

Supporting Information for

CBX5 loss drives EGFR inhibitor resistance and results in therapeutically actionable vulnerabilities in lung cancer

Suresh Bugide, Yvonne J. K. Edwards, Romi Gupta, Michael R. Green, and Narendra Wajapeyee

Correspondence to:

Narendra Wajapeyee, **Email:** nwajapey@uab.edu Michael R. Green, **Email:** Michael.Green@umassmed.edu

This PDF file includes:

SI Materials and Methods Figures S1 to S12 Tables S1 to S3 Legends for Datasets S1 to S3 SI References

Other supporting materials for this manuscript include the following:

Datasets S1 to S3

SI Materials and Methods

MTT assays. For MTT assays, 5×10^3 LUAD cells were plated in triplicate in a volume of 100 µl in 96-well plates. After 24 h, erlotinib was administered at various concentrations, as indicated in the figures and figure legends. After 5 days of treatment, cell viability was evaluated by adding 20 µl of 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution, dissolved in 1X PBS, to each well of the 96-well plate and incubating for 1 h at 37°C. MTT solution was then gently removed, and 100 µl of DMSO was added to each well. After mixing well by pipetting, absorbance was measured at 590 and 630 nm, using the BioTek Synergy MX Multi Format Microplate Reader (Winooski, VT, USA). The average measurement at 630 nm was subtracted from the average at 590 nm, and the relative growth rate was plotted with respect to vehicle control-treated cells. *P*-values were calculated using GraphPad Prism software.

Immunoblot analysis. Cells were lysed using Pierce IP Lysis Buffer (Thermo Fisher Scientific), containing Roche Complete Protease Inhibitor Cocktail (Roche, Basel, Switzerland) and Phosphatase Inhibitor Cocktail (Sigma-Aldrich). Cell lysates were centrifuged at 10,000 rpm for 10 min, and protein concentrations were estimated using the Bradford Assay (Bio-Rad, Hercules, CA, USA). Equal amounts of protein were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose members. These were blocked with 5% non-fat milk and incubated with primary antibodies at 4°C overnight. Membranes were then washed three times for 15 min each with 1X Tris-buffered saline plus Tween 20 (TBS-T) and incubated with a secondary antibody for 2 h at room temperature. Protein signals were detected using SuperSignal West Pico Chemiluminescent Substrate Kit (Thermo Fisher Scientific) or SuperSignal West Femto Chemiluminescent Substrate Kit. All antibodies and the dilutions used for this study are listed in **SI Appendix, Table S3**. Quantification of the western blot bands in Figure 1C was carried out by optical densitometry and analyzed using the ImageJ software. The expression of CBX5 protein analyzed was normalized with ACTINB. Normalized band intensity values were converted into fold changes and plotted as bar graphs.

RNA isolation and qRT-PCR analysis. Total RNA for mRNA expression analyses was extracted with TRIzol Reagent (Invitrogen, Thermo Fisher Scientific) and purified using RNeasy mini columns (QIAGEN, Hilden, Germany). Total mRNA was reverse transcribed into cDNA using the M-MuLV First-Strand cDNA Synthesis Kit (New England Biolabs, Ipswich, MA, USA), according to the manufacturer's instructions, and qPCR reactions were performed using the Power SYBR® Green Kit (Applied Biosystems, Thermo Fisher Scientific), according to the manufacturer's instructions. Expression data were normalized to *ACTINB* expression as an internal control. Primer sequences used in this study are listed in **SI Appendix, Table S3**.

