - 2.886) \times 10^{-5} \times \ln \left[\frac{[Na^{+}]_{2}}{[Na^{+}]_{1}} + 7.575 \times 10^{-6} \times \left(\ln^{2} \left[Na^{+} \right]_{2} - \ln^{2} \left[Na^{+} \right]_{1} \right) \right]$	6.78 kcal/mol
S16	Chen ΔG°_{37} linear equation ^{<i>d</i>,<i>h</i>}	9	$\Delta G^{\circ}_{37}(2) = \Delta G^{\circ}_{37}(1) + (0.324 fGC - 0.765) \ln \left[\frac{[Na^{+}]}{[Na^{+}]}\right]$	3.28 kcal/mol
S17	Chen ΔG°_{37} quadratic equation ^{<i>d</i>,<i>h</i>}	9	$\Delta G^{\circ}_{37}(2) = \Delta G^{\circ}_{37}(1) + \left(0.324 fGC - 0.468\right) \ln \left[\frac{[Na^{+}]_{2}}{[Na^{+}]_{1}} + 0.133 \left(\ln^{2} \left[Na^{+}\right]_{2} - \ln^{2} \left[Na^{+}\right]_{1}\right)\right]$	6.60 kcal/mol
S18	Chen $1/\Delta G^{\circ}_{37}$ quadratic equation ^{<i>d</i>, <i>h</i>}	9	$\frac{1}{\Delta G^{\circ}_{37}(2)} = \frac{1}{\Delta G^{\circ}_{37}(1)} + \left(0.016 - 0.0213 fGC\right) \times 10^{-5} \ln \left[\frac{Na^{+}}{Na^{+}}\right]_{1} - 0.0045 \left(\ln^{2} \left\lceil Na^{+} \right\rceil - \ln^{2} \left\lceil Na^{+} \right\rceil\right)$	4.13 kcal/mol
S19	Owczarzy magnesium ΔG°_{37} correction factor equation ^{<i>e</i>}	14	$\Delta G^{\circ}_{37}(Mg^{2+}) = \Delta G^{\circ}_{37}(1 \ M \ Na^{+}) - 310.15\Delta H^{\circ} \times \\ \begin{cases} 3.92 \times 10^{-5} - 9.11 \times 10^{-6} \ln \left[Mg^{2+}\right] + fGC(6.26 \times 10^{-5} + 1.42 \times 10^{-5} \ln \left[Mg^{2+}\right]) + \\ \frac{1}{2(N_{bp} - 1)} \left[-4.82 \times 10^{-4} + 5.25 \times 10^{-4} \ln \left[Mg^{2+}\right] + 8.31 \times 10^{-5} \left(\ln^{2} \left[Mg^{2+}\right] \right) \right] \end{cases}$	0.59 kcal/mol

^{*a*} M NaCl melting temperatures and free energy values were used as the starting point for all correction factors tested.

^bAs stated in Materials and Methods, $|\Delta T_{\rm m}|_{\rm ave}$ is used to evaluate the average deviation of the $T_{\rm m}$ correction factors, and $|\Delta\Delta G^{\circ}_{37}|_{\rm ave}$ is used to evaluate the average deviation of the ΔG°_{37} correction factors.

^cCorrection factors for DNA in Na⁺.

^{*d*}Correction factors for RNA in Na⁺.

^{*e*}Correction factors for DNA in Mg²⁺.

^{*f*}Correction factors for RNA in Mg²⁺.

^gIn this equation, $T_{\rm m}$ should be in units of K.

 h [Na⁺]₂ is replaced with [Mg²⁺] to test for average deviation.

ⁱOriginal equation includes a contribution from the monovalent ion concentration. Here, these values were irrelevant.

 ${}^{j}\Delta H^{\circ}$ in this equation is in kcal/mol. In every other equation, it is in cal/mol.

