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Supporting Information Text
Sl Materials and Methods

Strains and localities

The strains used and their original isolation localities were: Blepharisma stoltei ATCC 30299,
Lake Federsee, Germany (1); Blepharisma stoltei HT-IV, Aichi prefecture, Japan; Blepharisma
Japonicum R1072, from an isolate from Bangalore, India (2).

Cell cultivation, harvesting and cleanup

For genomic DNA isolation B. stoltei ATCC 30299 and HT-IV cells were cultured in Synthetic
Medium for Blepharisma (SMB) (3) at 27°C. Belpharismas were fed Chlorogonium elongatum
grown in Tris-acetate phosphate (TAP) medium (4) at room temperature. Chlorogonium cells
were pelleted at 1500 g at room temperature for 3 minutes to remove most of the TAP medium,
and resuspended in 50 mL SMB. 50 ml of dense Chlorogonium was used to feed 1 litre of
Blepharisma culture once every three days.

Blepharisma stoltei ATCC 30299 and HT-IV cells used for RNA extraction were cultured in
Lettuce medium inoculated with Enterobacter aerogenes and maintained at 25°C (5).

Blepharisma cultures were concentrated by centrifugation in pear-shaped flasks at 100 g for 2
minutes using a Hettich Rotanta 460 centrifuge with swing out buckets. Pelleted cells were
washed with SMB and centrifuged again at 100 g for 2 minutes. The washed pellet was then
transferred to a cylindrical tube capped with a 100 pm-pore nylon membrane at the base and
immersed in SMB to filter residual algal debris from the washed cells. The cells were allowed to
diffuse through the membrane overnight into the surrounding medium. The next day, the cylinder
with the membrane was carefully removed while attempting to minimize dislodging any debris
collected on the membrane. Cell density after harvesting was determined by cell counting under
the microscope.

DNA isolation, library preparation and sequencing

B. stoltei macronuclei were isolated by sucrose gradient centrifugation (6). DNA was isolated with
a Qiagen 20/G genomic-tip kit according to the manufacturer’s instructions. Purified DNA from the
isolated MACs was fragmented, size selected and used to prepare libraries according to standard
PacBio HiFi SMRTbell protocols. The libraries were sequenced in circular consensus mode to
generate HiFi reads.

Total genomic DNA from B. stoltei HT-IV and B. stoltei ATCC 30299 was isolated with the
SigmaAldrich GenElute Mammalian genomic DNA kit. A sequencing library was prepared with a
NEBnext FS DNA Library Prep Kit for lllumina and sequenced on an lllumina HiSeq 3000
sequencer, generating 150 bp paired-end reads.

Total genomic DNA from B. japonicum was isolated with the Qiagen MagAttract HMW DNA kit. A
long-read PacBio sequencing library was prepared using the SMRTbell Express Template
Preparation Kit 2.0 according to the manufacturers’ instructions and sequenced on an PacBio
Sequel platform with 1 SMRT cell. Independently, total genomic DNA form B. japonicum was
isolated with the SigmaAldrich GenElute Mammalian genomic DNA kit and a sequencing library
was prepared with the TruSeq Nano DNA Library Prep Kit (lllumina) and sequenced on an
lllumina NovaSeq6000 to generate 150 bp paired-end reads.

Gamone 1/ Cell-Free Fluid (CFF) isolation and conjugation activity assay

Blepharisma is one of only two ciliate genera, along with Euplotes (7—10), where conjugation has
been shown to be mediated through pheromone-like substances called gamones. Blepharisma
has two mating types, distinguished by their gamone production. Mating type | cells release
gamone 1, a ~30 kDa glycoprotein (11, 12); mating type Il cells release gamone 2, calcium-3-(2’-
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formylamino-5’-hydroxybenzoyl) lactate, a small-molecule effector (13). Blepharisma cells commit
to conjugation when complementary mating types recognize each other's gamones, with the cells
remaining paired while meiosis and then fertilization occur, and eventually new MACs begin to
form.

B. stoltei ATCC 30299 cells were cultured and harvested and concentrated to a density of 2000
cells/mL according to the procedure described in “Cell cultivation, Harvesting and Cleanup”. This
concentrated cell culture was incubated overnight at 27°C. The next day, the cells were
harvested, and the supernatant collected and preserved at 4°C at all times after extraction. The
supernatant was then filtered through a 0.22 pm-pore filter. BSA (10 mg/mL) was added to
produce the final CFF at a final BSA concentration of 0.01%.

To assess the activity of the CFF, serial dilutions of the CFF were made to obtain the gamone
activity in terms of units (U) (14). The activity of the isolated CFF was 2'°U.

Conjugation time course and RNA isolation for high-throughput sequencing

B. stoltei cells for the complementary strains, ATCC 30299 and HT-IV, were cultivated and
harvested by gentle centrifugation to achieve a final cell concentration of 2,000 cells/ml for each
strain. Non-gamone treated ATCC 30299 (A1) and HT-IV cells (H1) were collected (time point: -3
hours). Strain ATCC 30299 cells were then treated with synthetic gamone 2 (final concentration
1.5 pug/mL) and strain HT-IV cells were treated with cell-free fluid with a gamone 1 activity of ~21°
U/ml for three hours (Figure S6).

Homotypic pair formation in both cultures was checked after three hours. More than 75% of the
cells in both cultures formed homotypic pairs. At this point the samples A2 (ATCC 30299) and H2
(HT-1V) were independently isolated for RNA extraction as gamone-treated control cells just
before mixing. For the rest of the culture, homotypic pairs in both cultures were separated by
pipetting them gently with a wide-bore pipette tip. Once all pairs had been separated, the two
cultures were mixed together. This constitutes the experiment’s 0-h time point. The conjugating
culture was observed and samples collected for RNA isolation or cell fixation at 2 h, 6 h, 14 h, 18
h, 22 h, 26 h, 30 h and 38 h. Further details of the sample staging approach are described in (15)
and (16). For each sample 7 mL of culture was harvested for RNA-extraction using Trizol. The
total RNA obtained was then separated into a small RNA fraction < 200 nt and a fraction with
RNA fragments > 200 nt using the Zymo RNA Clean and Concentrator-5 kit according to the
manufacturer's instructions. RNA-seq libraries were prepared by BGI according to their standard
protocols and sequenced on a BGISeq 500 instrument.

Separate 2 mL aliquots of cells at each time point for which RNA was extracted were
concentrated by centrifuging gently at 100 rcf. 50 pL of the concentrated cells were fixed with
Carnoy’s fixative (ethanol:acetic acid, 6:1), stained with DAPI and imaged to determine the state
of nuclear development (15).

Cell fixation and imaging

B. stoltei cells were harvested as above (“Cell cultivation, harvesting and cleanup”), and fixed with
an equal volume of “ZFAE” fixative (17), containing zinc sulfate (0.25 M, Sigma Aldrich), formalin,
glacial acetic acid and ethanol (Carl Roth), freshly prepared by mixing in a ratio of 10:2:2:5. Fixed
cells were pelleted (1000 g; 1 min), resuspended in 1% TritonX-100 in PHEM buffer to
permeabilize (5 min; room temperature), pelleted and resuspended in 2% (w/v) formaldehyde in
PHEM buffer to fix further (10 min; room temp.), then pelleted and washed twice with 3% (w/v)
BSA in TBSTEM buffer (~10 min; room temp.). For indirect immunofluorescence, washed cells
were incubated with primary antibody rat anti-alpha tubulin (Abcam, ab6161; 1:100 dilution in 3%
w/v BSA/TBSTEM; 60 min; room temp.) then secondary antibody goat anti-rat IgG H&L labeled
with AlexaFluor 488 (Abcam, ab150157, 1:500 dilution in 3% w/v BSA/TBSTEM; 20 min; room
temp.). Nuclei were counterstained with DAPI (1 ug/mL) in 3% (w/v) BSA/TBSTEM. A z-stack of
images was acquired using a confocal laser scanning microscope (Leica TCS SP8), equipped



with a HC PL APO 40x 1.30 Oil CS2 objective and a 1 photomultiplier tube and 3 HyD detectors,
for DAPI (405 nm excitation, 420-470 nm emission) and Alexa Fluor 488 (488 nm excitation, 510-
530 nm emission). Scanning was performed in sequential exposure mode. Spatial sampling was
achieved according to Nyquist criteria. ImageJ (Fiji) (18) was used to adjust image contrast and
brightness and overlay the DAPI and AlexaFluor 488 channels. The z-stack was temporally color-
coded.

For a nuclear 3D reconstruction (Fig. 1B), cells were fixed in 1% (w/v) formaldehyde and 0.25%
(w/v) glutaraldehyde. Nuclei were stained with Hoechst 33342 (Invitrogen) (5 uM in the culture
media), and imaged with a confocal laser scanning microscope (Zeiss, LSM780) equipped with
an LD C-Apochromat 40x/1,1 W Korr objective and a 32 channel GaAsP array detector, with 405
nm excitation and 420-470 nm emission. Spatial sampling was achieved according to Nyquist
criteria. The IMARIS (Bitplane) software v8.0.2 was used for three-dimensional reconstructions
and contrast adjustments.

Genome assembly

Two MAC genome assemblies for B. stoltei ATCC 30299 (70x% and 76% coverage) were produced
with Flye (version 2.7-b1585) (19) for the two separate PacBio Sequel Il libraries (independent
replicates) using default parameters and the switches: --pacbio-hifi -g 45m. The approximate
genome assembly size was chosen based on preliminary lllumina genome assemblies of
approximately 40 Mb. Additional assemblies using the combined coverage (145x%) of the two
libraries were produced using either Flye version 2.7-b1585 or 2.8.1-b1676, and the same
parameters. Two rounds of extension and merging were then used, first comparing the 70x and
76% assemblies to each other, then comparing the 145x% assembly to the former merged
assembly. Assembly graphs were all relatively simple, with few tangles to be resolved (Fig. S1A).
Minimap2 (20) was used for pairwise comparison of the assemblies using the parameters: -x
asmb --frag=yes --secondary=no, and the resultant aligned sequences were visually inspected
and manually merged or extended where possible using Geneious (version 2020.1.2) (21).

Visual inspection of read mapping to the combined assembly was then used to trim off contig
ends where there was little correspondence between the assembly consensus and the mapped
reads, which we classify as "cruft". Read mapping to cruft regions was often lower or uneven,
suggestive of repeats. Alternatively, these features could be due to trace MIC sequences, or sites
of alternative chromosome breakage during development which lead to sequences that are
neither purely MAC nor MIC. A few contigs with similar dubious mapping of reads at internal
locations, which were also clear sites of chromosome fragmentation (evident by abundant
telomere-bearing reads in the vicinity) were split apart and trimmed back as for the contig ends.
Telomere-bearing reads mapped to the non-trimmed region nearest to the trimmed site were then
used to define contig ends, adding representative telomeric repeats from one of the underlying
sequences mapped to each of the ends. The main genome assembly with gene predictions can
be obtained from the European Nucleotide Archive (ENA) (PRJEB40285; accession
GCA_905310155). “Cruft” sequences are also available from the same accession.

