Supplementary Information for Microbiota-induced active translocation of peptidoglycan across the

intestinal barrier dictates its within-host dissemination

Richard Wheeler^{1#*}, Paulo André Dias Bastos^{1#}, Olivier Disson^{2\$}, Aline Rifflet^{1\$}, Ilana Gabanyi^{3,4}, Julia Spielbauer¹, Marion Bérard⁵, Marc Lecuit^{2,6,7}, Ivo Gomperts Boneca^{1*}

Corresponding author(s): Ivo Gomperts Boneca, Richard Wheeler

Email: bonecai@pasteur.fr, wheelerrsci@gmail.com

This PDF file includes:

PNAS

Figures S1 to S8 Tables S1 SI References

Fig. S1. Relative abundance of *E. coli* muropeptides A) UHPLC profile indicating the relative abundance of muropeptides from a typical *Escherichia coli* peptidoglycan preparation. Numbered peaks are identified in the table below. B) Summary table of muropeptides identified by mass spectrometry. G, *N*-acetyl-glucosamine; M, *N*-acetyl-muramitol (reduced form of *N*-acetyl-muramic acid); anhM, 1,6-anhydro-*N*-acetylmuramic acid; 2-5, peptide stem length; A, alanine; E, isoglutamate; mDap, meso-diaminopimelic acid; H, histidine; deAc GlcN, *N*-deacetylated glucosamine.

33 Fig. S2. The kinetics of [3H]-PGN biodistribution following per os administration in mice. A) 34 [³H]-PGN measured by scintillation counting of dissolved, decolored organs and blood between 2h 35 and 8 h post-gavage. Data are presented as CPM per whole organ, or per tissue fragment 36 (duodenum, ileum, colon). Welch's ANOVA comparing time-point groups, excluding control: Brain 37 P = 0.0564; Spleen P = 0.5902; Liver P = 0.0895; Kidney P = 0.2958; Heart P = 0.5178; Lung P = 38 0.0656; Fat P = 0.9250; Duodenum P = 0.1740; Ileum P = 0.4658; Colon P = 0.1766. Pairwise 39 comparisons to control performed using the Mann–Whitney U test. * $P \le 0.05$; ** $P \le 0.005$; *** $P \le 0.005$; 40 0.0005. B) The biodistribution of [³H]-GM3, [³H]-GM4 and [³H]-GM4-GM4, administered per os in 41 SPF mice. Data are presented as CPM per whole organ, or per tissue fragment. Pairwise 42 comparison with control performed using unpaired t-test. * $P \le 0.05$; ** $P \le 0.0050$; *** $P \le 0.0005$; 43 P < 0.0001. Welch's ANOVA comparing muropeptides groups, excluding control: Brain P = 0.0564; 44 Spleen P = 0.5902; Liver P = 0.0895; Kidney P = 0.2958; Heart P = 0.7861; Lung P = 0.0656; Fat 45 P = 0.0925; Thymus P = 0.8678; Duodenum P = 0.1740; Ileum P = 0.4658; Colon P = 0.1766.

Fig. S3. Effect of labelling strategy parameters on biodistribution of peptidoglycan. A) Biodistribution of [³H]-mesoDAP amino acid administered to mice *per os.* [³H]-mesoDAP biodistribution was measured by scintillation counting of dissolved, decolored organs, 2h, 6h and 10 h post-gavage. Data are presented as CPM per whole organ or tissue fragment. Welch's ANOVA comparing time-point groups, excluding control: Brain P = 0.0159; Spleen P = 0.0529; Liver P = 0.2269; Kidney P < 0.0001; Heart P = 0.8868; Lung P = 0.1827; Fat P = 0.0066; Duodenum P = 0.0054; Jejunum P = 0.0056; Ileum P = 0.7670. B) Schematic summary of

54 radiolabeling methodology, indicating the position of the 3H-labelled mesoDAP and 14C-labelled 55 GlcNAc. C) Biodistribution of [³H]-PGN versus [¹⁴C]-PGN administered to mice per os. Mice were 56 gavaged with 400,000 cpm of [³H]-PGN or [¹⁴C]-PGN and scintillation counting performed on 57 dissolved, decolored organs 4h post gavage. Data normalized as CPM values per g tissue weight. 58 D) [³H]-PGN or [¹⁴C]-PGN biodistribution data presented as CPM per whole organ, or per tissue 59 fragment without normalization. E) Biodistribution of [¹⁴C]-PGN from *L. rhamnosus* Lr32, 4h after 60 administration to mice per os. Data normalized as CPM values per g tissue weight. Pairwise 61 comparison to control performed using the Mann–Whitney U test. * $P \le 0.05$; ** $P \le 0.005$; *** $P \le 0.005$ 62 0.0005.

