Supplementary Material

One-Year Aerobic Exercise Increases Cerebral Blood Flow in Cognitively Normal Older Adults

Tsubasa Tomoto^{1,2,3}, Aryan Verma¹, Kayla Kostroske¹, Takashi Tarumi^{1,2,3,4}, Neena R. Patel^{1,3},

Evan P. Pasha^{1,3}, Jonathan Riley¹, Cynthia D. Tinajero¹, Linda S. Hynan^{5,6}, Karen M. Rodrigue⁷, Kristen M. Kennedy⁷, Denise C. Park⁷, Rong Zhang^{1,3,8}

¹ Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA; ² Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; ³ Department of Neurology, ⁵ Department of Psychiatry, ⁶ Department of Population and Data Sciences, ⁸ Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; ⁴ Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; ⁷ Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA.

Running Title: Aerobic Exercise and Cerebral Hemodynamics
Corresponding Author: Rong Zhang, Ph.D.
Office Address: 7232 Greenville Avenue, Dallas, Texas 75231
Telephone: +1 (214) 345-4670 | Fax: +1 (214) 345-4618
E-mail: RongZhang@TexasHealth.org

	Stretching-	and-Toning	Aerobic Exer	cise Training	E	les	
	Baseline	12-month	Baseline	12-month	Time	Group	Time × Group
Volumetr	ric blood flow (n	nL/min)					
R ICA	$232 \ \pm \ 48$	$236 \ \pm \ 43$	226 ± 32	237 ± 52	0.238	0.800	0.622
L ICA	$209 ~\pm~ 41$	$199 ~\pm~ 42$	$206 ~\pm~ 58$	$217 \ \pm \ 45$	0.964	0.499	0.118
R VA	80 ± 38	77 ± 34	73 ± 27	77 ± 32	0.855	0.691	0.180
L VA	80 ± 31	88 ± 34	79 ± 34	81 ± 36	0.075	0.689	0.278
Vessel diameter (mm)							
R ICA	$4.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.6$	$4.7 \hspace{0.2cm} \pm \hspace{0.2cm} 2.7$	$4.6 \hspace{0.2cm} \pm \hspace{0.2cm} 2.9$	$4.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.6$	0.494	0.826	0.113
L ICA	$4.3 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9$	$4.3 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8$	$4.3 \hspace{0.2cm} \pm \hspace{0.2cm} 2.3$	$4.4 \hspace{0.2cm} \pm \hspace{0.2cm} 2.2$	0.212	0.614	0.296
R VA	3.4 ± 2.0	3.5 ± 2.2	3.4 ± 1.8	3.4 ± 1.8	0.386	0.924	0.433
L VA	3.4 ± 2.0	3.5 ± 2.0	3.5 ± 2.1	3.5 ± 2.3	0.286	0.751	0.974
Blood flow velocity (cm/sec)							
R ICA	$25.7 \hspace{0.2cm} \pm \hspace{0.2cm} 6.4$	$24.5 \hspace{0.2cm} \pm \hspace{0.2cm} 6.7$	25.2 ± 7.3	$25.7 \hspace{0.2cm} \pm \hspace{0.2cm} 5.7$	0.676	0.808	0.346
L ICA	$24.4 \hspace{0.2cm} \pm \hspace{0.2cm} 5.5$	$22.8 \hspace{0.2cm} \pm \hspace{0.2cm} 4.7$	$24.4 \hspace{0.2cm} \pm \hspace{0.2cm} 8.2$	24.5 ± 6.9	0.446	0.576	0.378
R VA	14.3 ± 3.4	13.7 ± 2.7	13.2 ± 3.4	13.5 ± 3.2	0.787	0.364	0.314
L VA	14.5 ± 3.4	15.7 ± 4.3	14.2 ± 3.7	$14.1 \hspace{0.2cm} \pm \hspace{0.2cm} 4.4$	0.219	0.309	0.205

Table S1. Volumetric blood flow, vessel diameter, and mean blood flow velocity by groups

Data are mean ± standard deviation. ICA, internal carotid artery; L, left; R, right; VA, vertebral artery.