Two separate assemblies were generated for Blepharisma japonicum. A genome assembly for
Blepharisma japonicum strain R1072 was generated from lllumina reads, using SPAdes genome
assembler (v3.14.0) (22). An assembly with PacBio Sequel long reads was produced with Ra
(v0.2.1) (23), which uses the Overlap-Layout-Consensus paradigm. The assembly produced with
Ra was more contiguous, with 268 contigs, in comparison to 1,510 contigs in the SPAdes
assembly, and was chosen as the reference assembly for Blepharisma japonicum (ENA
accession: ERR6474383).

Condylostoma magnum genomic reads (study accession PRJEB9019) from a previous study (24)
were reassembled to improve contiguity and remove bacterial contamination. Reads were
trimmed with bbduk.sh from the BBmap package v38.22
(https://sourceforge.net/projects/bbmap/), using minimum PHRED quality score 2 (both ends) and
k-mer trimming for lllumina adapters and Phi-X phage sequence (right end), retaining only reads
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=25 bp. Trimmed reads were error-corrected and reassembled with SPAdes v3.13.0 (22) using k-
mer values 21, 33, 55, 77, 99. To identify potential contaminants, the unassembled reads were
screened with phyloFlash v3.3b1 (25) against SILVA v132 (26); the coding density under the
standard genetic code and prokaryotic gene model were also estimated using Prodigal v2.6.3
(27). Plotting the coverage vs. GC% of the initial assembly showed that most of the likely
bacterial contigs (high prokaryotic coding density, lower coverage, presence of bacterial SSU
rRNA sequences) had >=40% GC, so we retained only contigs with <40% GC as the final C.
magnum genome bin. The final assembly is available from the ENA bioproject PRJIEB48875
(accession GCA_920105805).

All assemblies were inspected with the quality assessment tool QUAST (28).

Variant calling

lllumina total genomic DNA-seq libraries for B. stoltei strains ATCC 30299 (ENA accession:
ERR6061285) and HT-IV (ERR6064674) were mapped to the ATCC 30299 reference assembly
with bowtie2 v2.4.2 (29). Alignments were tagged with the MC tag (CIGAR string for mate/next
segment) using samtools (30) fixmate. The BAM file was sorted and indexed, read groups were
added with bamaddrg (commit 9baba65, https://github.com/ekg/bamaddrg), and duplicate reads
were removed with Picard MarkDuplicates v2.25.1 (http://broadinstitute.github.io/picard/).
Variants were called from the combined BAM file with freebayes v1.3.2 (31) in diploid mode, with
maximum coverage 1000 (option -g). The resultant VCF file was combined and indexed with
bcftools v1.12 (30), then filtered to retain only SNPs with quality score > 20, and at least one
alternate allele.

Comparison of telomere-bearing read fraction of Blepharisma and Tetrahymena

A simple regular expression search for three successive telomeric subunit repeats
(“3xCCCTAACA’ for Blepharisma, “3xCCCCAA” for Tetrahymena) was used to extract and
estimate the proportion of telomere-bearing reads. Visual inspections of these reads mapped with
minimap2 to the respective B. stoltei ATCC 30299 MAC genome assembly and T. thermophila
MAC genome assembly (32) suggested that most (> 90%) reads naively classified this way were
correct. For B. stoltei ATCC 30299 we obtained two estimates for the two HiFi read libraries used
(12.4% and 11.8% of all reads). For T. thermophila we combined all the deposited PacBio
subreads used to generate the most recent MAC genome assembly (32), obtaining an estimate of
1.7% of all reads being telomere-bearing.

Annotation of alternative telomere addition sites

Alternative telomere addition sites (ATASs) were annotated by mapping PacBio HiFi reads to the
curated reference MAC assembly described above, using minimap2 and the following flags: -x
asm20 --secondary=no --MD. We expect reads representing alternative telomere additions to
have one portion mapping to the assembly (excluding telomeric regions), with the other portion
containing telomeric repeats being soft-clipped in the BAM record. For each mapped read with a
soft-clipped segment, we extracted the clipped sequence, and the coordinates and orientation of
the clip relative to the reference. We searched for = 24 bp tandem direct repeats of the telomere
unit (i.e., 23 repeats of the 8 bp unit) in the clipped segment with NCRF v1.01.02 (33), which can
detect tandem repeats in the presence of noise, e.g., from sequencing error. The orientation of
the telomere sequence, the distance from the end of the telomeric repeat to the clip junction
(‘gap’), and the number of telomere-bearing reads vs. total mapped reads at each junction were
also recorded. Junctions with zero gap between telomere repeat and clip junction were annotated
as ATASs. The above procedure was implemented in the MILTEL module of the software
package BleTIES v0.1.3 (34).

MILTEL output was processed with Python scripts depending on Biopython (35), pybedtools (36),
Bedtools (37), and Matplotlib (38), to summarize statistics of junction sequences and telomere
permutations at ATAS junctions, and to extract genomic sequences flanking ATASs for sequence



logos. Logos were drawn with Weblogo v3.7.5 (39), with sequences oriented such that the
telomere would be added on the 5’ end of the ATAS junctions.

To calculate the expected minichromosome length, we assumed that ATASs were independent
and identically distributed in the genome following a Poisson distribution. About 47x10% ATASs
were annotated, supported on average by a single read. Given a genome of 42 Mbp at 145x
coverage, the expected rate of encountering an ATAS is 47x103% / (145 x 42 Mbp), so the
distance between ATASSs (i.e., the minichromosome length) is exponentially distributed with
expectation (145 x 42 Mbp) / 47x10% = 130 kbp.

RNA-seq read mapping

To permit correct mapping of tiny introns, RNA-seq data was mapped to the B. stoltei ATCC
30299 MAC genome using a version of HISAT2 (40) with modified source code, with the static
variable minintronLen in hisat2.cpp lowered to 9 from 20 (change available in the HISAT2 github
fork: https://github.com/Swart-lab/hisat2/; commit hash 86527b9). HISAT2 was run with default
parameters and parameters --min-intronlen 9 --max-intronlen 500. It should be noted that RNA-
seq from timepoints in which B. stoltei ATCC 30299 and B. stoltei HT-IV cells were mixed
together were only mapped to the former genome assembly, and so reads for up to three alleles
may map to each of the genes in this assembly.

Genetic code prediction

We used the program PORC (Prediction Of Reassigned Codons; available from
https://github.com/Swart-lab/PORC), previously written to predict genetic codes in protist
transcriptomes (24), to predict the B. stoltei genetic code. This program was used to translate the
draft B. stoltei ATCC 30299 genome assembly in all six frames (with the standard genetic code).
Like the program FACIL (41) that inspired PORC, the frequencies of amino acids in PFAM
(version 34.0) protein domain profiles aligned to the six-frame translation by HMMER 3.1b2 (42)
(default search parameters; domains used for prediction with conditional E-values < 1e-20), and
correspondingly also to the underlying codon, were used to infer the most likely amino acid
encoded by each codon (Fig. S2B).

Gene prediction

We created a wrapper program, Intronarrator, to predict genes in Blepharisma and other
heterotrichs, accommodating their tiny introns. Intronarrator can be downloaded and installed
together with dependencies via Conda from GitHub (https://github.com/Swart-lab/Intronarrator).
Intronarrator directly infers introns from spliced RNA-seq reads mapped by HISAT2 from the
entire developmental time course we generated. RNA-seq reads densely cover almost the entire
Blepharisma MAC genome, aside from intergenic regions, and most potential protein-coding
genes (Fig. 4B). After predicting the introns and removing them to create an intron-minus
genome, Intronarrator runs AUGUSTUS (version 3.3.3) using its intronless model. It then adds
back the introns to the intronless gene predictions to produce the final gene predictions.

Introns are inferred from “CIGAR” string annotations in mapped RNA-seq BAM files, using the
regular expression “[0-9]+M([0-9][0-9])N[0-9]+M” to select spliced reads. For intron inference we
only used primary alignments with: MAPQ >= 10; just a single “N”, indicating one potential intron,
per read; and at least 6 mapped bases flanking both the 5’ and 3’ intron boundaries (to limit
spurious chance matches of a few bases that might otherwise lead to incorrect intron prediction).
The most important parameters for Intronarrator are a cut-off of 0.2 for the fraction of spliced
reads covering a potential intron, and a minimum of 10 or more spliced reads to call an intron.
The splicing fraction cut-off was chosen based on the overall distribution of splicing (Figs. S3A-
C). From our visual examination of mapped RNA-seq reads and gene predictions, values less
than this were typically “cryptic” excision events (43) which remove potentially essential protein-
coding sequence regions, rather than genuine introns. Intronarrator classifies an intron as sense
(7389 in total, excluding alternative splicing), when the majority of reads (irrespective of splicing)



mapping to the intron are the same strand, and antisense (554 in total) when they are not. The
most frequently spliced intron was chosen in rare cases of overlapping alternative intron splicing.

To eliminate spurious prediction of protein-coding genes overlapping ncRNA genes, we also
incorporated ncRNA prediction in Intronarrator. Infernal (44) (default parameters; e-value < 1e-6)
was used to predict a restricted set of conserved ncRNAs models (i.e., tRNAs, rRNAs, SRP, and
spliceosomal RNAs) from RFAM 14.0 (45). These ncRNAs were hard-masked (with “N”
characters) before AUGUSTUS gene prediction. Both Infernal ncRNA predictions (excluding
tRNAs) and tRNA-scan SE 2.0 (46) (default parameters) tRNA predictions are annotated in the B.
stoltei ATCC 30299 assembly deposited in the European Nucleotide Archive.

Since we found that Blepharisma stoltei, like Blepharisma japonicum (24), uses a non-standard
genetic code, with UGA codon translated as tryptophan, gene predictions use the “The Mold,
Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code
(transl_table=4)" from the NCBI genetic codes. The default AUGUSTUS gene prediction
parameters override alternative (mitochondrial) start codons permitted by NCBI genetic code 4,
other than ATG. So, all predicted B. stoltei gene coding sequences begin with ATG.

RNA-seq read mapping relative to gene predictions of Contig_1 of B. sfoltei ATCC 30299 was
visualized with PyGenomeTracks (47).

Assessment of genome completeness

A BUSCO (version 4.0.2) (48) analysis of the assembled MAC genomes of B. stoltei and B.
Japonicum was performed on the set of predicted proteins (BUSCO mode -prot) using the
BUSCO Alveolata database. The completeness of the Blepharisma genomes was compared to
the protein-level BUSCO analysis of the published genome assemblies of ciliates T. thermophila,
P. tetraurelia, S. coeruleus and I. multifiliis (Fig. S2A).

Gene annotation

Pannzer2 (49) (default parameters) and EggNog (version 2.0.1) (50) were used for gene
annotation. Annotations were combined and are available from the Max Planck Society’s Open
Research Repository, Edmond (https://dx.doi.org/10.17617/3.8c). Protein domain annotations
were performed using hmmscan from HMMERS3 (version 3.3, Nov 2019) (42) vs. the PFAM
database (Pfam-A.full, 33.0, retrieved on June 23, 2020) with default parameters.