CUT&RUN assays. CUT&RUN assays were performed in HCC827 or PC9 cells using the CUT&RUN Assay Kit (Cat #86652; Cell Signaling Technology, Danvers, MA, USA), according to the manufacturer's instructions. Briefly, 2×10^5 cells were harvested, washed, bound to activated Concanavalin A-coated Beads, and permeabilized. Bead–cell complexes were incubated with the respective antibody overnight at 4°C. Cells were then washed three times, resuspended in 100 µl pAG/MNase (Protein A and Protein G fused to micrococcal nuclease), and incubated for 1 h at room temperature. Samples were washed three times with Digitonin Buffer plus Protease Inhibitor Cocktail, resuspended in 150 µl Digitonin Buffer, and incubated for 5 min on ice. MNase was activated by adding calcium chloride, and samples were incubated at 4°C for 30 min. The reaction was stopped by adding 150 µl of 1X Stop Buffer, and samples were incubated at 37°C for 10 min to release the DNA fragments. The DNA was extracted using the included DNA Purification Spin Columns, and qPCR was performed with *E2F1* or *BIRC5* promoter-specific primers. Relative fold-change was calculated as the ratio of immunoprecipitated DNA to IgG-precipitated DNA. Primer sequences and antibodies used for CUT&RUN assays are listed in **SI Appendix, Table S3**.

RNA-seq. RNA-seq was performed for nine samples representing three biological replicates of the following three groups: *CBX5* shRNA1 (G7), *CBX5* shRNA1 (G1), and NS shRNA. Single-end 76-bp reads were sequenced using the Illumina HiSeq 2500 sequencing instrument. Pre-alignment

quality assessments of the raw fastq sequences were performed using FastQC, v0.11.9. The number of reads for the nine samples ranged from 20 M to 34 M. The raw fastg sequences were aligned to the human hg38 reference genome (GenBank assembly accession: GCA 000001405.28), and alignments were performed using STAR, v2.7.1a (1), with default parameters. Post-alignment guality assessments were performed with RSeQC, v2.6.3 (2), and MultiQC, v1.4 (3). SAMtools, v0.0.19 (4), and IGV, v2.6.2 (5) were used for indexing and viewing the alignments, respectively. Gene expression was quantified at the gene level using the htseqcount function in HTSeq, v.0.12.3, with default parameters, and the University of California, Santa Cruz (UCSC) gene annotations for the human genome (Hg38). Genes for which there were less than three samples with normalized counts greater than or equal to four were filtered out. Differentially expressed genes (DEGs) were identified using DESeq2, v1.28 (6), with default parameters (Love et al 2014). Genes were considered differentially expressed if Padj-value <0.05 and absolute log2 fold-change >1. Normalized gene expression data were used for all downstream analyses. Venn diagrams were generated using InteractiVenn (7), and heatmaps were generated with the ComplexHeatmap package, v.1.12.0 in Bioconducter. The volcano plot was produced with the R Bioconductor package EnhancedVolcano, and DEGs were analyzed by the Ingenuity Pathway Analysis (IPA) tool (QIAGEN). RNA-sequencing data have been deposited in NCBI's Gene Expression Ominibus (GEO accession number GSE114563).

Annexin V assays. The binding of annexin V to cells was measured using the PE-Annexin V Apoptosis Detection Kit I (Cat #559763; Pharmingen[™], BD Biosciences, Franklin Lakes, NJ, USA), according to the manufacturer's protocol. In brief, PC9 and HCC827 cells expressing either an NS or *CBX5* shRNA, or PC9 *BIRC5/CBX5* double-knockdown cells, were treated with 50 nM erlotinib for 24 h or HCC827-R1, HCC827-R2, HCC2935-R1, HCC2935-R2 (20 nM), PC9-R1 and PC9-R2 (50 nM) treated with BIRC5 inhibitor YM155. Post-treatment, cells were collected, washed two times with 1X PBS, and resuspended in 1x Binding Buffer. Cells were then stained with 5 µl PE-Annexin V and 5 µl 7-amino-actinomycin D (7-AAD) and incubated for 15 min in the dark. Flow cytometry analysis was performed using a BD LSRFortessa Flow Cytometer (BD Biosciences, San Jose, CA, USA), and data were analyzed using FlowJo software (Ashland, OR, USA).