63

Fig. S4. Biodistribution of different doses of [³H]-PGN following intravenous or intraperitoneal administration, without tissue weight normalization. A) Mice were administered 40,000 CPM of [3H]-PGN intravenously and biodistribution to organs and tissues measured at 1h, 4h, 8h and 24h post-injection. Welch's ANOVA comparing time-point groups, excluding control: Brain P = 0.8823; Spleen P = 0.8644; Liver P = 0.5885; Kidney P < 0.0370; Heart

69 P = 0.9196; Lung P = 0.1599; Fat P = 0.3361; Duodenum P = 0.0758; Ileum P = 0.9186; Colon P 70 = 0.9833. B) Comparison of [3H]-PGN distribution administered intravenously versus gavage. Mice 71 were administered 400,000 CPM of [3H]-PGN intravenously or by gavage, and biodistribution to 72 organs and tissues assessed at 1h (intravenous) or 4h (gavage). C) Biodistribution of [³H]-PGN 73 administered intraperitoneally. Mice were injected intraperitoneally with 400,000 CPM of [³H]-PGN 74 and by scintillation counting performed on the dissolved, decolored organs harvested at 2h and 6h 75 post-gavage. Pairwise comparison with between time-points performed using the Mann-Whitney 76 U test, Brain P = 0.0159; Spleen P = 0.6508; Liver P = 0.5476; Kidney P = 0.0079; Heart P = 77 0.1667; Lung P = 0.8095; Fat P = 0.0079; Duodenum P = 0.0159; Ileum P = 0.1190; Colon P = 78 0.9365. Pairwise comparison to control performed using the Mann–Whitney U test. * $P \le 0.05$; ** P 79 ≤ 0.005; *** *P* ≤ 0.0005.

🗖 DAPI 🔲 Phalloidin 📕 Fluo-PGN

Vehicle

🗖 DAPI 🛛 📕 Fluo-PGN

-PGN 🗌 WGA

81

🗖 DAPI 📕 MDP-rho 🔲 Cell marker 🛛 Phalloidin

84 Fig. S5. Cellular localization of fluorescently labelled peptidoglycan in the mouse ileal 85 epithelium. A) Internalization of peptidoglycan-AF647 conjugate (Fluo-PGN) in the ileum of SPF 86 mice by a subset of epithelial cells. B) Fluo-PGN internalized in villus epithelial cells largely 87 colocalizes with Wheat Germ Agglutinin (WGA) stained goblet cells C) MDP-rho uptake assessed 88 in enteroendocrine cells, M cells and tuft cells. No association with MDP-rho was observed for CgA+ 89 enteroendocrine cells, NKM-16-4-2⁺ M cells or Siglec-F⁺ tuft cells (green staining), whereas MDP-90 rho uptake is observed elsewhere in the same field. Yellow asterisks highlight antibody positive 91 cells in each panel.

94 Fig. S6. Uptake of peptidoglycan by goblet cells in different regions of the intestinal tract. 95 A) Intestinal ligatures were prepared in the duodenum, ileum and colon of mice, and injected with 96 E. coli peptidoglycan AlexaFluor 647 conjugate (PG-647; red), or PBS (No PG-647 controls; bottom 97 row). Scale bars = 50 μ m. Counter staining is with DAPI (blue), Wheat-Germ Agglutinin Alexa Fluor 98 488 conjugate (WGA; green) and Phalloidin iFluor 555 conjugate (white). Red stars indicate goblet 99 cells where internalized PG-647 is visible in the image. B) Percentage of goblet cells in each region 100 displaying uptake or not of PG-647. For each region, the number above each bar indicates the 101 number of goblet cells counted. 102