Gene expression analysis

Features from RNA-seq reads mapped to the B. stoltei ATCC 30299 MAC and MAC+IES
genomes over the developmental time-course were extracted using featureCounts from the
Subread package (51). Further analysis was performed using the R software environment. Genes
with a total read count of less than 50 across all timepoints were filtered out of the dataset. The
remaining genes were passed as a DGElist object to edgeR (52). Each time point, representing
one library, was normalized for library size using the edgeR function calcNormFactors. The
normalized read counts were transformed into TPM (transcripts per million) values (53, 54). The
TPM-values for different genes were compared across timepoints to examine changes in gene
expression. Heatmaps showing log2(TPM) changes across timepoints were plotted using the
tidyverse collection of R packages (https://www.tidyverse.org/) and RColorBrewer
(https://rdrr.io/cran/RColorBrewer/). Tabulated gene expression estimates together with protein
annotations are available from Edmond (https://dx.doi.org/10.17617/3.8c).

We eschewed a shallow Gene Ontology (GO) enrichment analysis, instead favoring close
scrutiny of a smaller subset of genes strongly upregulated during new MAC formation. For this,
computational gene annotations in combination with BLASTP searches and examination of
literature associated with homologs was used.



Sequence visualization and analysis

Nucleotide and amino acid sequences were visualized using Geneious Prime (Biomatters Ltd.)
(21). Multiple sequence alignments were performed with MAFFT version 7.450 (55, 56).
Phylogenetic trees were constructed with PhyML version 3.3.20180621 (57).

Orthogroup inference and analysis of orthogroup clusters

OrthoFinder version 2.5.2 with default parameters (i.e., using Diamond for searching, MAFFT for
multiple alignment and FastTree for phylogenies) was used to define orthogroups, i.e., sets of
genes descended from the last common ancestor of the chosen species. Proteomes for the
following ciliate species were used: Tetrahymena thermophila, Oxytricha trifallax, Stentor
coeruleus (data from ciliate.org (58)); Euplotes octocarinatus (EOGD (59)); Paramecium
tetraurelia, Paramecium caudatum (data from ParameciumDB (60)); plus Perkinsus marinus
ATCC 50983 (GenBank accession: AAXJO0000000) as a non-ciliate outgroup. Orthogroup
clusters are available as Data S2, or from Edmond (https://dx.doi.org/10.17617/3.8c).

Identification and correction of MIC-encoded PiggyBac homologs

We sought coding regions present within Blepharisma IESs to gauge the expression and type of
MIC-limited genes (IES assembly and gene prediction described in Seah et al. 2022). After gene
prediction within IESs with Intronarrator, predicted protein domains were annotated by HMMER
(v3.3) (42). Several transposase families were represented in protein domains identified with
coding regions of IESs. However, gene prediction within IESs was hampered by the presence of
intermittent A-residues in the consensus sequence which occur due to the inaccuracy inherent in
long-reads, from which the IES regions were assembled. These errors cause IES gene prediction
to falter by generating inaccurate ORFs. To circumvent this, a six-frame translation of the MIC-
limited genome regions was performed using a custom script, which was then used to detect
PFAM domains, using HMMER and the Pfam-A database 32.0 (release 9) (61). Domain
annotations for diagrams were generated with the InterproScan 5.44-79.0 pipeline (62)

Four instances of the Pfam domain DDE_Tnp_1_7, characteristic of PiggyBac transposases,
were detected in an initial gene prediction within Blepharisma IESs. The four genes
corresponding to the DDE_Tnp_1_7 domain had high RNA-seq coverage of combined reads from
all timepoints across development. The IESs with the PiggyBac domains on Contig 17 and Contig
39 each had two ORFs with a partial DDE_1_7 domain, separated by a few hundred bp.
Alignment of short-read MIC-enriched DNA reads mapped to the IES regions containing the
putative PiggyBac homologs indicated that several A-nucleotides in the assembled IESs were
insertion errors in the IES assembly, which were corrected with the short-read alignment. Open
reading frames of predicted genes in these corrected regions were adjusted accordingly. The
prefix “cCORF” (corrected ORFs) was used to indicate the short-read corrected sequences of the
PiggyMics.

Short-read MIC-enriched DNA sequences were aligned to the IES regions containing putative
PiggyBac homologs with Hisat2 (2.0.0-beta) with modified source code (described in “RNA-seq
read mapping”). Indel errors in the IES assembly were corrected manually, then used to predict
coding regions. Pfam domains were annotated on MIC PiggyBac homologs with corrected ORFs
using the InterproScan (v. 1.1.4) (63) plugin in Geneious v11.1.5 (Biomatter Ltd.). DDE_Tnp_1_7
domains were detected in the corrected ORFs, which in some cases spanned IES regions lacking
predicted genic regions before correction. A multiple sequence alignment of the correct MIC
PiggyBac homologs with other ciliate PiggyBac-derived proteins (PGBDs) and eukaryotic
PiggyBac-like elements (PBLEs) that contain the PiggyBac transposase domain DDE_Tnp_1_7
(PF13843) was performed with MAFFT (v4.1) via the Geneious plugin (algorithm L-INS-i,
BLOSUM®62 scoring matrix, gap open penalty 1.53, offset value 0.123). A phylogenetic tree was
constructed using the FastTree (v 2.1.11) plugin for Geneious (Whelan-Goldman model).



dn/ds estimation

We generated pairwise coding sequence alignments of PiggyMac paralog nucleotide sequences
from P. tetraurelia and P. octaurelia using MAFFT version 7.450 (56) (55) (algorithm: “auto”,
scoring matrix: 200PAM/k=2, gap open penalty 1.53, offset value 0.123) using the “translation
align” panel of Geneious Prime (version 2020.1.2) (21). PAML version 4.9 (64) was used to
estimate dn/ds values in pairwise mode (runmode = -2, seqtype = 1, CodonFreq = 2). For
Blepharisma stoltei, we generated pairwise coding sequence alignments of the Blepharisma
PiggyMac homolog, BPgm (Contig_49.g1063; BSTOLATCC_MAC17466), with the Blepharisma
Pgm-likes (BPgmLs) using Translation Align panel of Geneious v11.1.5 (Genetic code:
Blepharisma, Protein alignment options: MAFFT alignment (v7.450) (56), scoring matrix:
BLOSUM®62, Gap open penaly: 1.53, offset value: 0.1). PAML version 4.9 was used to estimate
dN/dS values in pairwise mode (runmode = -2, seqtype = 1, CodonFreq = 2).

Phylogenetic analysis

Protein sequences of PBLEs were obtained from Bouallegue et al (65). Protein sequences of
Paramecium and Tetrahymena Pgms and PgmLs were obtained from ParameciumDB (60)
(PGM, PGMLs1-5) and ciliate.org (58) (Tpb1, Tpb2, Tpb7, LIA5), respectively. Condylostoma and
Blepharisma Pgms and PgmLs were obtained from genome assemblies (accessions
GCA_920105805 and GCA_ 905310155, respectively). Sequence organization and manipulation
was done using Geneious (Biomatters Ltd.). The Geneious plug-in for InterProScan (62) was
used to identify DDE_Tnp_1_7 domains using the PFAM-A database (61). The DDE_Tnp_1_7
domain and regions adjacent to it were extracted and aligned using the MAFFT plug-in (v7.450)
for Geneious (56) (algorithm: L-INS-i, scoring matrix: BLOSUMG62, gap opening penalty: 1.53,
offset value: 0.123). Phylogenetic trees using this alignment were generated with the FastTree2
(v2.2.11) Geneious plug-in using the Whelan-Goldman model. The phylogenetic trees were
visualized with FigTree (v1.4.4) (Andrew Rambaut, http://tree.bio.ed.ac.uk/).

Repeat annotation

Interspersed repeat element families were predicted with RepeatModeler v2.0.1 (default settings,
random number seed 12345) with the following dependencies: rmblast v2.9.0+
(http://www.repeatmasker.org/RMBlast.html), TRF 4.09 (Benson, 1999), RECON (Bao and Eddy,
2002), RepeatScout 1.0.6 (Price et al., 2005), RepeatMasker v4.1.1
(http://lwww.repeatmasker.org/RMDownload.html). Repeat families were also classified in the
pipeline by RepeatClassifier v2.0.1 through comparison against RepeatMasker’s repeat protein
database and the Dfam database. Consensus sequences of the predicted repeat families,
produced by RepeatModeler, were then used to annotate repeats with RepeatMasker, using
rmblast as the search engine.

Terminal inverted repeats (TIRs) of selected repeat element families were identified by aligning
the consensus sequence from RepeatModeler, and/or selected full-length elements, with their
respective reverse complements using MAFFT (Katoh and Standley, 2013) (plugin version
distributed with Geneious). TIRs from the Dfam DNA transposon termini signatures database
(v1.1, https://www.dfam.org/releases/dna_termini_1.1/dna_termini_1.1.hmm.gz) (Storer et al.,
2021) were searched with hmmsearch (HMMer v3.2.1) against the IES sequences, to identify
matches to TIR signatures of major transposon subfamilies.



Sl Results

Additional assembly considerations and inspection

Compared to assemblies of independent, replicate libraries with 70x% or 76x coverage there was a
modest improvement (e.g., from 86 and 89 contigs to 74) in assembly contiguity for the
assemblies produced at 145% coverage (Table S2). With increasing sequence depth, reads of
micronuclear origin could conceivably start linking MAC chromosomes and extending their ends,
even though we depleted MIC DNA by sucrose gradient centrifugation of nuclei.

We chose to conservatively trim back the ends of most of the contigs in the assembly, and break
apart a few contigs at internal sites. This was done either where the coverage locally decreased
or increased and where there were extensive differences between the contig sequence and
mapped reads. Some of these sequences could represent an intermediate state between fully
retained and fully eliminated DNA in MACs. 1.3 Mb of such uncertain sequences (termed “cruft” in
genome assembly terminology) were removed from the main assembly. No tRNA genes were
predicted in the cruft sequences, nor did their removal reduce the BUSCO score for
completeness of the MAC genome, which is comparable to or better than that of other ciliates
(Fig. S2A). BUSCO analyses also showed that gene duplication in Blepharisma, though common,
is lower than in Paramecium tetraurelia and Stentor coeruleus (Fig. S2A).

Telomeres in Blepharisma

The basic telomere unit of Blepharisma is a permutation of CCCTAACA, like its heterotrich
relative Stentor coeruleus (66) (Fig. S4D). Since a compelling candidate for a telomerase ncRNA
(TERC) could not be found in either Blepharisma or Stentor using Infernal (44) and RFAM models
(RF00025 - ciliate TERC; RF00024 - vertebrate TERC), it was not possible to delimit the repeat
ends. Heterotrichs may use a different or very divergent ncRNA. In contrast to the extremely short
(20 bp) MAC telomeres of spirotrichs like Oxytricha with extreme MAC genome fragmentation
(67), sequenced Blepharisma MAC telomeres are moderately long (Fig. S4B), with a mode of 209
bp (~26 repeats of the 8 bp motif), extending to a few kilobases.

Alternative telomere addition sites (ATASs)

Alternative telomere addition sites in the MAC genome tend to be intergenic in model ciliates like
Oxytricha trifallax (67). In Blepharisma, we found more intergenic ATASs (28,309) than intragenic
ones (18,396). As intergenic regions only make up 10.1 Mb of the assembly, the intergenic
frequency of ATASs is about five-fold higher (2.81 per 1 kb) than intragenic frequency (0.562 per
1 kb). The presence of intragenic ATASSs raises the question how the cell tolerates or deals with
mRNAs encoding partial proteins transcribed from 3’ truncated genes. Since the sequence data
was from a clonal population, it is not possible to tell how much ATAS variability there is within
individual cells. However, it is conceivable that their positional variation in single cells reflects that
of the population. In this case, together with redundancy from massive DNA amplification there
would likely be sufficient intact copies of every gene.

