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Figure S1: Possible sex ratios inferred from X chromosomal and autosomal ancestry 
proportions by Micheletti et al. using a model that assumes constant, nonzero 
admixture. Sex ratios were estimated based on ancestry proportion reported in Table S9 in 
Micheletti et al., for which the Euclidean distance D (Eq. S13) between the expected admixture 
proportions and reported admixture proportions was at most 0.01. Because there is not one 
single solution, a range of values is reported. The boxes represent the inter-quartile range 
(IQR), with the median sex ratio indicated by the line spanning the box. The whiskers represent 
the range between 2.5th and 97.5th percentile. For ancestries for which no box plot is shown, 
no combination of sex-specific contributions could be found that explains the observed 
ancestry proportions under a demographic scenario of constant, nonzero admixture. 

  



 

 

Supplemental Tables 

Broad Region Region 𝒑𝒇 𝒑𝒎 N 

Cabo Verde Cabo Verde 0.55 0.45 121 

C. South America Rio De La Plata 0.57 0.43 29 

C. South America Brazil 0.51 0.49 1461 

N. South America Venezuela 0.48 0.52 495 

Central America Mexico 0.55 0.45 3270 

Latin Caribbean Dominican Republic 0.53 0.47 2307 

Guianas Guianas 0.57 0.43 267 

British Caribbeana Trinidad and Tobago 0.61 0.39 282 

British Caribbean 
British Leeward Islands and French 
Caribbean 

0.45 0.55 163 

British Caribbean Haiti 0.51 0.49 596 

British Caribbean Jamaica and the Caymans 0.58 0.42 1526 

British Caribbean Bahamas 0.54 0.46 65 

United States South Atlantic 0.58 0.42 1235 

United States Gulf Coast 0.59 0.41 1411 

United States Inland Midwest 0.60 0.40 235 

United States East Inland 0.57 0.43 340 

United States Chesapeake 0.58 0.42 653 

United States Northern States 0.64 0.36 166 

N. South America Colombia 0.55 0.45 1029 

Central America Spanish Caribbean Mainland 0.53 0.47 2766 

Latin Caribbean Cuba 0.51 0.49 840 

Latin Caribbean Puerto Rico 0.55 0.45 6127 

British Caribbean British Windward Islands 0.58 0.42 293 

United States Midwest 0.58 0.42 1745 

  Mean 𝒑𝒇 Mean 𝒑𝒎 sum N 

Guianas  0.57 0.43 267 

United States  0.58 0.42 5785 

British Caribbean  0.56 0.44 2925 

Latin Caribbean  0.55 0.45 9274 

C. South America  0.51 0.49 1490 

N. South America  0.53 0.47 1524 

Central America  0.54 0.46 6036 

Cabo Verde  0.55 0.45 121 

Table S1. Calculation of female (𝒑𝒇) and male (𝒑𝒎) proportions in samples for each 

broad region. The proportions of females and males were inferred based on the data provided 

in Table S2 and S10 of Micheletti et al. 

 
a was once listed under British Caribbean and once under Latin America in Micheletti et al. Based on 
the language spoken in Trinidad and Tobago, we chose British Caribbean. 



 

 

 

  ♂  

  

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑯 
Sum female 

contributions 

♀ 

𝑺𝟏 𝑠1
𝑓
𝑠1
𝑚 𝑠1

𝑓
𝑠2
𝑚 𝑠1

𝑓
𝑠3
𝑚 𝑠1

𝑓
ℎ𝑚 𝑠1

𝑓
 

𝑺𝟐 
𝑠2
𝑓𝑠1

𝑚  ×  
(1 − 𝑝) 

𝑠2
𝑓
𝑠2
𝑚  ×  𝑐 

𝑠2
𝑓𝑠3

𝑚  ×  
(1 − 𝑝) 

𝑠2
𝑓ℎ𝑚  × 
(1 − 𝑝) 

