

Supporting Information for

A sex-biased imbalance between Tfr, Tph and atypical B cells, determines antibody responses in COVID-19 patients

Authors: Jonas Nørskov Søndergaard¹†, Janyerkye Tulyeu¹†, Ryuya Edahiro^{2,3}, Yuya Shirai^{2,3}, Yuta Yamaguchi^{2,4}, Teruaki Murakami^{2,4}, Takayoshi Morita^{2,4}, Yasuhiro Kato^{2,4}, Haruhiko Hirata², Yoshito Takeda², Daisuke Okuzaki^{5,6,9,10}, Shimon Sakaguchi^{7,8*}, Atsushi Kumanogoh^{2,4,9,10}, Yukinori Okada^{3,9,10,11,12,13,14}, James Badger Wing^{1,15*}

†Equal contribution

Affiliations:

¹Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan

²Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan.

³Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. ⁴Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.

⁵Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Suita, Japan.

⁶Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan

⁷Laboratory of Experimental Immunology, WPI-IFReC, Osaka University, Suita, Japan.

⁸Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.

⁹Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.

¹⁰CiDER, Osaka University, Suita, Japan.

¹¹Laboratory of Statistical Immunology. WPI-IFReC, Osaka University, Suita, Japan.

¹²Integrated Frontier Research for Medical Science Division, Institute for Open and

Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.

¹³Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

¹⁴Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan. ¹⁵Laboratory of Human Single Cell Immunology, WPI-IFReC, Osaka University, Suita, Japan.

*Shimon Sakaguchi and James Wing

Email: shimon@ifrec.osaka-u.ac.jp or jbwing@ifrec.osaka-u.ac.jp

This PDF file includes:

Figures S1 to S8 Table S1

Fig. S1. Alterations to frequency of CD45⁺ cells. A) UMAP and expression heatmap of FlowSOM clusters from 10,000,000 cells across 100 donors. B) Frequency boxplots of proportion of CD45⁺ cell from indicated clusters. Healthy controls under 50 years of age (HC<50), healthy control of 50 or over (HC50+), moderate, severe, critical or follow-up COVID-19 patients. C) Comparison of the fold change (log₂) in cluster-frequency between the indicated group and severe (left), critical (middle), and moderate (right) COVID-19 patients. *p≤0.05, **p≤0.01, ***p≤0.001 by edgeR.

Fig. S2. Trajectory analysis of CD4 T-cells in COVID-19. A) Force-Atlas2 visualization of CD4 T-cell pseudo time (left) and identified milestones corresponding to specific T cell subsets (right). The middle figure indicates single cells originating from COVID-19 patients or healthy controls. B) Heatmap of marker expressions within milestones/subsets. **C**) CD31 expression within clusters CXCR4^{lo} naïve and CXCR4^{hi} naïve from Fig. 2A. **D**) CD95 expression within clusters CXCR4^{lo} naïve and CXCR4^{hi} naïve from Fig. 2A. Central memory (CM).

Fig. S3. NK phenotypes in COVID-19. A) UMAP and expression heatmaps of annotated FlowSOM clusters from NK cells (cluster NK from Fig. S1A). B) Scaled expression of indicated markers displayed on the UMAP. C) Population density of cells displayed on UMAP. D) Frequency boxplots of proportion within the NK cell cluster. Healthy controls under 50 years of age (HC<50), healthy control of 50 or over (HC50+), moderate, severe, critical or follow-up COVID-19 patients. E) Comparison of the fold change (log₂) in cluster-frequency between the indicated group and severe COVID-19 patients. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 by edgeR.

Fig. S4. CD8 phenotypes in COVID-19. A) UMAP and expression heatmaps of annotated FlowSOM clusters from CD8 cells (cluster CD8 from Fig. S1A). **B**) Scaled expression of indicated markers displayed on the UMAP. **C**) Population density of cells displayed on UMAP. **D**) Frequency boxplots of proportion within the CD8⁺T cells cluster. Healthy controls under 50 years of age (HC<50), healthy control of 50 or over (HC50+), moderate, severe, critical or follow-up COVID-19 patients. **E**) Comparison of the fold change (log₂) in cluster-frequency between the indicated group and severe

COVID-19 patients. *p≤0.05, **p≤0.01, ***p≤0.001 by edgeR. Effector memory (EM), Central memory (CM), Terminal effector CD45RA positive (TEMRA), Mucosal associated invariant T (MAIT).

Fig. S5. Myeloid cell and DC phenotypes in COVID-19. A) UMAP and expression heatmaps of annotated FlowSOM clusters from myeloid cells and DCs (clusters cDC, pDC, cMono and ncMono from Fig. S1A) **B**) Scaled expression of indicated markers displayed on the UMAP. **C**) Population density of cells displayed on UMAP. **D**) Frequency boxplots of proportion within the myeloid and DC cluster. Healthy controls under 50 years of age (HC<50), healthy control of 50 or over (HC50+), moderate, severe, critical or follow-up COVID-19 patients. **E**) Comparison of the fold change (log₂) in

cluster-frequency between the indicated group and severe COVID-19 patients. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 by edgeR.