Beyond the first 2-5 bp corresponding to the junction sequences, the average base composition
on the chromosome flanking ATAS junctions shows an asymmetrical bias (Fig. S4G). From
position +6 onwards there is an enrichment of T to about 40% and A to 35-39%, compared to the
genome-wide frequencies of 33% each. At position +19 to +23, there is a slight decrease in T to
37-39%. AT values gradually decline back to about 35% each by position +150. Correspondingly,
G and C are depleted downstream of ATAS junctions, dropping to a minimum of 8.6% and 11%
respectively around position +37, compared to the genome-wide average of 17% each. AT
enrichment and GC depletion upstream of ATAS junctions are less pronounced.

If breakage and chromosome healing were random, we would not expect such an asymmetry.
This suggests that there is a nucleotide bias, whether in the initiation of breaks, telomere addition,
or in the processing of breaks before telomere addition. However, we have not yet identified any
conserved motif like the 15 bp chromosome breakage site (CBS) in Tefrahymena (68) nor a short
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10-bp sequence periodicity in base composition like in Oxytricha trifallax (69). Therefore,
telomere addition in B. stoltei appears to involve base-pairing of short segments of about 2 bp
between the telomere and chromosome, with a bias centered on the “CT” in the telomere unit,
and an asymmetrical preference for AT-rich sequences on the chromosomal side of the junction.

The position of an ATAS junction is potentially ambiguous because the last adjoining telomere
repeat can potentially be extended into the chromosomal sequence, if the chromosomal
sequence at the junction contains a partial match to the telomere (Fig. S4E). The junction position
that maximizes the length of the telomere sequence on a read has been termed as the “first
identifiable breakpoint”, and that which maximizes the chromosomal sequence as the “last
identifiable breakpoint” (70). The overlapping sequence, which could either be telomeric or
chromosomal, is termed the “junction sequence”.

Most ATAS junctions in B. stoltei have an overlapping junction sequence, on average 2-3 bp long
(Fig. S4l). This can also be observed when separate sequence logos are drawn for each of the
possible telomere repeat permutations observed at the ATAS junction (Fig. S4F). Such a short
overlap of a few base pairs between the telomere repeat and chromosome sequence is similar to
what has been observed in other organisms, such as 3-5 bp in yeast (70) and 2-4 bp in humans
(71). This is in contrast to Tetrahymena where telomeres are often added to sites that have no
homology to the telomere sequence (72).

We hypothesized that the location of ATAS junctions in the genome might be randomly
distributed and simply reflect the baseline sequence composition of the genome and/or the
telomeres. To test this, we counted the frequency of 2-mers in the MAC genome (excluding
telomeric regions) and in the telomere repeats, and compared them to the 2-mer frequencies
observed at ATAS junctions (2 bp on chromosomal side of last identifiable breakpoints, Fig. S4H).
Sequence composition of the telomeres does have a strong influence, as 2-mers that are not
represented in the telomeres (AT, GC, CG, GA) are poorly represented at ATAS junctions even
though they may be frequent in the genome, e.g., GA, 12.0% in genome vs. 0.36% at ATAS; AT,
10.4% vs. 1.7%. However, 2-mer frequencies at ATAS junctions do not match frequencies in the
telomeres closely either. For example, the 2-mer AG is about twice as frequent at ATAS junctions
as compared to telomeres, and as compared to the genome generally. Instead, the telomere
permutations at ATAS junctions are not uniformly distributed; the permutation CTAACACC is the
most common, followed by its adjacent permutations TAACACCC and AACACCCT (using last
identifiable breakpoints, Fig. S4D). These would account for the three most common 2-mers at
ATAS junctions: AG (canonical form of CT), AA, and TA.

Telomere-binding protein paralogs

Despite the abundance of Blepharisma MAC genome telomeres, we did not detect a typical
ncRNA gene corresponding to the telomerase RNA component (TERC) of the ribozyme
responsible for telomere synthesis in the MAC genome. We suspect this is due to ncRNAs
presenting a far greater challenge to detect than protein-coding genes and the presence of highly
divergent ncRNA with insufficient similarity to the handful of taxonomically-restricted TERCs
identified in oligohymenophorean and spirotrich ciliates and other eukaryotes so far.

Other than the components of telomerase, ciliates were among the first organisms where
telomere-binding proteins were characterized (73). Telomere-binding protein paralogs with
distinctive patterns of gene expression during development are present in some ciliate species
(67, 74). Tetrahymena thermophila has two telomere-binding protein paralogs POT1 and POT2
(74). POT2 is upregulated during conjugation, accumulates in developing new macronuclei, and
binds to chromosome breakage sites rather than telomeres (74). Blepharisma stoltei has five
POT1 paralogs POT1.1-POT1.5 (Fig. S5C). One B. stoltei POT1 paralog expressed at low levels
in starved (0 h) cells, POT1.4, is sharply upregulated during development, peaking when new
macronuclei are forming (22 h) (Fig. S5C).
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Since we were unable to identify a specific chromosome breakage signal like that of
Tetrahymena, a future avenue to search for such a signal would be to assess the DNA-binding
preferences of POT1.4 and the other Blepharisma POT1 paralogs. In any event, since this is one
of the most highly upregulated genes in the 22-26 h time range compared to vegetative (0 h, and
gamone treated cells; see “Results”, “Features of gene expression during new MAC

development”), future investigation of its developmental role is warranted.

Tiny spliceosomal introns

Like Stentor (66), most (82%) Blepharisma genes have no introns. In line with genome
compactness, during our inspections we also observed numerous overlapping poly(A)-tailed
RNA-seq reads on opposite strands derived from convergently transcribed gene pairs. The
correlation of the lengths of different noncoding region classes (intergenic regions, introns and
UTRs) can be explained by them being subject to common, neutral evolutionary processes (75).

Blepharisma introns are mostly (97%) 15 or 16 nucleotides (nt) long, like those of Stentor (Fig.
S3D). Though intron reduction (7,389 introns predicted in the reference B. stoltei MAC genome,
i.e., 0.29 introns per gene) is not as extreme as some other microbial eukaryotes, like Giardia
lamblia (76), where almost all have been lost, both Blepharisma and Stentor have much fewer
introns relative to other ciliates (e.g., intron densities of 1.6, 2.3 and 4.8 introns per gene in
Paramecium, Oxytricha and Tetrahymena, respectively (77)) and to the putative, relatively intron-
rich eukaryotic common ancestor (78), along with their extreme length reduction.

Blepharisma 15 nt introns possess a characteristic branch-point “A”, as would be expected in
classical models of lariat formation during mRNA splicing (Fig. S3C). 16 nt introns almost
invariably have an “A” at either 10 or 11 nt downstream of the donor site (i.e., only one of 499
does not, but has “A” at 9 nt), although this is not obvious in the consensus sequence logo
because the position is variable (Fig. S3D). Similarly, 17 nt introns all possess “A” at 10-12 nt
downstream of the donor site. Only a few intron bases, 5-8 and 12, of Blepharisma’s 15 nt introns
are relatively unconstrained (Fig. S3C). This leaves little room for the presence of any additional
regulatory elements in the mRNA or underlying DNA.

In the final gene predictions, just over 1% of predicted Blepharisma introns lack canonical GT-AG
boundaries (62 out of 4,670 introns). Just under half of these (30) are 15 or 16 bp long and
predominantly appear to represent true spliceosomal introns. The boundaries of two predicted
introns with CT-AC boundaries (14 and 15 nt in length) resulted from misalignment of nucleotides
in the mapped spliced reads at conventional GT-AG junctions. We found no evidence of minor
spliceosomal RNAs (U11, U12, U4atac, and UBatac) using Infernal searches (E-value < 10).
Thus, Blepharisma appears to lack a minor spliceosome and minor spliceosomal introns. As far
as we are aware no minor spliceosomal introns have been reported in any ciliates. Loss of minor
spliceosomal machinery and introns, relative to the eukaryotic common ancestor, may be
relatively common in alveolates including ciliates (79).

The most common 5’ boundaries for Blepharisma introns that possess a 3’-AG but lack 5’-GT are
5°-GC or 5'-GG (the latter are most often 5’-GGT; Table S9). Introns that possess a 5’-GT but lack
3’-AG typically have 3’-GG boundaries (most often 3'-AGG; Table S9). Visual inspection of the
mapped RNA-seq data to the non-canonical Blepharisma introns and predicted coding
sequences suggests that the GC-AG, GT-GG and GG-AG introns are correct, i.e., lead to
prediction of complete coding sequences downstream of their locations. Lower frequency
alternative splicing may occur in some cases (e.g., Fig. S3G), but these generate prematurely
terminated coding sequences.

GC-AG introns are the most common alternative major spliceosomal introns in multicellular
organisms (80). In Blepharisma such introns are most frequently 15 bp long. In contrast to GC-
AG introns and conventional Blepharisma GT-AG introns, GG-AG and GT-GG (or GGT-AG and
GT-AGG) introns are 16 bp or longer (Table S9). This suggests most of these introns evolved
from conventional 15 bp GT-AG introns. It is possible that splicing of the shorter internal GT-AG
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introns, instead of their longer non-canonical forms that give rise to full-length coding sequences,
leads to NMD of some mRNAs, since these invariably have a premature in-frame stop codon
downstream of the intron. Thus RNA-seq may underestimate the amount of splicing of the shorter
forms.

Overcoming challenges in gene prediction due to tiny introns

As reported in Stentor, splicing frequency decreases as intron length increases in Blepharisma
(Fig. S3B). This trend is also evident in antisense introns, though weaker and more noisy due to
their lower abundance (Fig. S3B). Since antisense intron splicing would be free from selective
constraints imposed by protein-coding sequence translation, we suggest that the intron length
distribution primarily reflects the splicing length preferences of the spliceosome. The decreased
efficiency of splicing of introns longer than 15 nt, and evident inability to splice introns shorter
than this, means that most intron indels may be deleterious. We therefore suggest that, like its
IESs which are skewed towards shorter lengths (Seah et al. 2022), Blepharisma’s introns can
largely be thought of as parasitic elements which bear significant potential costs. This would also
be consistent with the absence of introns in most heterotrich genes, and a pronounced decrease
in intron density relative to model ciliates such as Paramecium, Tetrahymena and Oxytricha (66).

The tiny introns of Stentor coeruleus previously created significant challenges for gene prediction
(66) using AUGUSTUS (81). In the Stentor study, some predicted genes were observed to be
incorrectly joined, and so were split with a custom script. Furthermore, introns of lengths other
than 15 or 16 bp were attributed to genome mis-assembly (66). In our study, after adjusting
AUGUSTUS parameters for tiny introns as for Stentor and training AUGUSTUS for gene
prediction in Blepharisma, from visual inspection of mapped RNA-seq reads we saw that most
predicted introns longer than 16 bp are incorrect. With the benefit of major technological
advances in long read sequencing and considerably increased sequencing depth over the last
years, the Blepharisma MAC genome assembly is not as prone to misassembly, and contiguity
substantially improved compared to that of the draft Stentor coeruleus assembly. Consequently,
most of the incorrect introns predicted with AUGUSTUS in Blepharisma were errors in gene
prediction rather than mis-assembly. Additionally, numerous introns, including some of length 15
or 16 nt, were predicted in regions deeply covered by RNA-seq with no mapped reads evidencing
splicing. No matter what changes we attempted to the AUGUSTUS source code in attempts to
more accurately predict introns, more were incorrectly predicted than not (e.g., Table S8).