𝑠2
𝑓
 

𝑺𝟑 𝑠3
𝑓𝑠1

𝑚 𝑠3
𝑓𝑠2

𝑚 𝑠3
𝑓𝑠3

𝑚 𝑠3
𝑓ℎ𝑚 𝑠2

𝑓
 

𝑯 ℎ𝑓𝑠1
𝑚 ℎ𝑓𝑠2

𝑚 ℎ𝑓𝑠3
𝑚 ℎ𝑓ℎ𝑚 ℎ𝑓 

Sum male 
contributions 

𝑠1
𝑚  − 

 𝑝 × 𝑠2
𝑓𝑠1

𝑚 

𝑠2
𝑚 + 

(𝑐 − 1)𝑠2
𝑓𝑠2

𝑚 

𝑠3
𝑚  −  

𝑝 × 𝑠2
𝑓𝑠3

𝑚 

ℎ𝑚 − 

 𝑝 × 𝑠2
𝑓ℎ𝑚 

 

Table S3. Mating matrix of sex-specific assortative mating scheme. Females from 𝑆2 are 
asymmetrically more likely to mate with males from 𝑆2. This is modeled in a way such that it 

does not reduce the overall likelihood of 𝑆2 females mating. In consequence, it inflates the 

contributions of 𝑆2 males and reduces the contributions of males from other populations (i.e., 
𝑆1, 𝑆3, and 𝐻). p is the probability that the mating of a 𝑆2 female with a non-𝑆2 male is rejected, 

and a male mating partner from 𝑆2 is chosen instead. c is the corresponding amount by which 
the mating of an 𝑆2 female and male is increased and is given by: 𝑐 =
1 − (𝑠2

𝑓
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Supplemental Methods 

In this section, we provide the derivation of the equilibrium model for estimating sex biases 
from observed X chromosomal and autosomal ancestry proportions after a single admixture 
event and elaborate on models proposed by Goldberg and Rosenberg for estimating ancestry 
proportions for a more recent single admixture event as well as constant, nonzero admixture. 
Both models of a single admixture event were applied by Micheletti et al. to estimate 
magnitudes of sex-biased admixture from X chromosomal and autosomal data.1 Because 
these models make a series of simplifying demographic assumptions that may have 
confounded the analyses of Micheletti et al.,1 we evaluated the robustness of the models to 
violations of these assumptions using simulations. Here, we describe performed simulations 
of admixture in the Americas and subsequent interrogation of the models of sex-biased 
admixture regarding their robustness to sampling sizes and violations of demographic 
assumptions in greater detail.  

Models of sex-biased admixture assuming a single admixture event 

Equilibrium model 

The expected X chromosomal and autosomal ancestry proportions in equilibrium after a single 
admixture event, i.e., an infinite number of generations of random mating within the admixed 
population since admixture, are easily inferred by acknowledging that the X chromosomal 
inheritance is sex-biased, while autosomal inheritance is not. Females contribute two-thirds of 
the X chromosomes and males one-third, while both sexes contribute half of the autosomes. 
Following the notation by Goldberg and Rosenberg, we will denote the admixed population by 
𝐻 and the expected ancestry proportions inherited from source population 1, 𝑆1, on the X 

chromosome and the autosomes by 𝔼[𝐻1
𝑋] and 𝔼[𝐻1

𝐴], respectively. Given the fraction of 

females and males originating from 𝑆1 (𝑠1
𝑓
 and 𝑠1

𝑚, where 𝑠1
𝑓 + 𝑠1

𝑚 = 1), 𝔼[𝐻1
𝑋] and 𝔼[𝐻1

𝐴] are 

given by:2,3 
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2

3
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1

3
𝑠1
𝑚 (S1) 
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1

2
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1

2
𝑠1
𝑚  (S2) 

Solving the Equations S1 and S2 for 𝑠1
𝑓
 and 𝑠1

𝑚 yields the sex-specific contributions from 𝑆1: 