Fig. S1. Identification of epigenetic regulators of EGFRi resistance. (*A*) Immunoblot analysis measuring CBX5 levels in the indicated LUAD cell lines. ACTINB was used as a loading control. (*B*) Expression of the indicated genes in HCC827 cells expressing shRNAs targeting those genes analyzed by qRT-PCR; mRNA expression of indicated genes in knockdown cells relative to expression in NS shRNA-expressing cells is plotted. Data were normalized to *ACTINB. (C)* Relative survival (%) of HCC827 cells expressing an NS shRNA or shRNA targeting the indicated gene treated for 5 days with the indicated concentrations of erlotinib or dimethyl sulfoxide (DMSO) (0), as measured by MTT assay. Data are presented as the mean \pm SEM. ns = not significant; * *P*<0.05, ***P*<0.01, ****P*<0.001, and *****P*<0.0001.

Fig. S2. Knockdown validation, cell survival assays, and expression of candidates identified from the large-scale epigenome-wide shRNA screen. (*A*) Expression of the indicated genes in PC9 and HCC2935 cells expressing shRNAs targeting those genes analyzed by qRT-PCR; mRNA expression of the indicated genes in knockdown cells relative to NS shRNA-expressing cells is plotted. (*B*) Relative cell viability (%) of PC9 and HCC2935 cells expressing an NS shRNA or shRNAs targeting the indicated genes treated for 5 days with the indicated concentrations of erlotinib or DMSO (0), as measured by MTT assay. Data are presented as the mean \pm SEM. ns = not significant; * *P*<0.05, ***P*<0.01, ****P*<0.001, and *****P*<0.0001.

Fig. S3. Validation of EGFRi-resistant LAUD cell lines. (*A*) Relative cell viability (%) of parental (P) and EGFRiresistant HCC827, HCC2935, and PC9 cell lines (R1, R2) treated with erlotinib or DMSO at indicated concentrations for 5 days, as measured by MTT assay. (*B*) The indicated EGFRi-resistant LUAD cell lines were treated with erlotinib, gefitinib or osimertinib (250 nM for erlotinib and gefitinib, 100 nM for osimertinib) or DMSO, and survival was measured in clonogenic assays. Representative wells for cells grown under the indicated conditions are shown. (*C*) Immunoblot analysis measuring MLLT6 expression in the indicated EGFRi-sensitive or EGFRi-resistant EGFRmutant LUAD cell lines. Data are presented as the mean \pm SEM. ***P*<0.01, ****P*<0.001, and *****P*<0.0001.

Fig. S4. Control wells from clonogenic assays. Representative DMSO-treated control wells from clonogenic assays with the indicated LUAD cell lines expressing an NS or *CBX5* shRNA are shown (related to Fig. 1*D*).

Fig. S5. Measurement of EGFR and other downstream signaling pathways in *CBX5*-knockdown EGFR-mutant LUAD cells. Immunoblot analysis measuring expression of the indicated proteins in EGFR-mutant LUAD cell lines expressing an NS or *CBX5* shRNA. ACTINB was used as a loading control.

Fig. S6. Ingenuity pathway analysis identifies E2F1 as a major upstream regulator of genes upregulated in *CBX5*-knockdown cells. (*A*) Key biological pathways enriched among genes upregulated in *CBX5*-knockdown HCC827 cells identified by RNA-seq. (*B*, *C*) Pathway map for E2F1-regulated genes identified from RNA-seq analysis of *CBX5*-knockdown HCC827 cells.

Fig. S7. E2F1 is a downstream mediator of CBX5-loss-driven EGFRi resistance in EGFR-mutant LUAD. (*A*) Immunoblot analysis measuring expression of the indicated proteins in LAUD cell lines overexpressing E2F1 or empty vector, treated with DMSO or erlotinib (50 nM) for 24 h. (*B*) The indicated LAUD cancer cell lines overexpressing E2F1 or vector were treated with erlotinib (20 nM for HCC827 and PC9; 100 nM for HCC2935) or DMSO, and survival was measured in clonogenic assays.