Since we obtained extensive RNA-seq data across a developmental time course which appeared
to cover most genes (Fig. 3A), we chose to eliminate incorrect intron predictions, the major
source of inaccuracy in Blepharisma gene predictions, by directly predicting introns using mapped
reads. This approach, Intronarrator, runs AUGUSTUS in “intronless” prediction mode on a version
of the genome with introns removed, before replacing the introns in the genes. Visual inspection
of the predicted introns on Contig_1, showed there was a marked improvement in intron
prediction sensitivity from 0.75 with AUGUSTUS to 0.97 with Intronarrator, while precision
improved from 0.42 to 1.00 (Table S8). In general, there is consistency between the locations of
the predicted genes and RNA-seq coverage, notably including genes with introns (Fig. 3).

Extensive duplications of transmembrane protein genes

A notable extended ~220 kb region encoding 53 genes belonging to a single orthologous group
(orthogroup), OG0000085 is present on Contig_1 (Fig. 3A). Four additional OG0000085 genes
are present at the opposite end of Contig_1, and 24 copies are found on other contigs, often
clustered together (Fig. S1B). The DNA coverage across this region is lower (74x%) than the rest
of Contig_1 (185x). Though there is uncertainty in the exact extent, given the sheer volume of
reads involved, the assembled sequences certainly correspond to highly repetitive regions of the
MAC genome. At the junction between the lower and higher coverage regions more than 30 HiFi
reads link the two regions of coverage, and a similar number of telomere-bearing reads are in
close proximity. At the junction we also observe at least two potential locations of IESs,
corresponding to regions that may be partially IES/partially MDS.
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Large clusters of genes from particular orthogroups can be found on additional contigs (Fig. S1B).
In total 551 (2%) of predicted B. stoltei genes belong to the orthogroups with the largest clusters
per contig. Some of the largest contiguous clusters of genes from these orthogroups are situated
at the ends of contigs, suggesting they may have caused assembly breaks beyond them. One
contig, split off from other connected components in the assembly graph, predominantly encodes
genes from a single orthogroup (contig_64, 43% coverage; Fig. S1B). Further increases in read
length and accuracy may allow assemblers to fully resolve these in future. Curiously, all the
orthogroups corresponding to the largest contiguous clusters of genes appear to be
transmembrane proteins, or decayed remnants thereof.

Full-length proteins from OG0000085 (81 proteins in total) and OG0000014 (143 proteins in total)
both contain a central PFAM “ANF _receptor” domain (PF01094), annotated in the PFAM
database with the description “This family includes extracellular ligand binding domains of a wide
range of receptors”. Though apparently distantly related (32% amino acid identity of the
consensus sequences; produced by the majority rule for each orthogroup), the full-length proteins
are of similar length and align well, and thus are likely homologs. A clear C-terminal
transmembrane domain region comprising seven to nine alpha helices is predicted for presumed
full-length versions of proteins from both ortholog groups using TMHMM2 (82). Queries of UniProt
revealed that, though widely distributed among eukaryotes, among ciliates only Stentor coeruleus
also possesses proteins with this domain classified (29 in total). BLAST searches versus the
GenBank NR database detect a similar number of matches to Stentor coeruleus homologs (E-
value < 1e-30) but none in any other ciliates. Ortholog groups OG0000018 and OG0000052 also
appear to be homologous to one another (31% amino acid identity of the consensus sequences
produced by the majority rule for each orthogroup). Full-length proteins from these ortholog
groups possess a clear N-terminal transmembrane domain predicted by TMHMM2, composed of
seven or more transmembrane helices. We also detected a central Pas domain (PF00989) in a
couple of these proteins in InterProScan searches of PFAM. Ortholog group OG0000019 has a
seven transmembrane C-terminal domain predicted by TMHMM2, a series of centrally located
“Laminin_G_3” (PF13385) domains, and an N-terminal “Malectin” (PF11721) domain in some
proteins.

Ciliates encode a moderately large number of protein-coding genes compared to other
eukaryotes, often exceeding 25,000. Species like Paramecium tetraurelia which have undergone
multiple whole genome duplications, may have more than 40,000 genes (83). In ciliate species
like Tetrahymena thermophila (26,258 genes (32)), with no evidence of whole genome
duplications, it has been a question as to why these species are so gene rich (84).

Segmental duplications identified in the human genome are defined as duplications > 1 kb and >
90% sequence identity (85). Little evidence for such duplications was found in the Tetrahymena
MAC genome (84). Since the divergences of the proteins within the large clustered Blepharisma
orthogroups are typically moderately high (e.g., < 40% amino acid identity), the duplications that
led to them represent older events. Nonetheless, given their extent, it is likely that many of the
duplicated genes originated from segmental duplications. Recombination of clusters of some of
these genes into other genomic regions may subsequently have spread them elsewhere, and led
to gradual erosion of the original locus. The OrthoFinder algorithm is specifically designed to
eliminate scoring biases against shorter sequences, a significant advance over older algorithms
like OrthoMCL (86). In our inspections of multiple sequence alignments of the largest orthogroups
we also detected numerous genes that are clearly related to, but significantly shorter than the
typical gene length of each orthogroup, thus likely representing eroding pseudogenes. Though we
focused on the largest and most notable clusters of genes from the orthogroups, numerous other
genes may also have arisen out of such clustered duplications.

Development-specific upregulation of proteins associated with DNA repair and chromatin

A variety of different DNA repair protein genes strongly upregulated at 26 hours (Table S4; Data
S3) are: a 5’ Apollo exonuclease protein (BSTOLATCC_MAC16643), whose homologs are
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involved in DNA repair and telomere protection (87) (a paralog of this gene is constitutively
expressed at low levels: BSTOLATCC_MAC3725; 58.9% pairwise amino acid identity); STAG1/2
(BSTOLATCC_MAC22820) and Rad21 (BSTOLATCC_MAC1548) homologs, both cohesin
complex components, and a Rad50 homolog (BSTOLATCC_MAC2159), all proteins involved in
DNA double-strand break repair (88, 89); a homolog of MUS81 (BSTOLATCC_MAC21072) a
protein involved in meiotic double-strand break repair in Tetrahymena (90); a homolog of PARP2
(Poly(ADP-ribose) polymerase-2) (BSTOLATCC_MAC1058), a protein involved in DNA single-
strand nick repair (91); a homolog (BSTOLATCC_MAC1470) of the DNA clamp, PCNA, which is
involved in DNA repair associated with DNA polymerases delta and epsilon (92, 93); two
homologs (BSTOLATCC_MAC23155 and BSTOLATCC_MAC23646) of exodeoxyribonuclease
[ll, a protein involved in abasic DNA base repair (94).

A dozen chromatin-related proteins are among the top 100 most strongly upregulated proteins at
26 hours (Table S4). These include a homolog (BSTOLATCC_MAC17684) of ISWI, a core
ATPase remodeler present in a range of different chromatin remodelling protein complexes in
eukaryotes (95). In Paramecium tetraurelia the strongest developmentally upregulated ISWI
homolog plays a critical role in nucleosome positioning in new MACs during genome editing (96).
A few histone/histone-related proteins and HMG boxes are also strongly upregulated. Two JmjC
(Jumoniji C) domain-containing proteins are also highly upregulated (BSTOLATCC_MAC23590
and BSTOLATCC_MAC5044). BSTOLATCC_MAC23590 is likely to be orthologous to JMJ1 of
Tetrahymena thermophila (TTHERM_00185640): they are reciprocal best BLASTP hits (with next
best hit e-values many orders of magnitude higher), the JmjC domain occurs in a similar relative
location in the two proteins, and their lengths are similar (1082 aa and 1198 aa). JMJ1 is highly
upregulated during T. thermophila conjugation, first localizing in old MACs and later in the new
MACs (97). This protein is required for H3K27me3 demethylation later in conjugation, where it is
proposed to influence gene expression, including those expressed later and involved in genome
editing processes, rather than heterochromatin associated with Tetrahymena IES excision per se
(97).

Development-specific upregulation of proteins associated with initiation of transcription
and translation

While overarching coordination of gene regulation and protein translation are expected during
ciliate development, it is not evident how this might be achieved. Among the most strongly
upregulated genes at 26 hours are homologs of proteins involved in initiation of either
transcription or translation, notably an elF4E translation initiation factor homolog
(BSTOLATCC_MAC5291) and a TATA-binding protein (SPT15; BSTOLATCC_MAC11469; Table
S4). In other eukaryotes elF4E proteins bind to m7G 5 mRNA caps permitting protein translation
(98). B. stoltei has ten homologs of these proteins, nine of which are moderately stably expressed
throughout the RNA-seq conditions examined (Data S3; workbook “elF4e homologs”). elF4E
paralogs are also abundant in S. coeruleus, with thirteen homologs found by BLASTP. One of the
B. stoltei elF4E paralogs is more highly expressed than the rest (BSTOLATCC_MAC25346),
however this is still roughly an order of magnitude less than the development-specific paralog in
all times after 2 hours post cell mixing. The pronounced upregulation of a homolog of elF4e would
be consistent with the massive amount of protein translation necessary during development. We
therefore propose that translation initiation plays a critical regulatory role in protein synthesis
during Blepharisma development, all the way through genome editing.

Regarding transcription regulation, B. stoltei has a constitutively expressed TATA-binding protein
(BSTOLATCC_MAC16553) which is 64.8% identical (at the amino acid level) to the
developmentally upregulated paralog (BSTOLATCC_MAC11469). Tetrahymena thermophila also
appears to have two TATA-binding protein homologs annotated (TBP1 and TBP2; 30.5%
pairwise amino acid identity) both of which are modestly upregulated during development
(http://tfgd.ihb.ac.cn/search/detail/gene/TTHERM_00575350 and
http://tfgd.ihb.ac.cn/search/detail/lgene/TTHERM_00082170). In B. stoltei we speculate that the
two TATA-binding proteins may recognize distinct TATA box motifs, and thus transcription of a
large, development-specific subset of proteins might be controlled by a master regulator. A
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homolog of transcription initiation factor TFIID subunit 1 (TAF), the largest core component of the
transcription initiation complex (99) that interacts with TATA-binding proteins (100) is encoded by
the sixth most strongly upregulated gene (388x) at 26 hours (BSTOLATCC_MAC12987). The
only other TAF homolog we detected (BSTOLATCC_MAC10371) is more weakly upregulated
(12x) at 26 hours.