Fig. S6. B-cell and plasma cell phenotypes in COVID-19. A) UMAP and expression heatmaps of annotated FlowSOM clusters from B and plasma cells (clusters "B-cells" and "plasma cells" from Fig. S1A). **B**) Scaled expression of indicated markers displayed on the UMAP. **C**) Population density of cells displayed on UMAP. **D**) Frequency boxplots of proportion within the indicated clusters. Healthy controls under 50 years of age (HC<50), healthy control of 50 or over (HC50+), moderate, severe, critical or follow-

up COVID-19 patients. **E**) Comparison of the fold change (log₂) in cluster-frequency between the indicated group and severe COVID-19 patients. * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ by edgeR.

Fig. S7. Cellular correlations in patient subgroups. A) Spearman correlations matrix of subset frequencies from moderate, severe, and critical patient groups with severity of infection scored as WHO ordinal scale (4 = moderate, 6= severe, 7 = Critical) and sex (1 = male, 2= female). B) Spearman correlations matrix of subset frequencies from severe COVID-19 patients with severity of infection scored as WHO ordinal scale (4 = moderate, 6= severe, 7 = Critical) and sex (1 = moderate, 6= severe, 7 = Critical) and sex (1 = male, 2= female). Correlations by

Fig. S8. Principal component analysis and sex differences in healthy controls. A) Factorial map of the principal component (PC) analysis separates log2 normalized cellular fractions of patients classified into WHO ordinal categories of COVID severity. 0 = Healthy donor; 3 = follow-up; 4 = moderate, 6 = severe, 7 = critical. The proportion of

variance explained by each PC is indicated in parenthesis. **B**) PC1 loadings for PCA in A). **C-D**) PCA analysis, but only using WHO ordinal category moderate, severe, and critical. **E**) Violin plots of sex specific differences of indicated cellular populations in healthy controls. Significance by Mann-Whitney test.

Table S1A:				
Barcodes				
Label	Target	Clone (Product name)	Manufacturer	Titre
113In	CD45	HI30	Biolegend	100
115In	CD45	HI30	Biolegend	100
194Pt	CD45	HI30	Biolegend	100
195Pt	CD45	HI30	Biolegend	100
196Pt	CD45	HI30	Biolegend	100
198Pt	CD45	HI30	Biolegend	100
	Fc receptors	(Human TruStain FcX)	Biolegend	50
Biotin	CXCR5	RF8B2	BD	25
Table S1B:				
Surface				
stain				
Label	Target	Clone (Product name)	Manufacturer	Titre
110Cd	CD3	UCHT1	Biolegend	50
111Cd	CD4	RPA-T4	Biolegend	100
112Cd	CD8	RPA-T8	Biolegend	50
114Cd	CD14	M5E2	Biolegend	100
1271	Active DNA	(Cell-ID IdU)	Fluidigm	1000
	production			
141Pr	CCR6	G034E3	Fluidigm	50
144Nd	CD7	687	Biolegend	100
145Nd	CD56	HCD56	Biolegend	50
147Sm	CD62L	DREG-56	Biolegend	200
148Nd	CD161	HP-3G10	Biolegend	100
149Sm	CCR4	L291H4	Fluidigm	400
151Eu	ICOS	C398.4A	eBioscience	100
152Sm	CD69	FN50	Biolegend	100
153Eu	CD45RA	HI100	Biolegend	100
154Sm	CD73	AD2	Biolegend	100
155Gd	CCR7	G043H7	Biolegend	100
156Gd	CXCR4	12G5	Biolegend	50
157Gd	CD16	3G8	Biolegend	100
158Gd	CD27	L128	Fluidigm	200
159Tb	CD19	HIB19	Biolegend	200
160Gd	CD39	A1	Fluidigm	100
161Dy	CD11c	3.9	Biolegend	100
163Dy	TCR α/β	IP26	Biolegend	100
164Dy	CD95	DX2	Fluidigm	100

Table S1. Mass cytometry staining panel

165Ho	Biotin	1D4-C5	Fluidigm	50
166Er	PD1	EH12.2H7	Biolegend	100
167Er	CD31	WM59	Biolegend	200
169Tm	CD25	2A3	Fluidigm	100
171Yb	CD57	HCD57	Biolegend	400
172Yb	CD38	HIT2	Fluidigm	100
173Yb	TIGIT	MBSA43	eBioscience	100
174Yb	HLA-DR	L243	Fluidigm	200
175Lu	CXCR3	G025H7	Biolegend	100
176Yb	CD127	A019D5	Fluidigm	100
209Bi	CD11b	ICRF44	Fluidigm	100
Table S1C:				
Viability				
stain				
Label	Target	Product name	Manufacturer	Titre
104,	Dead cells	(Ethylenediamine)palladium	Sigma	500
105,106,		(II) chloride >99.99%		(1µM)
108, 110Pd				
Table S1D:				
Intracellula				
r stain	Tanad	Classe	N. A. S.	Titure
	Target	Cione	Ivianufacturer	litre
142Nd	Cleaved	D3E9	Fluidigm	100
142Nd		7511410	Pielegend	50
145Nu	Holios	2256	Biologond	400
140Nu	Granzymo B		Novus	100
162Dv	Granzynie B	2264/57	oPioscionco	200
102Dy	ruxps	230A/E/	Eluidiam	200
100Er		14D2	Fluidigm	200
17061	CTLA-4	1403	Fiuldigili	50
Table S1E:				
DNA stain				
Label	Target	Product name	Manufacturer	Titre
103Rh	DNA	Cell-ID Intercalator-Rh—500	Fluidigm	500
		μΜ		(1µM)