						$T_{\rm rr}$, (°С)					
Sequences (5'-3') ^a	(0.5 mM Mg ²⁺	-	1.	5 mM Mg^{2+}		3.	$0 \mathrm{~mM~Mg^{2+}}$		10	$.0 \text{ mM Mg}^{2+}$	
(0.0)	LOO Pred. ^b	Eq. 7 Pred.°	$ \Delta T_{\rm m} $	LOO Pred. ^b	Eq. 7 Pred.°	$ \Delta T_{\rm m} $	LOO Pred. ^b	Eq. 7 Pred.º	$ \Delta T_{\rm m} $	LOO Pred. ^b	Eq. 7 Pred.°	$ \Delta T_{\rm m} $
CGCGCG	53.6	53.6	0.0	56.7	56.7	0.0	58.2	58.2	0.0	60.0	60.0	0.0
CGGCCG	59.2	59.0	0.2	62.2	62.1	0.1	63.7	63.6	0.1	65.5	65.4	0.1
GCGCGC	58.8	58.3	0.5	61.9	61.4	0.5	63.3	62.9	0.4	65.1	64.7	0.4
ACUUAAGU	34.3	33.9	0.4	37.6	37.3	0.3	39.3	39.0	0.3	41.4	41.2	0.2
AACUAGUU	39.5	39.3	0.2	42.9	42.7	0.2	44.6	44.4	0.2	46.7	46.6	0.1
ACUAUAGU	37.6	37.6	0.0	41.0	41.0	0.0	42.7	42.7	0.0	44.9	44.9	0.0
AGAUAUCU	35.1	35.0	0.1	38.4	38.4	0.0	40.1	40.1	0.0	42.3	42.3	0.0
ACCGGU	48.5	48.8	0.3	51.7	52.0	0.3	53.3	53.5	0.2	55.3	55.5	0.2
GCAUGC	40.6	40.6	0.0	43.8	43.8	0.0	45.4	45.3	0.1	47.3	47.3	0.0
AGCGCU	47.1	46.9	0.2	50.2	50.1	0.1	51.8	51.6	0.2	53.8	53.6	0.2
CACGUG	37.6	37.7	0.1	40.8	40.9	0.1	42.4	42.4	0.0	44.4	44.4	0.0
CAGCUG	38.0	38.0	0.0	41.2	41.2	0.0	42.8	42.7	0.1	44.7	44.7	0.0
CCAUGG	41.1	41.3	0.2	44.3	44.5	0.2	45.9	46.0	0.1	47.9	48.0	0.1
CCUAGG	44.6	44.9	0.3	47.9	48.1	0.2	49.5	49.6	0.1	51.5	51.6	0.1
CUGCAG	40.2	40.2	0.0	43.4	43.4	0.0	45.0	44.9	0.1	47.0	46.9	0.1
GACGUC	41.0	41.1	0.1	44.2	44.3	0.1	45.8	45.8	0.0	47.8	47.8	0.0
GAGCUC	43.7	43.6	0.1	46.9	46.8	0.1	48.5	48.3	0.2	50.4	50.3	0.1
Average			0.2			0.1			0.1			0.1

TABLE S5. Leave-one-out T_m predictions compared to Eq. 7 T_m predictions.

Overall Average

0.1

^aAll sequences form self-complementary duplexes in solution. ^bPredicted T_m using coefficients derived from leave-one-out (LOO) analysis. ^cPredicted T_m using coefficients in Eq. 7.

~		ΔG°_{37} (kcal/mol)												
Sequences		0.5 mM Mg^{2+}			1.5 mM M	g^{2+}		3.0 mM M	$[g^{2+}]$	1	10.0 mM N	$4g^{2+}$		
(5'-3') ^a	LOO Pred. ^b	Eq. 12 Pred. ^c	$ \Delta\Delta G^_{37} $	LOO Pred. ^b	Eq. 12 Pred. ^c	$ \Delta\Delta G^_{37} $	LOO Pred. ^b	Eq. 12 Pred. ^c	$ \Delta\Delta G^{\circ}_{37} $	LOO Pred. ^b	Eq. 12 Pred. ^c	$ \Delta\Delta G^{\circ}_{37} $		
CGCGCG	-8.41	-8.48	0.07	-8.98	-9.04	0.06	-9.27	-9.32	0.05	-9.60	-9.64	0.04		
CGGCCG	-9.26	-9.26	0.00	-9.83	-9.82	0.00	-10.11	-10.10	0.01	-10.44	-10.42	0.01		
GCGCGC	-10.11	-9.92	0.19	-10.66	-10.48	0.18	-10.92	-10.76	0.17	-11.23	-11.08	0.14		
ACUUAAGU	-5.12	-5.07	0.05	-5.74	-5.70	0.04	-6.05	-6.02	0.03	-6.44	-6.41	0.02		
AACUAGUU	-6.09	-6.07	0.02	-6.72	-6.70	0.02	-7.03	-7.02	0.02	-7.43	-7.41	0.01		
ACUAUAGU	-5.89	-5.89	0.01	-6.51	-6.52	0.01	-6.83	-6.84	0.01	-7.22	-7.23	0.01		
AGAUAUCU	-5.55	-5.49	0.06	-6.17	-6.12	0.05	-6.48	-6.44	0.04	-6.87	-6.83	0.03		
ACCGGU	-7.62	-7.67	0.05	-8.22	-8.26	0.05	-8.51	-8.56	0.05	-8.87	-8.91	0.04		
GCAUGC	-6.56	-6.54	0.02	-7.15	-7.13	0.02	-7.44	-7.43	0.02	-7.80	-7.78	0.02		
AGCGCU	-7.18	-7.15	0.03	-7.77	-7.74	0.03	-8.06	-8.04	0.02	-8.41	-8.39	0.02		
CACGUG	-5.74	-5.75	0.01	-6.33	-6.34	0.01	-6.63	-6.64	0.01	-6.99	-6.99	0.00		
CAGCUG	-5.84	-5.84	0.00	-6.44	-6.43	0.00	-6.73	-6.73	0.01	-7.09	-7.08	0.01		
CCAUGG	-6.43	-6.46	0.03	-7.02	-7.05	0.03	-7.31	-7.35	0.03	-7.67	-7.70	0.03		
CCUAGG	-6.90	-6.96	0.06	-7.50	-7.55	0.05	-7.80	-7.85	0.05	-8.16	-8.20	0.04		
CUGCAG	-6.27	-6.27	0.00	-6.86	-6.86	0.00	-7.16	-7.16	0.00	-7.51	-7.51	0.00		
GACGUC	-6.51	-6.51	0.00	-7.10	-7.10	0.01	-7.39	-7.40	0.01	-7.74	-7.75	0.01		
GAGCUC	-7.18	-7.14	0.04	-7.77	-7.73	0.04	-8.06	-8.03	0.04	-8.41	-8.38	0.03		
Average			0.04			0.04			0.03			0.03		