In B. stoltei an additional homolog of a protein involved in transcription elongation (SPT5;
BSTOLATCC_MAC7803) is among the most highly upregulated genes at 26 hours, and also has
a constitutively expressed paralog (BSTOLATCC_MAC18233 78.4% pairwise amino acid
identity). Paramecium tetraurelia and Oxytricha trifallax both have SPT5 paralogs that appear to
have been generated in separate duplication events (101), and our phylogenies suggest the B.
stoltei paralogs duplicated independently of these two species. In P. tetraurelia, one of the two
paralogs is specific to meiotic micronuclei, and has an expression profile that peaks earlier during
development prior to meiosis and declines during new MAC formation (101). In Oxytricha one
SPT5 paralog (SPT5a) is constitutively expressed, whereas the other (SPT5b) peaks during
meiosis (102). In Tetrahymena the single SPT5 gene is strongly upregulated during development,
peaking during meiosis (http://tfgd.ihb.ac.cn/search/detail/lgene/TTHERM_00028580).

Cysteine-rich domain of the Blepharisma PiggyBac homologs

PiggyBac CRDs have been classified into three different groups and are essential for
Paramecium |IES excision (103). In Blepharisma, the CRD consists of five cysteine residues
arranged as CxxC-CxxCxxxxH-Cxxx(Y)H (where C, H, Y and x respectively denote cysteine,
histidine, tyrosine and any other residue). Two Blepharisma homologs possess this CRD without
the penultimate tyrosine residue, while the third contains a tyrosine residue before the final
histidine. This -YH feature towards the end of the CxxC-CxxCxxxxH-Cxxx(Y)H CRD is shared by
all the PiggyBac homologs we found in Condylostoma, the bat PiggyBac-like element (PBLE) and
human PiggyBac element-derived (PGBD) proteins PGBD2 and PGBD3. In contrast, PiggyBac
homologs from Paramecium and Tetrahymena have a CRD with six cysteine residues arranged
in the variants of the motif CxxC-CxxC-Cx{2-7}Cx{3,4}H, and group together with human PGDB4
and Spodoptera frugiperda PBLE (Fig. S8).

Blepharisma’s MAC genome encodes additional domesticated transposases

Three Blepharisma MAC genome-encoded proteins possess PFAM domain DDE_1 (PF03184;
Fig. S9). The most common domain combinations for this domain, aside from proteins with it
alone (5898 sequences; PFAM version 35), are with an N-terminal PFAM domain HTH_Tnp_Tc5
(PF03221) alone (2240 sequences), and both an N-terminal CENP-B_N domain (PF04218) and
central HTH_Tnp_Tc5 domain (1255 sequences). The CENP-B_N domain is characteristic of
numerous transposases, notably the Tigger and PogoR families (104). Though pairwise
sequence identity is low amongst the Blepharisma DDE_1-proteins (avg. 28.3%) in their multiple
sequence alignment, the CENP-B_N domain in one of them appears to align reasonably well to
corresponding regions in the two proteins lacking this domain, suggesting it deteriorated beyond
the recognition capabilities of HMMER3 and the given PFAM domain model. BLASTp matches for
all three proteins in GenBank are annotated either as Jerky or Tigger homologs (Jerky
transposases belong to the Tigger transposase family (104)). Given that none of the Blepharisma
MAC DDE_1-domain proteins appear to have a complete catalytic triad, it is unlikely they are
involved in transposition or IES excision. In Blepharisma and numerous other organisms, DDE_ 1
domains co-occur with CENPB domains. Two such proteins represent totally different proposed
exaptations in mammals (centromere-binding protein) and fission yeast (regulatory protein) (105—
107). Given the great evolutionary distances involved, there is no reason to expect that the
Blepharisma homologs have either function.

Six MAC-encoded transposases containing the DDE_3 domain (PF13358) are present in
Blepharisma, all of which are substantially upregulated in MAC development and five of which
possess the complete DDE catalytic triad (Fig. S9B). The DDE_3 domain is characteristic of DDE
transposases encoded by the Telomere-Bearing Element transposons (TBEs) of Oxytricha
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trifallax (108, 109), which, despite being MIC genome-limited, are proposed to be involved in IES
excision (110). DDE_3-containing transposons, called Tec elements, are found in another
spirotrichous ciliate, Euplotes crassus, but no role in genome editing has been established for
these (111). TBEs and Tec elements do not share obvious features, other than both possessing
an encoded protein belonging to the IS630-Tc1 transposase (super)-family (112). All six
Blepharisma DDE_3 genes have at least 150x HiFi read coverage, consistent with their presence
in bona fide MAC DNA.

As judged by BLASTP searches in which most of the top hundred best matches are classified are
“IS630 family” transposases, Blepharisma MAC-encoded DDE_3 domain transposases are more
closely related to the IS630 transposase family than to Oxytricha TBE transposases and Euplotes
Tec transposases. One of the BLAST top hits is a MIC genome-encoded protein in Oxytricha
trifallax with a DDE_3 domain which is not a TBE transposase (GenBank accession:
KEJ83017.1). IS630 transposases diverge considerably from Tc1-Mariner transposases, and
hence are considered an outgroup to them (113). IS630-related transposases encoded by
Anchois transposons have also been detected in the Paramecium tetraurelia MIC genome (114).
Given that all but one of the B. stoltei paralogs appear to possess a complete catalytic triad, there
is a possibility that they may be involved in some IES exicison.

Among other ciliates with draft MAC genomes we examined, the 1S1595- and MULE
transposase-like domains (PFAM PF12762 and PF10551) have so far only been observed in the
spirotrichs Oxytricha and Stylonychia (67, 115). DDE_Tnp_IS1595 domains are characteristic of
the Merlin transposon superfamily and MULE is part of the Mutator transposon superfamily (116).
Currently no particular functions have been demonstrated for these proteins in these ciliates, but
their genes were substantially upregulated during their development (67, 117). Both transposase-
like domains are found in MAC-encoded proteins in Blepharisma and their underlying genes are
upregulated during MAC development (Figs. S9C, S10). Consistent with the notion of
transposase domestication, the genes encoding DDE_Tnp_IS1595 and MULE proteins appear to
lack flanking transposon terminal inverted repeats. Members of both 1IS1595 and MULE
transposases also appear to have complete catalytic triads.

Homologs of small RNA-related proteins involved in ciliate genome editing

Development-specific proteins responsible for small RNA (sRNA) generation and transport play
an important role in ciliate genome editing (118). In ciliates such as Paramecium and
Tetrahymena shorter Dicer-like proteins (Dcls) are distinguished from longer Dicer proteins (Dcrs)
which possess additional N-terminal domains and produce small RNAs, notably siRNAs, involved
in gene regulation (119). In the scanning model of MAC development in Tetrahymena and
Paramecium, Dcls cooperate with Piwi proteins, converting long double-stranded RNA transcripts
produced in the maternal MIC into “scan RNAs” (scnRNAs) (119-124). Piwi-bound scnRNAs are
transported to the maternal MAC where a subtractive process takes place, leaving only scnRNAs
complementary to the MIC-limited genome. The remaining scnRNAs are transported to the new,
developing MAC, where they target MIC-limited regions for excision (119—124).

We found putative Dicer, Dicer-like and Piwi proteins encoded by the B. stoltei MAC genome (Fig.
S7). The single B. stoltei Dicer (Dcr) protein has the characteristic N-terminal Dicer domains
followed by a pair of RNase Il domains (PFAM domain Ribonuclease_3; PF00636) whereas
RNase Il domains alone were detected in three Dicer-like proteins (Dcl1-3). Dcl1 expression is
upregulated shortly after conjugation begins and before meiosis begins; Dcl2 and Dcl3 are
upregulated from meiosis onwards, peaking during anlagen formation. In Paramecium two Dcl's
are coexpressed and cooperate to produce scnRNAs (119), and so we predict that, as for
Paramecium, Blepharisma Dcl2 and Dcl3 may cooperate.

B. stoltei also appears to have an additional truncated Dcr homolog (881 aa), Dicer-derived
protein (Dcrd), lacking the RNase Il domain portion (BSTOLATCC_MAC8391) of the complete
Dicer (Fig. STA). A short protein (690 aa) with a similar domain structure is found in Paramecium
tetraurelia (Genbank accession: XP_001459306.1), and, as judged from gene expression data in
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ParameciumDB (60), is substantially upregulated during new MAC development. The observation
of these proteins suggests that it might be possible for Dicer helicase and cleavage activities to
be encoded on separate molecules. The splitting of the helicase and RNAse domains is the
converse of the common eukaryotic origin of Dicer from separate archaeal (helicase) and
bacterial (RNase) domains (125). It is also conceivable, once they have split, that alternative
helicases may substitute the original ones of helicase-less Dicer-like proteins.

In ciliates some Piwi proteins play a role in gene regulation in vegetative cells (126) while others
are involved in genome editing (120, 127, 128). In Stylonychia lemnae, the massive upregulation
of a Piwi homolog involved in genome editing allowed it to be identified by subtractive
hybridization of RNA (129). The ortholog of this gene in Stylonychia lemnae’s close relative,
Oxytricha trifallax, is also one of the most highly transcribed and upregulated genes (128). We
found nine proteins with Piwi and PAZ domains (five of which also have ArgoL domains) in the B.
stoltei ATCC 30299 MAC genome. Two closely related Blepharisma Piwi paralogs are highly
upregulated during meiosis and throughout subsequent development (Fig. S7B). These two
genes are both among the most highly expressed genes at 26 h (12 and 154) while the new MAC
is forming.

In Tetrahymena and Paramecium, massive production of scnRNAs, generated by the Dcls and
highly upregulated Piwis, initiates from meiotic nuclei. We observe a similar pattern of massive
production of development-specific SRNAs during development, whose detailed analysis will be
reported in conjunction with the draft B. stoltei ATCC 30299 MIC genome (Seah, et. al, 2022).
Since Blepharisma species are distantly related to other ciliates whose sRNAs have been
characterized, this suggests that an ancient, development-specific SRNA gene expression
program may have been established in the ciliate common ancestor.

Development-specific histone variant upregulation

Access to DNA in eukaryotes is mediated by nucleosomes and nucleosome regulation plays a
central role in DNA replication, repair, transcription and recombination (130). The nucleosome is
composed of four core histone proteins, H2A, H2B, H3 and H4, and is held together by
electrostatic interactions between the negative charge of the phosphate backbone of DNA and
the positively charged surface of the histones (131). The modification of core histones by
acetylation and methylation is involved in allowing or repressing access to the DNA. Genome
rearrangement in ciliates is influenced by processes that modify and regulate nucleosomes and
consequently mediate the ability of IES-excision machinery to access the underlying DNA. In
Tetrahymena, IESs, which frequently contain transposons or are derived from them, are targeted
for removal by sRNA machinery that is involved in depositing methylation marks on Histone 3
Lysine 9 (H3K9) and Histone 3 Lysine 27 (H3K27), in a process akin to heterochromatin
formation, except that the marked regions are excised entirely (132, 133). In Paramecium, a
mechanism reflecting the ancient ancestral eukaryotic origins of transposon silencing by
heterochromatin formation, involving H3K9- and H3K27-trimethylation (H3K27me3), represseses
MIC genome-encoded transposable element gene expression, and experimental elimination of
these marks leads to low efficiency of IES excision and lethal outcomes when new MAC
genomes are produced (134). A particular histone variant (H3.4) present in polytene DNA, was
proposed to be the target of trimethylation, facilitating heterochromatinization and excision of
IESs not protected by 27 nt macRNAs in the ciliate Stylonychia (135).