Fig. S8. E2F1 is necessary for CBX5-loss-induced resistance to EGFRi. (*A*) Representative DMSO-treated control wells from clonogenic assays with PC9 cells expressing an NS or *CBX5* shRNA alone, or in combination with an *E2F1* shRNA, are shown (related to Figure 2E). (*B*) Representative wells from clonogenic assays with HCC827 cells expressing an NS or *CBX5* shRNA alone, or in combination with an *E2F1* shRNA, were treated with DMSO (left) or erlotinib (50 nM, right), and survival was measured in clonogenic assays.

Fig. S9. BIRC5 is a downstream mediator of CBX5-loss-driven EGFRi resistance in EGFR-mutant LUAD. (*A*) Immunoblot analysis measuring expression of the indicated proteins in LAUD cell lines overexpressing BIRC5 or vector, treated with DMSO or erlotinib (50 nM) for 24 h. (*B*) The indicated LAUD cancer cell lines overexpressing BIRC5 or vector were treated with erlotinib (20 nM for HCC827 and PC9; 100 nM for HCC2935) or DMSO, and survival was measured in clonogenic assays. (*C*) PC9 cells expressing an NS or *CBX5* shRNA alone, or in combination with an NS or *BIRC5* shRNA#1, were treated with DMSO or erlotinib (50 nM) for 24 h and then analyzed by FACS-based annexin V-PE staining. % of Annexin V positive cells at indicated conditions is shown. (*D*) PC9 cells expressing an NS or *CBX5* shRNA alone, or in combination the DMSO or erlotinib (50 nM) for 24 h, and expression of the indicated proteins was measured by immunoblot analysis. (*E*) PC9 cells expressing an NS or *CBX5* shRNA alone, or in combination of *BIRC5* shRNA#2, were treated with DMSO or erlotinib (50 nM) for 24 h, and expression of the indicated proteins was measured by immunoblot analysis. (*E*) PC9 cells expressing an NS or *CBX5* shRNA alone, or in conjunction with an NS shRNA or *BIRC5* shRNA#2, were treated with DMSO or erlotinib (50 nM) for 24 h, and expression of the indicated proteins was measured by immunoblot analysis. (*E*) PC9 cells expressing an NS or *CBX5* shRNA alone, or in combination with an NS shRNA or *BIRC5* shRNA#2, were treated with DMSO or erlotinib (50 nM) for 24 h and then analyzed by FACS-based annexin V-PE staining. % of Annexin V positive cells at indicated conditions is shown. Data are presented as the mean \pm SEM. ***P*<0.01, ****P*<0.001, and *****P*<0.0001.

Fig. S10. Epigenetic regulation of CBX5 expression in EGFRi-resistant cell lines. (*A*) EGFRi-resistant PC9 cells (PC9–R2) were treated with DMSO or the indicated small-molecule inhibitors at the concentrations shown in Table S2 for 48 h, and expression of CBX5 was measured by immunoblot analysis. (*B*) The indicated EGFRi-resistant cell lines were treated with DMSO or BETi JQ1 (2 μ M) or PFI-1 (2 μ M) for 48 h, and expression of *CBX5* was measured by qRT-PCR. Relative *CBX5* mRNA expression in BETi-treated cells relative to DMSO-treated cells is plotted. Data are presented as the mean \pm SEM. ***P*<0.01, ****P*<0.001, and *****P*<0.0001.

Α

В

Fig. S11. BETi treatment sensitizes EGFRi-resistant cells to EGFRi. (*A*) Immunoblot analysis measuring CBX5 expression in the indicated EGFRI resistant LUAD cell lines (HCC827-R2 and PC9-R2). (*B*) PC9–R2 cells expressing an NS or *CBX5* shRNA were treated with DMSO, erlotinib (25 nM), JQ1 (0.125 μ M), or a combination of erlotinib (25 nM) + JQ1 (0.125 μ M), and survival was measured in clonogenic assays. Representative wells for cells grown under the indicated conditions are shown.