	Carotid hemodynamics						Cerebral hemodynamics					
	ΔcSBP	ΔcPP	$\Delta\beta$ stiffness	∆cfPWV	ΔCIMT	ΔnCBF	∆nCVR	∆mCBFV	ΔCVRi	ΔPI		
Stretching-and-toning												
$\Delta cSBP$		0.869	0.181	-0.034	0.052	-0.342	0.785	0.129	0.372	0.037		
ΔcPP	(0.001)		0.469	-0.171	-0.077	-0.365	0.466	-0.004	0.161	0.322		
$\Delta\beta$ -stiffness	(0.367)	(0.016)		-0.319	-0.021	0.327	-0.247	-0.291	0.085	0.428		
$\Delta cfPWV$	(0.868)	(0.403)	(0.104)		0.169	-0.078	0.141	0.058	-0.085	-0.240		
ΔCIMT	(0.797)	(0.709)	(0.918)	(0.399)		-0.110	0.164	-0.094	0.161	0.115		
ΔnCBF	(0.094)	(0.079)	(0.111)	(0.709)	(0.601)		-0.546	-0.221	0.143	0.047		
ΔnCVR	(0.001)	(0.022)	(0.233)	(0.501)	(0.434)	(0.005)		0.161	0.358	-0.301		
ΔmCBFV	(0.587)	(0.986)	(0.213)	(0.809)	(0.695)	(0.363)	(0.509)		-0.715	-0.095		
ΔCVRi	(0.107)	(0.496)	(0.722)	(0.721)	(0.497)	(0.560)	(0.133)	(0.001)		-0.102		
ΔPI	(0.871)	(0.144)	(0.047)	(0.282)	(0.609)	(0.841)	(0.184)	(0.690)	(0.669)			
Aerobic Exer	cise Train	ing										
$\Delta cSBP$		0.878	0.275	0.095	0.187	-0.051	0.742	-0.269	0.753	0.090		
ΔcPP	(0.001)		0.196	-0.021	0.254	0.011	0.494	0.060	0.257	-0.194		
$\Delta\beta$ -stiffness	(0.157)	(0.328)		0.045	0.063	-0.506	0.510	-0.284	0.230	0.622		
$\Delta cfPWV$	(0.629)	(0.919)	(0.822)		-0.240	0.329	-0.161	-0.013	0.097	0.041		
ΔCIMT	(0.342)	(0.202)	(0.750)	(0.219)		-0.120	0.161	-0.138	0.352	0.195		
ΔnCBF	(0.799)	(0.957)	(0.007)	(0.094)	(0.550)		-0.629	0.630	-0.347	-0.484		
ΔnCVR	(0.001)	(0.010)	(0.007)	(0.421)	(0.422)	(0.001)		-0.681	0.814	0.484		
$\Delta mCBFV$	(0.251)	(0.803)	(0.225)	(0.956)	(0.561)	(0.004)	(0.001)		-0.746	-0.559		
ΔCVRi	(0.001)	(0.274)	(0.329)	(0.683)	(0.128)	(0.145)	(0.001)	(0.001)		0.486		
ΔPI	(0.707)	(0.412)	(0.003)	(0.864)	(0.409)	(0.036)	(0.036)	(0.010)	(0.030)			

Table S2. Pearson's product-moment correlation coefficients and (p-value) illustrate the associations between the one-year changes (Δ) in carotid and cerebral hemodynamic variables

cSBP, carotid systolic blood pressure; cPP, carotid pulse pressure; β -stiffness, carotid β -stiffness index; cfPWV, carotidfemoral pulse wave velocity; CIMT, carotid intima-media thickness; nCBF, normalized cerebral blood flow; nCVR, normalized cerebrovascular resistance; mCBFV, mean cerebral blood flow velocity; CVRi, cerebrovascular index; PI, pulsatility index. Bold values represent p < 0.05. Data of mCBFV, CVRi, and PI were measured at the middle cerebral artery and are available 22 in SAT and 21 in AET.

