

SUPPORTING INFORMATION

Reversible switching between two common protein folds in a designed system using only temperature

Tsega L. Solomon, Yanan He, Nese Sari, Yihong Chen, D. Travis Gallagher, Philip N. Bryan*, and John Orban*

*Email: pbryan@potomac-affinity-proteins.com, jorban@umd.edu

This file includes:

Figures S1 to S10 Tables S1 to S3

Figure S1. Unmasking of the alternate 3α fold with deletion mutations. **(A)** 2D ¹H-¹⁵N HSQC spectrum of S_{a1}(Δ Nterm1-4) (*black*) overlaid with the spectrum of α/β -plait S_{a1} (*blue*). **(B)** 2D ¹H-¹⁵N HSQC spectrum of S_{a1}(Δ Cterm90-95) (*black*) overlaid with S_{a1} (*blue*). **(C)** 2D ¹H-¹⁵N HSQC spectrum of S_{a1}(Δ Nterm1-4) (*black*) overlaid with the spectrum of the 56 amino acid 3α -helical protein A₁ (*red*). **(D)** 2D ¹H-¹⁵N HSQC spectrum of S_{a1}(Δ Cterm90-95) (*black*) overlaid with the spectrum of the 56 amino acid 3α -helical protein A₁ (*red*). **(D)** 2D ¹H-¹⁵N HSQC spectrum of S_{a1}(Δ Cterm90-95) (*black*) overlaid with A₁ (*red*). All spectra were recorded at 5°C.

Figure S2. Reversibility of 3α to α/β -plait fold conversion. 2D ¹H-¹⁵N HSQC spectrum of S_{a1}V90T at 5°C (*left*) before raising the temperature to 30°C (*center*), followed by a spectrum at 5°C (*right*) after acquisition of the 30°C spectrum. Samples equilibrated within the time required (<10 min) for tuning, shimming, and acquisition of the first FID.

Figure S3. Oligomeric state of $S_{a1}V90T$. Size exclusion and multi-angle static light scattering analysis of $S_{a1}V90T$ at 22°C. Light scattering (*green*) and the derivative of the refractive index (*purple*) are displayed as a function of retention time. Peak 1 represents the void peak of the column. Peak 2 is a standard calibration peak of bovine serum albumin (68 kDa). Peak 3, where the light scattering and refractive index traces coincide, represents the $S_{a1}V90T$ sample having a monodispersed, derived molecular weight of 11.1 kDa (*blue*). This is within 6% error of the monomeric molecular weight calculated based on the amino acid sequence. Peak 4 in the refractive index trace is a buffer mismatch artifact.

Figure S4. Secondary chemical shift analysis for $S_{a1}V90T$ as a function of temperature. (A) Backbone C α chemical shift differences between measured and calculated random coil values of $S_{a1}V90T$ at 5°C (*red*) and 30°C (*cyan*). (B) Corresponding backbone CO chemical shift differences. Highlighted regions show extent of propensity for the alternate conformation in the N- and C-terminal ends of $S_{a1}V90T$.

Figure S5. Comparison of $S_{a1}V90T$ structures at 5°C and 30°C with the parent folds, A_1 (3 α) and S_{a1} (α/β -plait). (**A**) The ensemble of 95-residue $S_{a1}V90T$ structures at 5°C (green) is overlaid with the ensemble of 56-residue A_1 structures (PDBDev 00000083¹⁵, orange). The average backbone RMSD over the corresponding 3 α regions is 0.4Å. (**B**) The ensemble of $S_{a1}V90T$ structures at 30°C (green) overlaid with the S_{a1} ensemble (PDB 7MN1¹⁵, orange). The average backbone RMSD over ordered regions is 0.9Å.

Figure S6. Backbone dynamic characterization of $S_{a1}V90T$ at 17°C. ¹⁵N- R_1 and ¹⁵N- R_2 rates for $S_{a1}V90T$ where 3 α (red) and α/β -plait (blue) forms are equally populated. The errors for the α/β -plait R_2 values are within the data point markers.

Figure S7. Conformational analysis of $S_{a1}V88X$ mutants. 2D ¹H-¹⁵N HSQC spectra of S_{a1} mutants V88I (A), V88A (B), V88L (C), V88T (D), and V88M (E) at 5°C (*left*) and 30°C (*right*).

Figure S8. Conformational analysis of $S_{a1}V90X$ mutants. 2D ¹H-¹⁵N HSQC spectra of S_{a1} mutants V90I (A), V90L (B), V90M (C), V90T (D), and V90A (E) at 1 or 5°C (*left*) and 10, 25 or 30°C (*right*).