We annotated the four core histones, H2A, H2B, H3 and H4, in B. stoltei using the domain
models from Histone DB (v2.0) (Fig. S11). We found eleven putative H2A, five H2B, eleven H3
and five H4 histone proteins. Histone H2A forms dimers with histone H2B and histone H3 forms
dimers with histone H4 (136). The H2B and H4 histones are known to be more conserved in
comparison to H2A and H3 across several eukaryotic lineages (136). The trend of greater
diversity in homologs of H2A and H3 in other eukaryotic lineages is also preserved in
Blepharisma, where there are twice as many H2A homologs as those of H2B and almost twice as
many H3 homologs as those of H4.
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Unlike Paramecium tetraurelia and Tetrahymena thermophila, which have longer, divergent
histone H3’s proposed to be centromeric (137), i.e, CenH3, we did not observe such histones in
Blepharisma. Both of the longer Blepharisma histone H3’s have unusual N-terminal domains (VIT
and VWA_3, PF08487 and PF13768, respectively). In the PFAM database (34.0) the pairing of
these two domains exclusively without any other domains represents the most common domain
architectures for both. Searches of UniProt reveal that this domain pair is common in eukaryotes
and bacteria, but it is not known what role they play in combination (138). Furthermore, the pair of
proteins with the VIT-VWA_3 domain pair represent the most weakly expressed histone H3
domain-containing proteins in Blepharisma.

Since substantial upregulation of certain histone variants occurs during development in both
Oxytricha and Stylonychia, including during the period of genome editing (115, 135, 139), we
examined the patterns of expression during Blepharisma development. Among the Blepharisma
histones, certain candidates of three of the core histones H2A, H2B and H3 are constitutively
expressed at similar levels throughout the cycle of sexual reproduction, while others are
upregulated at timepoints corresponding to different stages of meiosis (6 h and 14 h timepoints)
and also subsequently during new MAC development. The patterns of expression observed
suggest that even the Blepharisma genome encodes variants that are likely to have a range of
different functions, including in genome editing and likely also during DNA amplification in the
developing new MAC. Histone H4, in contrast, appears to be expressed at relatively similar levels
throughout conjugation. This constitutive expression of histone H4 is a characteristic shared
among eukaryotes, which lack functional variants due their highly conserved constitution, a trait
suggested to be favored by the greater necessity of this histone to maintain several protein-
protein contacts with the other three histones (136).

PiggyBac homologs in other heterotrichs, but not the oligohymenophorean,
Ichthyophthirius multifiliis

PiggyMac homologs are also present in other heterotrich ciliates but have not yet been described
because of genome assembly or annotation challenges. Using BPgm as a query sequence, we
found convincing homologs containing the conserved catalytic DDD-motif in a genome assembly
of the heterotrichous ciliate Condylostoma magnum (TBLASTN e-value 2e-24 to 2e-37). All the C.
magnum PiggyMac homologs have a complete DDD-catalytic triad. While we failed to detect the
DDE_Tnp_1_7 domain in predicted genes of the heterotrich Stentor coeruleus, we detected
relatively weak adjacent TBLASTN matches split across two frames in its draft MAC genome (e-
value 7e-15; SteCoe_contig_741 positions 6558-5475). After joining ORFs corresponding to this
region and translating them, we obtained a more convincing DDE_Tnp_1_7 match with HMMERS3
(e-value 2e-24). This either corresponds to a pseudogene or a poorly assembled genomic region.

In addition, we searched for PiggyMac homologs in the MAC genome of the pathogenic
oligohymenophorean ciliate Ichthyophthirius multifiliis (140). TBLASTN searches using the T.
thermophila Tpb2 as a query returned no hits. A HMMER search using hmmscan with a six-frame
translation of the I. multifilis MAC genome against the PFAM-A database also did not return any
matches with independent E-values (i-E-value) less than 1. We note that based on BUSCO
analyses the I. multifilis genome appears to be less complete than other ciliates we examined
(Fig. S2A). So, a better genome assembly will be needed to investigate the possibility that
PiggyBac homologs are encoded elsewhere in this MAC genome.
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Fig. S2. Analysis of assembly completeness and genetic code. (A) Completeness of the B. stoltei
ATCC 30299 MAC assembly was estimated by the percentage of BUSCOs found in the assembly
with reference to the OrthoDB v10 alveolate database (142). The nature of the ortholog matches
is indicated by characters followed by counts: C (complete orthologs) - light blue, D (duplicated
orthologs) - dark blue, F (fragmented orthologs) - yellow and M (missing orthologs) - red. (B)
PORC genetic code prediction for B. stoltei ATCC 30299 MAC genome; codons that are stops in
the standard genetic code are highlighted in orange.
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Fig. S3. Intron splicing. (A) Distribution of intron splicing fraction of candidate sense introns in the
B. stoltei MAC genome. (B) Distribution of intron splicing fractions of introns according to intron
lengths. (C) Distribution of intron splicing fraction of candidate antisense introns. (D) Distribution
of intron lengths from predicted genes. (E) Sequence logos for 15 bp introns (splicing frequency >
0.5). (F) Sequence logos for all predicted 16 nt introns, and 16 nt introns with “A” at either position
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-7 or -6 (counting from the 3’-most base which is -1). The number of introns underlying the logos
are indicated to the right. (G) Distribution of intron splicing fractions of introns according to intron
lengths. (H) Sample of RNA-seq reads mapped to a GT-GG intron from gene
BSTOLATCC_MAC21551 (Contig_57.g761). Translation in alternative reading frames
downstream of the predicted intron leads to premature stop codons soon after the intron.
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Fig. S4. Properties of minichromosomes, telomeres, and alternative telomere addition sites. (A)
Mapping of a subset telomere-containing HiFi reads to a B. stoltei MAC genome contig region,
with alternative telomere addition sites (ATASs) shown by blue (5’) or mauve (3’) arrows. Pink
bars at read ends indicate soft-masking, typically of telomeric repeats. (B) Length distribution of

24



telomeres of telomere-bearing HiFi reads. (C) Length distribution of HiFi reads delimited by
telomeres. (D) Counts of each telomere repeat permutation at ATAS junctions (last identifiable
breakpoint). (E) Diagram of a telomere-bearing read mapped onto genome reference at an ATAS.
Sequence which is ambiguously chromosomal or telomeric is “junction sequence”; junction
coordinate which maximizes telomere repeat length on the read is the “first identifiable
breakpoint”; the coordinate maximizing alignment length to reference is the “last identifiable
breakpoint”. The last telomeric unit permutation at the last identifiable breakpoint is underlined
(length 8 bp). (F) Sequence logos of chromosomal sequence at ATAS junctions, sorted by which
permutation of the telomeric repeat is present (plot labels). Logos are aligned to the “last
identifiable breakpoint” between positions 20 and 21; telomeric repeats on telomere-bearing
reads begin to the left of the breakpoint. (G) Mean base frequencies in +/- 1 kbp flanking ATAS
junctions. (H) Frequencies of 2-mers in whole genome (blue), in telomeres (green), and at ATAS
junctions (chromosomal side after last identifiable breakpoint, orange). (/) Histogram of junction
sequence lengths for ATASs in B. stoltei.
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Fig. S6. Experimental approach for conjugation RNA-seq time series. Complementary mating
type strains of Blepharisma stoltei were harvested and cleaned by starving overnight. The
cleaned cultures were treated in a time-staggered format, with gamones of the complementary
mating type, where gamone 2 was a solution of the synthetic gamone 2 calcium salt and gamone
1 was provided as the cell-free fluid (CFF) harvested from mating-type | cells. Two sets of time-
staggered gamone-treated cultures were used for the time series. Set |, indicated by the solid
line, was mixed and used to observe and collect samples at 0 hours, 2 hours, 6 hours, 26 hours
and 30 hours after mixing. Set Il, indicated by the dashed lines, was mixed and used to observe
and collect samples at 14 hours, 18 hours, 22 hours and 38 hours after mixing. Test tubes
indicate Trizol samples prepared for RNA-extraction which were stored at -80 'C before
processing. Cells collected for imaging were obtained shortly before the remainder were
transferred into Trizol.
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Table S1. Citations for genome properties from Fig. 2.

Species Genome Genome Genes Codon
size (Mb) architecture (zygosity) reassignments
Blepharisma stoltei 41 Minichromosomes 25,726 (n) UGA > W
Stentor coeruleus 772 ? 31,426 (?)? Standard genetic
code?
Paramecium 723 Chromosomes?, 4 39,642 (n)? UAA, UAG > Q'
tetraurelia
Tetrahymena 103° Chromosomes® 26,258 (n)° UAA, UAG > Q'
thermophila
Euplotes 88’ Nanochromosomes? 29,076 (?)’ UGA -> C°
octocarinatus
Stylonychia lemnae 5210 Nanochromosomes'® 15,102 (2n)'° UAA, UAG -> Q'
Oxytricha trifallax 50™ Nanochromosomes'! 18,400 (2n)"" UAA, UAG > Q'
Perkinsus olseni 632 Chromosomes'? 17,342 (4n)"2 Standard genetic

code’?

1. Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic Codes with No Dedicated Stop

Codon: Context-Dependent Translation Termination. Cell 166, 691-702 (2016).

2. Slabodnick, M. M. et al. The Macronuclear Genome of Stentor coeruleus Reveals Tiny
Introns in a Giant Cell. Curr. Biol. 27, 569-575 (2017).

3. Aury, J.-M. et al. Global trends of whole-genome duplications revealed by the ciliate
Paramecium tetraurelia. Nature 444, 171-178 (2006).

4. Duret, L. et al. Analysis of sequence variability in the macronuclear DNA of Paramecium

tetraurelia: A somatic view of the germline. Genome Res. 18, 585-596 (2008).

5. Sheng, Y. et al. The completed macronuclear genome of a model ciliate Tetrahymena
thermophila and its application in genome scrambling and copy number analyses. Sci.
China Life Sci. 63, 1534—-1542 (2020).
6. Eisen, J. A. et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila,
a model eukaryote. PLoS Biol. 4, 1620-1642 (2006).

7. Wang, R. lin, Miao, W., Wang, W., Xiong, J. & Liang, A. hua. EOGD: The Euplotes

octocarinatus genome database. BMC Genomics 19, 1-6 (2018).

8. Ghosh, S., Jaraczewski, J. W., Klobutcher, L. A. & Jahn, C. L. Characterization of

transcription initiation, translation initiation, and poly(A) addition sites in the gene-sized

macronuclear DNA molecules of Euplotes. Nucleic Acids Res. 22, 214-221 (1994).

9. Meyer, F. et al. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus.
Proc. Natl. Acad. Sci. U. S. A. 88, 3758-3761 (1991).
10.  Aeschlimann, S. H. et al. The Draft Assembly of the Radically Organized Stylonychia
lemnae Macronuclear Genome. Genome Biol. Evol. 6, 1707-1723 (2014).
11. Swart, E. C. et al. The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic
Genome with 16,000 Tiny Chromosomes. PLoS Biol. 11, e1001473 (2013).
12. Bogema, D. R. et al. Draft genomes of Perkinsus olseni and Perkinsus chesapeaki reveal
polyploidy and regional differences in heterozygosity. Genomics 113, 677—-688 (2021)
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Table S2. Comparison of Blepharisma stoltei ATCC 30299 MAC genome assemblies.