	∆cSBP	ΔcPP	$\Delta\beta$ stiffness	∆cfPWV	$\Delta CIMT$	∆nCBF	$\Delta nCVR$	$\Delta mCBFV$	ΔCVRi	ΔPI
Stretching-and-toning										
AETS Lattor Sata	-0.204	-0.191	-0.153	0.005	-0.106	0.265	-0.186	-0.128	0.034	-0.105
AETS Letter Sets	(0.339)	(0.382)	(0.474)	(0.982)	(0.621)	(0.211)	(0.385)	(0.601)	(0.891)	(0.660)
ADDM accuracios	-0.120	0.071	0.109	-0.087	0.053	0.436	-0.344	-0.218	0.077	0.086
ARPINI accuracies	(0.576)	(0.746)	(0.611)	(0.685)	(0.806)	(0.033)	(0.100)	(0.371)	(0.754)	(0.718)
∆LM Immediate	-0.171	-0.219	0.110	-0.445	-0.164	0.345	-0.128	0.049	-0.033	0.276
recalls	(0.425)	(0.316)	(0.61)	(0.029)	(0.444)	(0.099)	(0.552)	(0.843)	(0.894)	(0.238)
∆LM Delayed	-0.355	-0.253	-0.001	-0.176	-0.110	-0.017	-0.246	0.122	-0.222	0.222
recalls	(0.088)	(0.245)	(0.997)	(0.410)	(0.610)	(0.937)	(0.246)	(0.618)	(0.360)	(0.346)
∆WJ Immediate	-0.074	0.011	-0.009	0.197	-0.155	0.106	-0.228	0.370	-0.251	0.002
recalls	(0.729)	(0.959)	(0.966)	(0.355)	(0.468)	(0.622)	(0.283)	(0.118)	(0.301)	(0.994)
∆WJ Delayed	-0.280	-0.334	-0.027	0.224	-0.076	0.129	-0.202	0.278	-0.121	0.128
recalls	(0.185)	(0.119)	(0.901)	(0.292)	(0.724)	(0.548)	(0.343)	(0.249)	(0.623)	(0.591)
A Digit Companies	-0.203	-0.075	-0.119	0.054	-0.095	-0.264	-0.184	0.019	-0.250	0.162
ADigit Comparison	(0.342)	(0.732)	(0.579)	(0.803)	(0.660)	(0.213)	(0.390)	(0.938)	(0.302)	(0.496)
∆Letter Number	-0.291	-0.183	-0.188	-0.082	-0.193	-0.233	-0.214	0.408	-0.595	0.350
Sequencing	(0.168)	(0.402)	(0.379)	(0.702)	(0.367)	(0.274)	(0.316)	(0.083)	(0.007)	(0.13)
Apparation Span	0.063	0.066	0.043	0.249	0.111	0.12	0.057	-0.018	0.071	-0.455
	(0.769)	(0.763)	(0.843)	(0.240)	(0.607)	(0.576)	(0.79)	(0.941)	(0.771)	(0.044)
	0.017	-0.121	-0.132	-0.229	-0.026	0.100	0.093	0.312	-0.045	-0.138
DCOWAI-FAS	(0.937)	(0.581)	(0.540)	(0.281)	(0.902)	(0.643)	(0.664)	(0.194)	(0.856)	(0.561)
AETS Vocabulary	0.230	0.156	-0.351	0.514	0.034	-0.447	0.256	0.205	-0.152	-0.016
DETS vocabulary	(0.279)	(0.476)	(0.093)	(0.010)	(0.873)	(0.028)	(0.228)	(0.400)	(0.534)	(0.945)

Table S3. Correlation between one-year changes (Δ) in neurocognitive performance and hemodynamic variables

cSBP, carotid systolic blood pressure; cPP, carotid pulse pressure; β -stiffness, carotid β -stiffness index; cfPWV, carotid-femoral pulse wave velocity; CIMT, carotid intima-media thickness; nCBF and nCVR, normalized cerebral blood flow and cerebrovascular resistance by total brain tissue mass measured by magnetic resonance imaging; mCBFV, mean cerebral blood flow velocity; CVRi, cerebrovascular index; PI, pulsatility index; ETS, educational testing service; RPM, Raven's Progressive Matrices; LM, logical memory; WJ, Woodcock-Johnson, COWAT-FAS, COWAT-FAS, Controlled Word Association FAS. Data of mCBFV, CVRi, and PI were measured at the middle cerebral artery and are available 22 in SAT. Bold values represent p < 0.05.