Figure S9. Analysis of conformation and thermal denaturation by CD. Mean residue ellipticity versus wavelength is plotted for **(A)** V88I at 5°C and 25°C, **(B)** V88A at 5°C and 35°C, and **(C)** V88T at 5°C and 35°C using a 1 mm path length cuvette with 5 μ M protein sample. **(D)** Mean residue ellipticity is plotted versus temperature for the three V88 mutants in the range from 5 to 90°C. The increase in ellipticity at 222 nm for S_{a1}V88T at high temperature indicates less secondary structure than for V88A, leading to an approximate order of V88I>V88A>V88T α/β -plait stability.

Figure S10. Engineering HSA-binding function into A_1 and S_{a1} . (A) The structure of A_1 (*orange*) is aligned with wild-type GA (*magenta*) bound to HSA (*gray*), PDB 1TF0. (B) NMR structure of A_1^{15} showing the HSA binding site residues in sphere representation. (C) NMR structure of S_{a1}^{15} showing positions of HSA binding site residues in sphere representation. Those in orange (L42, N45, K47, T48, and E50) are already present in A_1 and S_{a1} while those in green (E38K, K39Y, A51G, K54S, and V62A) were introduced by site directed mutagenesis.

	S _{a1} V90T, 5°C	S _{a1} V90T, 30°C
A. Experimental restraints		
NOE restraints		
Intraresidue		50
Sequential $(i-j =1)$		74
Medium-range (1< i-j ≤5)		72
Long-range (i-j >5)		31
Hydrogen bond restraints		83
Total NOE restraints		310
CS-Rosetta input		
¹³ C ^a shifts	90	90
¹³ C ^p shifts	79	85
¹³ CO shifts	86	82
¹⁵ N shifts	87	83
¹ H ^N shifts	87	83
¹H∝ shifts	41	39
B. Secondary structure RMSDs		
to the mean structure $(A)^a$		
Backbone atoms	0.90 ± 0.45	1.15 ± 0.31
Heavy atoms	1.59 ± 0.48	1.81 ± 0.35
C. Measures of structure quality (%)		
Ramachandran distribution		
Most favored	94.50 ± 2.20	92.55 ± 2.49
Additionally allowed	5.00 ± 2.20	7.22 ± 2.42
Generously allowed	0.34 ± 0.70	0.11 ± 0.35
Disallowed	0	0.11 ± 0.35
Bad contacts	1.20 ± 0.80	0.50 ± 0.71
Overall dihedral G factor	0.37 ± 0.05	0.28 ± 0.02
D. PDB/BMRB codes		
PDB/PDBDev	00000132	8E6Y
BMRB	51338	51339

 Table S1. Summary of structure statistics.

^{*a*} Stable secondary structure regions used were as follows: At 5°C, residues 15-32, 37-45, and 49-63; at 30°C, residues 3-10, 16-32, 40-44, 60-66, 72-81, and 86-92.

	$\boldsymbol{\tau}_{c}\left(5^{\circ}C\right)$	τ _c (17°C)	τ_{c} (30°C)
$3-\alpha^a$	16.5	10.6	-
$\alpha 4^{b}$	11.0	8.7	-
N-terminus ^c	5.5	5.4	-
C-terminus ^d	7.7	6.7	-
α/β -plait ^e	_	9.8	6.7

Table S2. Temperature dependence of correlation times (τ_C , ns) for $S_{a1}V90T$ regions.

^{*a*} Residues 10-66; ^{*b*} residues 75-81; ^{*c*} residues 1-10; ^{*d*} residues 67-95; ^{*e*} residues 2-95. Correlation times are obtained from equation 2 using the average T_1 and T_2 values corresponding to each region.

Temperature	Residue ^b	K _{eq}	$\frac{k_{\alpha/\beta \rightarrow 3\alpha}}{(s^{-1})}$	$\begin{array}{c} k_{3\alpha} \\ (s^{-1}) \end{array} $
10°C	Q16	0.77	0.7 ± 0.2	0.6 ± 0.1
	G34	0.45	1.2 ± 0.3	0.5 ± 0.1
	G58	0.35	1.6 ± 0.4	0.6 ± 0.1
	Mean	0.52	1.2. ± 0.3	0.6 ± 0.1
17°C	Q16	1.48	1.0 ± 0.1	1.4 ± 0.2
	G34	1.19	1.3 ± 0.3	1.6 ± 0.4
	G58	1.05	1.4 ± 0.3	1.5 ± 0.3
	Mean	1.24	1.2 ± 0.2	1.5 ± 0.3
24°C	Q16	2.33	1.4 ± 0.3	3.3 ± 0.7
	G34	2.67	1.6 ± 0.4	4.0 ± 0.9
	G58	2.53	1.3 ± 0.3	3.4 ± 0.7
	Mean	2.51	1.4 ± 0.3	3.6 ± 0.8

Table S3. Exchange rate constants from ZZ-exchange spectroscopy.^a

^{*a*} Exchange rates were determined from equation 4 as described in the Materials and Methods section. ^{*b*} Residues Q16, G34, and G58 were chosen due to their well-resolved cross-peaks and auto-peaks.