TABLE S6. Leave-one-out ΔG°_{37} predictions compared to Eq. 12 ΔG°_{37} predictions.

Overall Average

0.04

^aAll sequences form self-complementary duplexes in solution.

^bPredicted ΔG°_{37} using coefficients derived from leave-one-out (LOO) analysis.

°Predicted ΔG°_{37} using coefficients in Eq. 12.

SUPPORTING REFERENCES

- Xia, T. B., J. SantaLucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Q. Jiao, C. Cox, and D. H. Turner. 1998. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. *Biochemistry*. 37:14719-14735. <u>https://doi.org/10.1021/bi9809425</u>.
- 2. Schildkraut, C., and S. Lifson. 1965. Dependence of the melting temperature of DNA on salt concentration. *Biopolymers*. 3:195-208. <u>https://doi.org/10.1002/bip.360030207</u>.
- Wetmur, J. G. 1991. DNA probes: applications of the principles of nucleic acid hybridization. *Crit. Rev. Biochem. Mol. Biol.* 26:227-259. <u>https://doi.org/10.3109/10409239109114069</u>.
- Frank-Kamenetskii, M. D. 1971. Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. *Biopolymers*. 10:2623-2624. <u>https://doi.org/10.1002/bip.360101223</u>.
- 5. Blake, R. D., and S.G. Delcourt. 1998. Thermal stability of DNA. *Nucleic Acids Res.* 36:3323-3332. <u>https://doi.org/10.1093/nar/26.14.3323</u>.
- Marmur, J., and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. *J. Mol. Biol.* 5:109-118. <u>https://doi.org/10.1016/S0022-2836(62)80066-7</u>.
- SantaLucia, J., Jr. 1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. *Proc. Natl. Acad. Sci. U.S.A.* 95:1460-1465. <u>https://doi.org/10.1073/pnas.95.4.1460</u>.
- SantaLucia, J., Jr., H. T. Allawi, and P. A. Seneviratne. 1996. Improved nearest-neighbor parameters for predicting DNA duplex stability. *Biochemistry*. 35:3555-3562. <u>https://doi.org/10.1021/bi951907q</u>.
- 9. Chen, Z., and B. M. Znosko. 2013. Effect of sodium ions on RNA duplex stability. *Biochemistry*. 52:7477-7485. <u>https://doi.org/10.1021/bi4008275</u>.
- 10. Peyret, N. (2000). Prediction of Nucleic Acid Hybridization: Parameters and Algorithms. PhD dissertation. Wayne State University.
- von Ahsen, N., C. T. Wittwer, and E. Schütz. 2001. Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg²⁺, deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. *Clin. Chem.* 47: 1956-1961. <u>https://doi.org/10.1093/clinchem/47.11.1956</u>.
- 12. Tan, Z., and S. Chen. 2007. RNA helix stability in mixed Na⁺/Mg²⁺ solution. *Biophys. J.* 92:3615-3632. <u>https://doi.org/10.1529/biophysj.106.100388</u>.
- Mitsuhashi, M. 1996. Technial Report: part 1. Basic requirements for designing optimal oligonucleotide probe sequences. J. Clin. Lab. Anal. 10:277-284. https://doi.org/10.1002/(SICI)1098-2825(1996)10:5%3C277::AID-JCLA8%3E3.0.CO;2-5.
- Owczarzy, R., B. G. Moreira, Y. You, M. A. Behlki, and J. A. Walder. 2008. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. *Biochemistry*. 47:5336-5353. <u>https://doi.org/10.1021/bi702363u</u>.
- McDowell, J. A., and D. H. Turner. 1996. Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)₂ by two-dimensional NMR and simulated annealing. *Biochemistry*. 35:14077-14089. <u>https://doi.org/10.1021/bi9615710</u>.