	$\Delta cSBP$	∆cPP	$\Delta\beta$ stiffness	$\Delta cfPWV$	ΔCIMT	∆nCBF	∆nCVR	∆mCBFV	∆CVRi	ΔPI
Aerobic Exercise Training										
AETS Lattor Sate	-0.157	-0.249	0.128	0.262	0.345	0.186	-0.236	-0.041	0.127	0.275
ALIS Letter Sets	(0.436)	(0.220)	(0.524)	(0.187)	(0.078)	(0.364)	(0.245)	(0.866)	(0.604)	(0.255)
ADDM acouracios	0.039	0.361	-0.218	-0.337	0.027	-0.032	-0.099	0.348	-0.594	-0.396
	(0.847)	(0.070)	(0.275)	(0.085)	(0.894)	(0.876)	(0.632)	(0.144)	(0.007)	(0.093)
∆LM Immediate	-0.473	-0.325	-0.178	-0.053	-0.152	0.048	-0.423	0.205	-0.516	-0.163
recalls	(0.013)	(0.106)	(0.374)	(0.791)	(0.45)	(0.818)	(0.031)	(0.400)	(0.024)	(0.505)
∆LM Delayed	-0.265	-0.301	-0.171	-0.055	-0.137	-0.034	-0.020	0.158	-0.179	-0.207
recalls	(0.182)	(0.136)	(0.393)	(0.786)	(0.496)	(0.870)	(0.924)	(0.519)	(0.464)	(0.395)
∆WJ Immediate	-0.394	-0.300	-0.498	-0.097	-0.062	0.290	-0.483	0.147	-0.329	-0.449
recalls	(0.042)	(0.136)	(0.008)	(0.629)	(0.761)	(0.151)	(0.012)	(0.547)	(0.169)	(0.054)
∆WJ Delayed	-0.182	-0.221	-0.058	0.014	-0.290	0.189	-0.206	-0.034	-0.115	-0.047
recalls	(0.364)	(0.278)	(0.775)	(0.945)	(0.143)	(0.354)	(0.312)	(0.891)	(0.640)	(0.849)
A Digit Comparison	0.172	0.169	0.227	0.215	0.052	-0.069	0.205	-0.451	0.298	0.238
	(0.390)	(0.410)	(0.255)	(0.281)	(0.795)	(0.737)	(0.316)	(0.053)	(0.216)	(0.326)
∆Letter Number	0.050	0.102	-0.036	0.060	0.216	-0.118	0.109	0.042	-0.041	-0.082
Sequencing	(0.805)	(0.619)	(0.859)	(0.765)	(0.278)	(0.564)	(0.596)	(0.864)	(0.869)	(0.739)
Apparation Span	-0.033	0.149	-0.070	-0.473	0.417	0.057	-0.082	0.307	-0.193	-0.066
	(0.868)	(0.467)	(0.730)	(0.013)	(0.030)	(0.782)	(0.690)	(0.202)	(0.428)	(0.789)
	0.163	0.119	0.210	0.104	0.115	0.212	-0.122	0.062	0.323	0.268
ACOWAT-PAS	(0.416)	(0.562)	(0.292)	(0.604)	(0.568)	(0.300)	(0.552)	(0.802)	(0.177)	(0.267)
AETS Vocabulary	0.103	0.218	-0.101	0.010	0.194	0.119	-0.121	0.319	-0.207	-0.008
	(0.609)	(0.284)	(0.615)	(0.959)	(0.333)	(0.562)	(0.556)	(0.183)	(0.395)	(0.973)

Table S3 (Cont.). Correlation between one-year changes (Δ) in neurocognitive performance and hemodynamic variables

cSBP, carotid systolic blood pressure; cPP, carotid pulse pressure; β -stiffness, carotid β -stiffness index; cfPWV, carotid-femoral pulse wave velocity; CIMT, carotid intima-media thickness; nCBF and nCVR, normalized cerebral blood flow and cerebrovascular resistance by total brain tissue mass measured by magnetic resonance imaging; mCBFV, mean cerebral blood flow velocity; CVRi, cerebrovascular index; PI, pulsatility index; ETS, educational testing service; RPM, Raven's Progressive Matrices; LM, logical memory; WJ, Woodcock-Johnson, COWAT-FAS, COWAT-FAS, Controlled Word Association FAS. Data of mCBFV, CVRi, and PI were measured at the middle cerebral artery and are available 21 in AET. Bold values represent p < 0.05.