Fig. S12. BETi and BIRC5 inhibitors forestall development of EGFRi resistance in EGFR-mutant LUAD cells. (*A*) The indicated LUAD cell lines were treated with DMSO, erlotinib (25 nM), JQ1 (250 nM for PC9; 500 nM for HCC827), or PFI1 (250 nM for PC9; 500 nM for HCC827) alone, or with a combination of erlotinib (25 nM) + JQ1 (250 nM for PC9; 500 nM for HCC827) or erlotinib (25 nM) + PFI (250 nM for PC9; 500 nM for HCC827), and survival was measured in clonogenic assays. Representative wells for the indicated cell lines under the indicated treatment conditions are shown. (*B*) The indicated LUAD cell lines were treated with DMSO, erlotinib (25 nM), or YM155 (40 nM for PC9; 2.5 nM for HCC827) alone, or with a combination of erlotinib (25 nM) + YM155 (40 nM for PC9; 2.5 nM for HCC827), and survival was measured in clonogenic assays. Representative wells for the indicated cell lines (25 nM) + YM155 (40 nM for PC9; 2.5 nM for HCC827) alone, or with a combination of erlotinib (25 nM) + YM155 (40 nM for PC9; 2.5 nM for HCC827), and survival was measured in clonogenic assays. Representative wells for the indicated cell lines wells for the indicated cell lines under the indicated cell lines were treated with DMSO, erlotinib (25 nM), or YM155 (40 nM for PC9; 2.5 nM for HCC827), and survival was measured in clonogenic assays. Representative wells for the indicated cell lines wells for the indicated cell lines were treated with DMSO, erlotinib (25 nM), or PC9; 2.5 nM for HCC827), and survival was measured in clonogenic assays. Representative wells for the indicated cell lines were treated wells for the indicated cell lines wells for the indicate

Table S1. Genes identified as drivers of resistance to the EGFRi erlotininb in EGFR-mutant HCC827 LUAD cells.

S.No.	Gene Symbol	Gene Name	Accession number	Gene ID
1	CXB5	Chromobox 5	NM_001127322.1	23468
2	KDM5D	Lysine-Specific Demethylase 5D	NM_001146705.1	8284
3	MLLT6	Mixed-Lineage Leukemia, Translocated To, 6	NM_005937.3	4302
4	PRMT8	Protein Arginine Methyltransferase 8	NM_019854.4	56341
5	SATB1	Special AT-rich Sequence Binding Protein 1	NM_001195470.2	6304
6	SIRT4	Sirtuin 4	NM_012240.2	23409

Table S2. List of inhibitors targeting indicated chromatin modifiers and the concentrations at which they were used in the chemical genetic screen.

S.No.	Target protein	Inhibitor	Inhibitor
1	BAZ2A/2B	BAZ2-ICR	
2	BAZ2A/2B	GSK2801	1
3	BET family	JQ1	1
4	BET family	PFI1	1
5	BRD9/7	BI-9564	1
6	BRD9/7	TP-472	1
7	BRD9	I-BRD9	1
8	BRPF1/2/3; BRPF1B	NI-57	1
9	BRPF1/2/3; BRPF1B	OF1	1
10	BRPF1/2/3; BRPF1B	PFI-4	1
11	CECR2	NVS-CECR2-1	1
12	CREBBP, EP300	I-CBP112	1
13	CREBBP, EP300	SGC-CBP30	1
14	DOT1L	SGC0946	1
15	EED	A-395	1
16	EZH2/H1	GSK343	3
17	G9a (EHMT2)/GLP	A-366	1
18	G9a (EHMT2)/GLP	UNC0638	1
19	G9a (EHMT2)/GLP	UNCO642	1
20	IDH1 mutant	GSK864	1
21	JMJD3/UTX (KDM6A/B)	GSK-J4	5
22	LSD1 (KDM1A)	GSK-LSD1	1
23	PAD4 (PADI4)	GSK484	10
24	PRMT Type I	MS023	1
25	PRMT3	SGC707	1
26	PRMT4	TP-064	1
27	PRMT4/6	MS049	5
28	PRMT5	GSK591	1
29	SETD7	®-PFI-2	1
30	SMARCA2/4, PB1	PFI-3	1
31	SMYD2	BAY-598	1
32	SUV420H1/H2 (KMT5B/C)	A-196	1
33	WDR5	OICR-9429	3