105 Fig. S7. Regulation of the dissemination of [3H]-PGN across the gut. A) Muscarinic receptor 106 antagonism suppresses the systemic biodistribution of [3H]-PGN without normalization. SPF mice were administered tropicamide, atropine or vehicle control prior to gavage with [³H]-PGN. 107 108 Scintillation counting was performed on dissolved, decolored organs. Results are presented as 109 CPM per whole organ, per tissue fragment (duodenum, ileum and colon). B) [3H]-PGN 110 biodistribution from the gut is suppressed by GW4869 treatment. Results are presented as CPM 111 per whole organ, per tissue fragment (duodenum, ileum and colon). Pairwise comparison to vehicle 112 control performed using the Mann–Whitney U test. * $P \le 0.05$: ** $P \le 0.005$.

114 Fig. S8. Dependency of [3H]-PGN biodistribution on microbial colonization status of the 115 host. A) The biodistribution of [³H]-PGN in germ-free (GF) mice, specific pathogen free (SPF) mice 116 and conventionalized mice (previously GF mice co-housed with SPF for 3 weeks) presented as 117 CPM per whole organ, or per tissue fragment (duodenum, ileum, colon). B) Enumeration of 118 aerobically and anaerobically cultured fecal microbiota from germ-free, conventionalized and SPF 119 mice. Feces were collected immediately prior to gavage with [³H]-PGN. C) The biodistribution of 120 [³H]-PGN in germ-free mice 2h and 8h post gavage. D) Biodistribution of [3H]-PGN in SPF mice 121 treated with a broad-spectrum antibiotic cocktail. E) Biodistribution of [3H]-PGN in SPF mice,

- 122 OMM12 mice and GF mice presented as CPM per whole organ, or per tissue fragment (duodenum,
- 123 ileum, colon). A, B, D and E) Pairwise comparisons performed using the Mann-Whitney U test. *
- 124 $P \le 0.05$; ** $P \le 0.005$; *** $P \le 0.0005$. C) Pairwise comparisons performed using Welch's t-test. *
- 125 $P \le 0.05$.

126 Table S1. Summary table of selected muropeptides detected from peptidoglycan of the 127 mouse gut microbiota. Muropeptide composition of the gut microbiota of four female C57BL/6J 128 mice was assessed. A selection of 60 muropeptides were targeted, belonging to types A1 α , A1 γ 129 and A4 α , expected to be abundant among members of the gut microbiota.¹ Analysis was by LC-130 MS. For each muropeptide, the identity was confirmed by analysis of MS2 spectra. Muropeptides 131 are grouped according to the characteristic diamino acid present at position 3 of the peptide stem, 132 and color coded according to Fig. 1: blue, meso-diaminopimelic acid; green, amidated meso-133 diaminopimelic acid; red, lysine; white, muramyl dipeptide (no amino acid at position 3). G, N-134 acetyl-glucosamine; GlcN, N-deacetylated glucosamine; M, N-acetyl-muramitol (reduced form of 135 N-acetyl-muramic acid); anhM, 1,6-anhydro-N-acetylmuramic acid; A, alanine; E, isoglutamate; Q, 136 isoglutamine; mDap, meso-diaminopimelic acid; mDapNH2, amidated meso-diaminopimelic acid; 137 K, lysine; N, asparagine; D, aspartic acid. Subscript Q indicates isoglutamine is presented instead 138 of isoglutamate for muropeptides with mesoDAP or amidated mesoDAP at position 3 of the peptide 139 stem.