		п	ICC	(95% CI)			p-value
Peak oxygen consumption	mL/min	54	0.952	0.917	to	0.972	<0.001
	mL/kg/min	54	0.899	0.826	to	0.942	<0.001
Carotid hemodynamics param	<u>eters</u>						
Systolic blood pressure		55	0.617	0.343	to	0.777	<0.001
Pulse pressure		55	0.681	0.453	to	0.814	<0.001
β-stiffness index		55	0.825	0.701	to	0.898	<0.001
carotid-femoral pulse wave ve	locity	55	0.790	0.640	to	0.877	<0.001
Intima-media thickness		55	0.836	0.719	to	0.905	<0.001
Cerebral hemodynamics param	<u>neters</u>						
Total CBF		55	0.898	0.825	to	0.940	<0.001
Internal carotid artery blood fl	ow	55	0.880	0.794	to	0.930	<0.001
Vertebral artery blood flow		55	0.904	0.835	to	0.944	<0.001
Normalized CBF		55	0.884	0.797	to	0.933	<0.001
CVR		55	0.780	0.622	to	0.871	<0.001
Normalized CVR		55	0.843	0.726	to	0.910	<0.001
CBF velocity		43	0.955	0.914	to	0.976	<0.001
CVR index		43	0.925	0.859	to	0.961	<0.001
Pulsatility index		43	0.902	0.819	to	0.947	<0.001

Table S4: Test-retest reliability estimates compared between the baseline and 12-month follow-up measurements

Intraclass correlations (ICC) and 95% confidence interval (CI) were calculated by the two-way mixed, average measures. *n* is the number of observations included in the analysis. CBF, cerebral blood flow; CVR, cerebrovascular resistance.

Figure S1: Participant flowchart. Participants were randomized into 12-months of aerobic exercise training or stretching-and-toning programs. Statistical analysis was performed in 55 participants (27 in stretching-and-toning and 28 in aerobic exercise training) who completed the training and had cerebral blood flow (CBF) and arterial stiffness measurements. Among the 55 participants, 43 (22 in stretching-and-toning and 21 in aerobic exercise training) had CBF velocity measurements via transcranial Doppler (TCD).

Figure S2: Representation of ultrasonography image of measurement of blood flow in the right internal carotid artery (ICA: upper panel) and the right vertebral artery (VA: lower panel) with color-coded duplex ultrasonogram at baseline (left side) and 12-month (right side) from one subject in the aerobic exercise training group. High-resolution B-mode image of the ICA and VA. Regions of interest, represented by the green rectangles are manually selected to cover a segment of the ICA or VA, the double pink lines are the detected vessel inner walls used to track the wall movements and to measure beat-by-beat pulsatile changes of vessel diameter for the ICA and VA. Beat-by-beat recordings of blood flow velocity at the sites of diameter measurements are presented for the ICA and VA.

Figure S3: Changes in total cerebral blood flow (CBF) (upper panel) and total brain tissue volume (lower panel) after one-year stretching-and-toning or aerobic exercise training. Thin lines represent individual changes. Triangles show mean values and the error bars represent standard deviations. * p < 0.05 compared with baseline after Bonferroni correction.

Figure S4: Mediation model to assess the relationship between changes in peak oxygen consumption $(\dot{V}O_{2peak})$ and normalized cerebral blood flow (nCBF: upper panel) or cerebrovascular resistance (nCVR: lower panel) with carotid β -arterial stiffness as a mediator in the aerobic exercise training group. Data are unstandardized regression coefficient (p-value). Changes in carotid β -arterial stiffness attenuated the negative association between $\dot{V}O_{2peak}$ and nCVR. * This result was further confirmed by a bootstrapping assessment, which demonstrated significant indirect effects of carotid β -arterial stiffness on nCVR (95% confidence interval: -0.005 to -0.037). A data set of n = 28 was used for modeling.