Table S3. List of reagents and software used in this study with source and identifiers.

REAGENT or RESOURCE	SOURCE	IDENTIFIER				
Antibodies						
CBX5	Cell Signaling Technology	Cat# 2616; RRID:AB_2070987				
Cleaved Caspase 3	Cell Signaling Technology	Cat# 9664S; RRID:AB_2070042				
P-EGFR(Y1068)	Cell Signaling Technology	Cat# 8543S; RRID:AB_10828604				
P-Akt(S473)	Cell Signaling Technology	Cat#4060; RRID:AB_2315049				
Akt	Cell Signaling Technology	Cat#9272; RRID:AB_329827				
p-ERK(T202/Y204)	Cell Signaling Technology	Cat# 4376S; RRID:AB_331772				
ERK	Cell Signaling Technology	Cat# 4695S; RRID:AB_390779				
P-MEK(S217/221)	Cell Signaling Technology	Cat# 9121S; RRID:AB_331648				
MEK	Cell Signaling Technology	Cat# 9122S; RRID:AB_823567				
V5-Tag (D3H8Q)	Cell Signaling Technology	Cat# 13202S; RRID:AB_2687461				
MLLT6	Bethyl Laboratories	Cat# A302-198A; RRID:AB_1659777				
Survivin (BIRC5)	Cell Signaling Technology	Cat#2808; RRID:AB_2063948				
E2F1	Cell Signaling Technology	Cat# 3742; RRID:AB_2096936				
β-Actin (D6A8)	Cell Signaling Technology	Cat#4970; RRID:AB_2223172				
Chemicals, peptides, and recombin	ant proteins					
Erlotinib	Selleck Chemical LLC	Cat# S1023				
Gefitinib	Selleck Chemical LLC	Cat# S1025				
Osimeritinb	Selleck Chemical LLC	Cat# S7297				
JQ1	Selleck Chemical LLC	Cat# S7110				
PFI1	Selleck Chemical LLC	Cat# S1216				
YM155	Selleck Chemical LLC	Cat# S1130				
SGC- Epigenitic Probe Library	Cayman Chemicals	Cat# 17525				
DMEM	GIBCO	Cat# 11965-092				
RPMI	GIBCO	Cat# 11875-093				
Fetal Bovine Serum	GIBCO	Cat# 10437-028				
Trypsin-EDTA	GIBCO	Cat# 25200-056				
Penicillin-Streptomycin	GIBCO	Cat# 15140-122				
Effectene Transfection Reagent	QIAGEN	Cat# 301427				
Critical commercial assays						
CUT&RUN Assay Kit	Cell Signaling Technology	Cat# 86652				
Annexin V assay kit	BD Pharmingen	Cat#559763				
Deposited data						
RNA-Seq performed with HCC827CBX5 knockdown cells	This paper	GEO: GSE114563				
Experimental models: Cell lines						
HEK-293T	ATCC	CRL-11268				
HCC827	ATCC	CRL-2868				