Muropeptide	Plot Name (Fig. 1)	Retention Time	Formula	Neutral Mass	m/z theoretical	m/z observed	z	error ppm
GM-AE	GM2	(min) 8 01	C27H46N4O17	608.20	600 2021	600 2024	1	-1.00
GM-AQ	GM2-	7 11	C27H47N5O16	697.20	608 2001	608 2086	1	-0.72
GanhM-AE	GanhM2	17.00	C27H47N3O10	678.26	670 2660	679 2684	1	2 21
GanhM-AL	GanhM2	15.95	C27H42N5O15	677.28	679 2929	679 2921	1	0.44
GM-AEmDan	GM2	5 70	C2/H458N6O20	870.27	426 1026	426 1925	2	-0.22
GM-AEmDap GM-AEmDap (deAc GIcN)	GM2*	4.05	C32H56N6O10	878.26	430.1920	430.1923	2	-0.25
GM-AOmDap	GM2	4.05	C34H50N7010	860.30	415.1804	415.1870	2	1.03
GM AOmDap (data ClaN)	GM3Q	9.02	C22UE7NI7019	009.39	433.7003	433.7013	2	1.04
GM-AQIIDap (deac Giciv)	GIVISQ	5.10	C32H3/N/018	027.50	414.0932	414.0937	2	1.21
GM-AEmDapA	GIVI4 GM4*	9.47	C37H03N7U21	941.41	4/1./111	4/1./110	2	1.00
GM AOmDapA	GM4	2.50	C35H01N7O20	040.42	450.7059	430.7002	2	1.06
	GIVI4Q	6.40	C37H04N8O20	940.42	4/1.2191	471.2190	2	1.00
GM-AQMDapA (deac Gick)	GIVI4Q.	6.00	C35H62N8019	898.41	450.2138	450.2145	2	1.55
Gin-Aembapaa	GIVID GaphM2	10.92		2012.44	207.2297	SU7.23U7	2	1.97
Ganhivi-Aeribap	GanhMA	16.00	C34H34N0019	021.29	031.3313	022 2005	1	1.70
GM-AEmDapa - GM-AEmDap	GM2-GM2	14.00	C68H114N12O20	1722.30	922.3000	922.3903	2	2.12
GM-AEmDap - GM-AEmDap (deAc GicN 1x)	GM2-GM2*	12.12	C66H112N12O39	1680 72	841 2672	841 2686	2	1 55
GM-AEmDan - GM-AEmDanA	GM3-GM4	14.80	C71H119N13O40	1793 77	897 8911	897 8931	2	2.33
GM-AEmDap - GM-AEmDapA (deAc GlcN 1x)	GM3-GM4*	14.00	C69H117N13O39	1751 76	876 8867	876 8877	2	1 14
GM-AOmDan - GM-AOmDanA	GM3-GM4-	14.00	C71H121N15O38	1791.80	896 9071	896 9089	2	2.01
GM-AEmDanA - GM-AEmDanA	GM4-GM4	15.75	C74H124N14O41	1864.80	933 4097	933 4116	2	2.01
GM-AEmDapA - GM-AEmDapA (deAc GlcN 1x)	GM4-GM4*	14.80	C72H122N14O40	1822 79	912 4059	912 4063	2	0.44
GM-AOmDanA - GM-AOmDanA	GM4-GM4-	14.80	C74H126N16O39	1862.84	932 4257	932 4271	2	1 50
GM-AEmDapNH	GM2	5.00	C3/H50N7010	860 20	435 7006	425 7010	2	0.02
	GM2*	3.00	C22UE7NI7019	009.39	433.7000	433.7010	2	1 21
GM-ACHDapNH ₂ (dead Gich)	GIVIS	3.40	C32H3/N/018	027.50	414.0955	414.0956	2	1.21
	GIVI3Q	4.00	C34H60N8018	868.40	435.2086	435.2089	2	0.69
GM-AQmDapNH ₂ (deAc GICN)	GM3 _Q *	2.72	C32H58N8O17	826.39	414.2033	414.2035	2	0.48
GM-AEmDapNH ₂ A	GM4	-	C37H64N8O20	940.42	471.2191	ND	2	-
GM-AEmDapNH ₂ A (deAc GlcN)	GM4*	7.20	C35H62N8O19	898.41	450.2138	450.2141	2	0.67
GM-AQmDapNH ₂ A	GM4 _Q	8.00	C37H65N9O19	939.44	470.7271	470.7275	2	0.85
