The venous deoxygenated fraction of [Hb] is calculated as described by Chiarelli et al. (2009)⁴⁶, using the Severinghaus equation ⁵²:

$$Sa_{O_2} = \frac{1}{\left(\frac{23400}{\left(Pa_{O_2}^3\right) + 150\left(Pa_{O_2}\right)} + 1\right)}$$
(1)

, where the measured PetO₂ values can be used for the Pa_{O2} parameter. Next, the arterial oxygen content (Ca_{O2}) can be estimated by assuming literature standard values for: the O₂-carrying capacity of hemoglobin (ϕ : 1.34 ml O₂ / g_{hb} in humans), the concentration of hemoglobin ([Hb]: 15 g Hb / dl blood), and the solubility coefficient of oxygen in blood (ϵ : 0.0031 ml O₂ / (dl blood * mmHg):

$$Ca_{02} = (\varphi \cdot [Hb] \cdot Sa_{02}) + (Pa_{02} \cdot \varepsilon)$$
 (2)

The venous oxygen content (Cv_{O2}) depends on the Ca_{O2} and the OEF:

$$Cv_{02} = Ca_{02} - (Ca_{02}|_0 \cdot OEF)$$
(3)

In equation (3), we assume a baseline OEF = $0.3^{46,51}$. The fractional venous oxygen saturation (Sv_{O2}) can then be estimated as follows:

$$Sv_{02} = \frac{Cv_{02} - (Pv_{02} \cdot \varepsilon)}{\varphi \cdot [Hb]}$$
(4)

In equation (4), the Pv_{O2} represents the oxygen dissolved in venous plasma and is believed to have a negligible small effect⁴⁶ (i.e., $Pv_{O2} \approx 0$). At this point, we can estimate the deoxygenated fraction of [Hb] ($F_{[dHb]}$) from Sv_{O2} :

$$F_{[dHb]} = 1 - Sv_{02}$$
(5)

SUPPLEMENTARY TEXT CAPTION

Supplementary material II. Fractional [dHb] calculation.