HCC2935	ATCC	CRL-2869					
PC9	Sigma-Aldrich	Cat# 90071810					
Experimental models: Organisms/strains							
Mouse: NSG	Jackson Laboratory	Stock No. 005557					
Oligonucleotides							
BIRC5	CGTCCGGTTGCGCTTTCCT	T ATGGCACGGCGCACTTTCTC					
CBX5	TCCTGAGGATGCGGAAAAC	A AGGAGAGGAGGCAGGGAGGT					
KAT6A	CCAGAATGTTTGCGCTGGA	C CTGGCACTGTGGCTCTTCGT					
KDM5D	CCAGTGTGCAGGGGAGTTT	G AGCCGGCGGTAGTGTTCAAT					
MLLT6	AATCCCCTCCTCTCCCAAG	C GCAGAGGCTGTCTGGTCGAA					
PRMT8	TGCTCCCTACACCCACTGG	A TTTGGCATTTGGCTTCATGG					
SATB1	CACCACCCTTGGGAAAGGA	G TTGCTGCTGCTGTTGCTGAG					
SIRT4	TGCCAGCAAGTCCTCCTCT	G TCCGGACAAAATCACCATGC					
E2F1	TCCAAGAACCACATCCAGT	G CTGGGTCAACCCCTCAAG					
ACTINB	GCATGGAGTCCTGTGGCAT	C TTCTGCATCCTGTCGGCAAT					
E2F1 (CUT&RUN Primer)	GCCTTTCCGGTTTCCCACA	GC TCTGCAAACTGGGTGCACAT					
BIRC5 (CUT&RUN primer)	TCTCAGCTACTCGGGAGGC	T AGCTCACTGCAACCTCCTCCC					
ACTINB (CUT&RUN Primer)	TCTTGGCTGGGCGTGACTG	T AAGGTGGGCTCTACAGGGCA					
Plasmids, ORFs and shRNAs							
pLKO.1	Addgene	Cat No# 10878					
pMD2.G	Addgene	Cat No# 12259					
psPAX2	Addgene	Cat No# 12260					
pZIPZ NS shRNA	Open Biosystems	Cat No# RHS4346					
TRC NS shRNA	Open Biosystems	Cat No# RHS6848					
pLX304-BIRC5	Open Biosystems	Cat No# OHS6085-213578374					
KDM5D	RHS4430-101102580						
MLLT6	RHS4430-101161520						
PRMT8	RHS4430-101070759						
STAB1	RHS4430-101165442	RHS4430-101169043					
SIRT4	RHS4430-101103028	RHS4430-101102122					
E2F1	TRCN000000250	TRCN000000251					
BIRC5	TRCN0000073718	TRCN0000073721					
Software and algorithms							
Prism 8.0	GraphPad	www.graphpad.com/scientific software/prism					
ImageJ	https://imagej.nih.gov/ij	N/A					
Reactome pathway analysis from RNA sequencing data	Reactome Pathway Database	https://reactome.org/					
Flowjo	https://www.flowjo.com/	N/A					

Dataset S1. List of genes targeted by the human epigenome-wide shRNA library and shRNA IDs.

Dataset S2. List of genes identified from the RNA-seq analysis measuring changes in mRNA expression following *CBX5* knockdown.

Dataset S3. Ingenuity Pathway Analysis.

SI References

- 1. A. Dobin A *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,15-21 (2013).
- 2. L. Wang, S. Wang, W. Li, RSeQC: quality control of RNA-seq experiments. *Bioinformatics* **28**, 2184-2185 (2012).
- 3. P. Ewels, M. Magnusson, S. Lundin, M. Kaller, MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics* **32**, 3047-3048 (2016).
- 4. H. Li *et al.*, The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078-2079 (2009).
- 5. H. Thorvaldsdottir, J.T. Robinson, J.P. Mesirov, Integrative Genomics Viewer (IGV): highperformance genomics data visualization and exploration. *Brief Bioinform* **14**, 178-192 (2013).
- 6. M.I. Love, W. Huber W, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).
- 7. H. Heberle, G.V. Meirelles, F.R. da Silva, G.P. Telles, R. Minghim, InteractiVenn: a webbased tool for the analysis of sets through Venn diagrams. *BMC Bioinformatics* **16**, 169 (2015).