GM-AQmDapNH ₂ A deAc	GM4 _Q *	4.40	C35H63N9O18	897.43	449.7218	449.7224	2	1.33
GM-AEmDapNH ₂ - GM-AEmDapNH ₂ A	GM3-GM4	-	C71H121N15O38	1791.80	896.9071	ND	2	-
GM-AQmDapNH ₂ - GM-AQmDapNH ₂ A	GM3-GM4 _Q	12.50	C71H123N17O36	1789.83	895.9231	895.9241	2	1.12
GM-AEmDapNH ₂ A - GM-AEmDapNH ₂ A	GM4-GM4	14.50	C74H126N16O39	1862.84	932.4257	932.4294	2	3.97
GM-AQmDapNH ₂ A - GM-AQmDapNH ₂ A	GM4-GM4 _Q	13.50	C74H128N18O37	1860.87	931.4417	931.4431	2	1.50
GM-AQK	GM3	5.62	C33H59N7O17	825.40	413.7056	413.7061	2	1.21
GM-AQKN	GM3N	10.15	C37H65N9O19	939.44	470.7271	470.7279	2	1.70
GM-AQKD	GM3D	10.75	C37H64N8O20	940.42	471.2191	471.2197	2	1.27
GM-AQKA	GM4	9.22	C36H64N8O18	896.43	449.2242	449.2246	2	0.89
GM-AQKAN	GM4N	11.80	C40H70N10O20	1010.48	506.2457	506.2465	2	1.58
GM-AQKAD	GM4D	12.27	C40H69N9O21	1011.46	506.7377	506.7386	2	1.78
GM-AQKAA	GM5	10.33	C39H69N9O19	967.47	484.7428	484.7433	2	1.03
GM-AQKAAN	GM5N	12.33	C43H75N11O21	1081.51	541.7642	541.7650	2	1.48
GM-AQKAAD	GM5D	12.85	C43H74N10O22	1082.50	542.2562	542.2571	2	1.66
GM-AQKN - GM-AQKA	GM3N-GM4	15.11	C73H127N17O36	1817.86	909.9388	909.9404	2	1.76
GM-AQKN - GM-AQKAN	GM3N-GM4N	16.31	C77H133N19O38	1931.91	644.9759	644.9774	3	2.33
	GIVI3N-GIVI4D	16.84	C7/H132N18039	1932.89	645.3039	645.3055	3	2.48
	GIVI4N-GIVI4	16.21	C76H132N18U37	1888.90	945.4573	945.4595	2	2.33
	GIVIAIN-GIVIAIN	17.42	C80H138N20039	2002.94	008.0549	668.6564	3	2.24
GM-AQKAN - GM-AQKAD	GIVIAN-GIVIAD	17.95	C20H137N19O40	2003.93	664 2107	668.9844	3	2.24
	GM5N-GM4N	17.60	C82H142N21O40	2072.08	602 22/0	602 2255	2	2.17
	GM5N-GM4D	19.20	C82H142N20O41	2073.38	692.5540	602.6535	2	1 50
GM-AOKAAD - GM-AOKAD	GM5D-GM4D	18.60	C83H141N19O/2	2075.95	692 9900	692.0031	3	2.39
GM-AOKN - GM-AOKAN- GM-AOKAN	GM3N-GM4N-GM4N	19.00	C117H201N29057	2974 37	975 7980	975 7997	3	1 74
GM-AOKN - GM-AOKAN- GM-AOKAD	GM3N-GM4N-GM4N	19.90	C117H200N28058	2925 36	976 1260	976 1285	3	2.56
GM-AOKAN - GM-AOKAN- GM-AOKAN	GM4N-GM4N-GM4N	20.27	C120H206N30O58	2995.41	999,4770	999.4789	3	1.90
GM-AQKAN - GM-AQKAN- GM-AQKAD	GM4N-GM4N-GM4D	20.80	C120H205N29O59	2996.39	999,8050	999,8082	3	3,20
GM-AQKAAN - GM-AQKAN- GM-AQKAN	GM5N-GM4N-GM4N	20.40	C123H211N31059	3066.45	1023.1560	1023.1588	3	2.74
GM-AQKAAN - GM-AQKAN- GM-AQKAD	GM5N-GM4N-GM4D	20.90	C123H210N30O60	3067.43	1023.4841	1023.4871	3	2.93

140

141 Supplementary Information References

- 142 1. Schleifer, K. H. & Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic
- 143 implications. Bacteriol. Rev. 36, 407–477 (1972).