Assembly Flye _(v2.7) Flye _(v2.7) Flye (\{2.7) Flye (\{2.8) Final
Replicate 1 Replicate 2 Combined Combined assembly

Contigs 89 86 74 72 ?n‘}tézzcr:g?;’;?

MZ?IEQC)"VW‘QS (from | 76 70 145 145 NA

%GC 33.3 33.3 33.4 32.9 33.6

Longest contig (bp) 2,036,921 1,188,116 1,541,963 1,608,201 1,514,878

Assembly size (bp) 42,701,284 43,066,385 43,062,848 42,982,242 41,464,486

N50 738,771 757,357 799,426 817,639 795,340

Two telomeres 38 37 36 16 64

One telomere 36 36 25 32 0

Zero telomeres 15 13 13 24 0
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Table S3. Top 100 genes in Blepharisma stoltei ATCC 30299 ranked according to absolute
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Table S4. Top 100 genes in Blepharisma stoltei ATCC 30299 most upregulated at 26 hours vs.

the average of starved, gamone-treated and 0-hour gene expression.
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Table S5. Substitution rates between Paramecium tetraurelia PiggyMac-like genes and PiggyMac
(Reference gene: PGM - PTET.51.1.G0490162).

Gene P. tetraurelia gene ID dn/ds dn ds
abbreviation
PGML2 PTET.51.1.G0380073 0.0773 1.1082 14.3409
PGML3a PTET.51.1.G0010374 0.1245 1.0335 8.3021
PGML3b PTET.51.1.G0080308 0.0404 1.1559 28.6183
PGML3c PTET.51.1.G0020217 0.1508 1.0885 7.216
PGML4a PTET.51.1.G0340197 0.1161 0.9593 8.2612
PGML4b PTET.51.1.G0480099 0.2535 1.1062 4.3641
PGML5a PTET.51.1.G0570051 0.0141 1.1514 81.7442
PGML5b PTET.51.1.G0510172 0.0138 1.1642 84.3893
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Table S6. Substitution rates between Paramecium tetraurelia and Paramecium octaurelia
PiggyMac and PiggyMac-likes.

Gene P. tetraurelia gene ID P. octaurelia gene ID dn/ds dn ds

abbreviation

PGM PTET.51.1.G0490162 POCT.K8.1.G718000027 (0.0234 |0.0073 (0.3106
70580243

PGML2 PTET.51.1.G0380073 POCT.K8.1.G718000027 (0.0180 |0.0045 (0.2507
70130227

PGML3a PTET.51.1.G0010374 POCT.K8.1.G718000027 (0.0229 |0.0082 (0.3600
70510320

PGML3b PTET.51.1.G0080308 POCT.K8.1.G718000027 (0.0818 |0.0245 [0.2993
70810134

PGML3c PTET.51.1.G0020217 POCT.K8.1.G718000027 (0.1052 |0.0365 [0.3469
70610330

PGML4a PTET.51.1.G0340197 POCT.K8.1.G718000027 [0.0425 |0.0139 (0.3262
70180100

PGML4b PTET.51.1.G0480099 POCT.K8.1.G718000027 (0.0627 |0.0153 [0.2445
70140101

PGML5a PTET.51.1.G0570051 POCT.K8.1.G718000027 (0.0393 |0.0110 (0.2800
70010048

PGML5b PTET.51.1.G0510172 POCT.K8.1.G718000027 |0.0596 |0.0123 (0.2071
69800173

Observed dn/ds values for orthologous pairs of PiggyMac and PiggyMac-like proteins from P.

tetraurelia and P. octaurelia.
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Table S7. Blepharisma PiggyMac-like substitution rates (Reference gene: Contig_49.g1063).

Gene ID ENA accession dn/ds dn ds
Contig_3.998 BSTOLATCC_MAC9455 | 0.0093 | 0.7106 | 76.4367
Contig_13.g879 BSTOLATCC_MAC2191 | 0.0551 | 0.8871 | 16.0867
Contig_13.g927 BSTOLATCC_MAC2239 | 00261 | 0.5547 | 21.2267
Contig_17.g391 BSTOLATCC_MAC3091 | 0.0087 | 0.8394 | 96.9223
Contig_17.392 BSTOLATCC_MAC3092 | 0.0076 | 0.8195 | 107.6866
Contig_60.827 BSTOLATCC_MAC23745 | 01351 | 0.8401 | 6.2209
Contig_61.g932 BSTOLATCC_MAC23855 | 0.0836 | 0.7727 | 9.2391
CORF_Contig_17.g3 | BSTOLATCC_MIC7875 0.0765 | 0653 | 85395
CORF_Contig_17. g4/5 | DSTOMATECMCTSTON | 00068 | 0.5852 | 85.9998
CORF_Contig_21.g21 | BSTOLATCC_MIC14766 | 0.0697 | 0.4729 | 6.7874
CORF_Contig_39.93 | ggroLATCC MIC33289 | 02763 | 12445 | 45036
CORF_Contig_39. g3/4 | BSTOLATCC_MIC33289 7 | 4 no7 | 06817 | 97.5885

BSTOLATCC_MIC33290
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Table S8. Comparison of Blepharisma stoltei ATCC 30299 intron prediction performance.

AUGUSTUS* Intronarrator**
True positives (TP) 45 61
(real introns)
False positives (FP) 62 0
(fake introns)
False negatives (FN) 15 2
(missed introns)
Sensitivity: TP/(TP+FN) 0.75 0.97
Precision: TP/(TP+FP) 0.42 1.00

* Parameters/source code adjusted as for Stentor (66).
** AUGUSTUS changes/parameters as in Ref. 66.



Table S9. Noncanonical introns (15 or 16 bp) in Blepharisma stoltei ATCC 30299.

Intron with 3 bp exon flanks

Length
(bp)

Intronarrator/

AUGUSTUS gene ID

ENA gene accession

Spliced
fraction

AAGgcaaattttatttagATT

15

Contig_10.g615

BSTOLATCC_MAC443

0.827

AAGgcaactataatttagAGC

15

Contig_11.g1292

BSTOLATCC_MAC1123

0.73

CGAtatgagtttacaaatTTA

15

Contig_36.g880

BSTOLATCC_MAC12062

0.623

AAGgcaaaatttaaatagAGC

15

Contig_43.g513

BSTOLATCC_MAC15266

0.205

CAGgcaatttttatttagAAG

15

Contig_46.g452

BSTOLATCC_MAC16844

0.335

ATGgcaagctctatatagAAT

15

Contig_49.g1050

BSTOLATCC_MAC17453

0.797

TTActtctataaatacacCAA

15

Contig_54.9273

BSTOLATCC_MAC19826

0.537

AAGgcaaaaaatatatagGTT

15

Contig_58.91437

BSTOLATCC_MAC22241

0.843

GAGgcaatttttacgtagATT

15

Contig_59.9298

BSTOLATCC_MAC?22578

0.691

TGAggtaaattataactagGGT

16

Contig_2.g441

BSTOLATCC_MAC4446

0.54

AAGgtaatttcccagcaggAAT

16

Contig_3.9g1280

BSTOLATCC_MAC9737

0.441

CCCttgctcccectcagtagTTA

16

Contig_6.g757

BSTOLATCC_MAC22759

0.477

ATGgtaactcacaattaggCTT

16

Contig_7.9g1329

BSTOLATCC_MAC24915

0.283

CACgtaaaatacaattaggAGT

16

Contig_12.g347

BSTOLATCC_MAC1650

0.419

TATggtaatttgttatcagGGA

16

Contig_13.g1129

BSTOLATCC_MAC?2441

0.326

ATGtaatttaccaatagggCTA

16

Contig_19.g1089

BSTOLATCC_MAC3792

0.867

ACAgtaagatttaattaggCCT

16

Contig_19.g1253

BSTOLATCC_MAC3956

0.525

TGAgtaagatacaagtaggAGG

16

Contig_21.g736

BSTOLATCC_MAC5692

0.644

AGGtaattggcaaatagggATA

16

Contig_24.g464

BSTOLATCC_MAC7001

0.415

AAGgtaaattacaagcaggAAA

16

Contig_25.g797

BSTOLATCC_MAC7334

0.764

CAAgtaattttcgaataggAAC

16

Contig_38.91424

BSTOLATCC_MAC12612

0.78

AAGgtaatctctattaaggACA

16

Contig_42.g2

BSTOLATCC_MAC14754

0.602

AAGgcaattctctaggtagGAG

16

Contig_46.g332

BSTOLATCC_MAC16724

0.286

AGAggtaatgcataactagGGT

16

Contig_47.9g486

BSTOLATCC_MAC16883

0.648

CCAgtaagtttctatttatGTC

16

Contig_55.9452

BSTOLATCC_MAC20010

0.715

AACgtaatttgtaactaggGGT

16

Contig_57.g559

BSTOLATCC_MAC21349

0.7

AAAgtaagagaccattaggTTA

16

Contig_57.9761

BSTOLATCC_MAC21551

0.726

ATTggtataggataattagGAA

16

Contig_60.9487

BSTOLATCC_MAC?23405

0.376

TATacatgttttaaataatTGC

16

Contig_61.g1057

BSTOLATCC_MAC?23980

0.278

AGAgtattttacaaataggCTA

16

Contig_63.g352

BSTOLATCC_MAC24681

Predicted introns are in lower case; flanking exons are in upper case. Different possible donor
and acceptor site pairs of bases are colored. “Spliced fraction” indicates the efficiency of splicing

calculated from Intronarrator.

0.585
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Table S10. Tree topology tests with ciliate PiggyBac homologs.

Tree

logL

deltaL

bp-
RELL

p-SH

c-ELW

p-AU

Unconstrai
ned

-97,183.2

0.536 +

0.535 +

0.688 +

Monophyly
of ALL
ciliate
PiggyBacs

-97,536.0

352.77

-2.98E-82

6.38E-59 -

Monophyly
of ALL
ciliate
PiggyBacs
+ 4 non-
ciliate
interlopers

-97,543.7

360.49

-3.73E-101

7.36E-59 -

Monophyly
of ciliate
PiggyBacs -
Tbp7 + 4
non-ciliate
interlopers

-97,199.2

15.98

0.211 +

0.309 +

0.68 +

0.212 +

0.347 +

Monophyly
of ciliate
PiggyBacs -
Tbp7 -4
non-ciliate
interlopers

-97,200.0

16.79

0.253 +

0.324 +

0.68 +

0.253 +

0.363 +

"Non-ciliate interlopers": PBLEs PiggyBac-2 and PiggyBac-5 from Chondrus crispus, PiggyBac-1
from Paracoccidoides brasiliensis and PiggyBac-1 from Mucor circinelloides

deltalL : logL difference from the maximal log likelihood in the set.

bp-RELL : bootstrap proportion using RELL method (Kishino et al. 1990).

p-KH : p-value of one-sided Kishino-Hasegawa test (1989).

p-SH : p-value of Shimodaira-Hasegawa test (2000).

c-ELW : Expected Likelihood Weight (Strimmer & Rambaut 2002).
p-AU : p-value of approximately unbiased (AU) test (Shimodaira, 2002).

Plus signs following numbers denote the 95% confidence sets.

Minus signs following numbers denote significant exclusion.

All tests performed 10,000 resamplings using the RELL method.
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