 𝑠1
𝑓 = 3𝔼[𝐻1

𝑋] −  2𝔼[𝐻1
𝐴] (S3) 

 𝑠1
𝑚 = 4𝔼[𝐻1

𝐴] −  3𝔼[𝐻1
𝑋] (S4) 

A dynamic model for a recent single admixture event 

Here, we will briefly review the core ideas of the dynamic model proposed by Goldberg and 
Rosenberg for the X chromosomal admixture fraction of a recent single admixture event. 
Interested readers are referred to the original publications for more details.2,4 

Goldberg and Rosenberg consider the female and male contributions separately, but the 

overall contributions of 𝑆1 in generation g (𝑠1,𝑔) are the mean of both (i.e., (𝑠1,𝑔
𝑓 + 𝑠1,𝑔

𝑚 )/2). 

Furthermore, the female (male) contributions across all populations – all ancestral populations 
plus the admixed population – must sum to one.2,4,5 

The key idea of Goldberg and Rosenberg is that 𝔼[𝐻1
𝑋] and 𝔼[𝐻1

𝐴] are not identically 
distributed because females inherit one X chromosome from each parent, while males only 
inherit one X chromosome from the mother, which is why the expected X chromosomal 
ancestry proportion in males is the expected ancestry proportion of a female X chromosome 
in the previous generation.2 The authors derive a recursion for this relationship, which has a 
closed-form solution for a single admixture event (Equations 6-13 in Goldberg and 
Rosenberg).2 Thus, the expected female and male ancestry proportions for the X chromosome 
in generation g are given by: 
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for 𝑔 ≥ 1 and 𝑔 ≥ 2 in Equation S5 and S6, respectively.2 The mean X chromosomal 

ancestry proportion is then given by: 

 𝔼[𝐻1,𝑔
𝑋 ] = 𝑝𝑓 𝔼[𝐻1,𝑔,𝑓

𝑋 ] + 𝑝𝑚𝔼[𝐻1,𝑔,𝑚
𝑋 ] (S7) 

where 𝑝𝑓 and 𝑝𝑚 are the fractions of females and males in the sample, respectively (see 

Equation 24 in Goldberg and Rosenberg).2 Thus, estimates of initial contributions of females 

and males from 𝑆1 - 𝑠1,0
𝑓

 and 𝑠1,0
𝑚  - during a single admixture event g generations ago are 

obtained by solving Equations S2 and S7 for 𝑠1,0
𝑓

 and 𝑠1,0
𝑚 . 

Due to different initial X chromosomal ancestry proportions in females and males, the 
expected ancestry proportions oscillate during the generations immediately following 
admixture. However, after approximately ten generations of random mating within the admixed 
population, the ancestry proportions converge to the expected equilibrium ancestry proportion, 
defined in Equations S1 and S2 (see Figure 2 in Goldberg and Rosenberg).2  

This dynamic model and the equilibrium model defined in Equations S1 and S2 implicitly 
assume a constant population size of the admixed population, no subsequent gene flow, 
random mating, no genetic drift, and no selection. In the main text, we evaluated the 
robustness of the models to violations of some of these demographic assumptions using 
simulations. The simulations are described in detail below. 

Estimating sex bias for a single admixture event 

To determine if 𝑆1’s contributions to an admixed population were sex-biased, we require 

values for 𝑠1
𝑓
 and 𝑠1

𝑚 , which can be obtained by applying one of the models delineated above. 

The contributions of 𝑆1 are considered sex-biased if 𝑠1
𝑓 𝑠1

𝑚⁄ ≠ 1. For the equilibrium model, the 

closed-form solution for the ratio of female and male contributions is directly obtained from 
Equations S3 and S4 and is given by Equation 1 in the main text (for ease of notation, we refer 

to 𝔼[𝐻1
𝑋] and 𝔼[𝐻1

𝐴] as 𝐻1
𝑋 and 𝐻1

𝐴 in the main text). The closed-form solution for the ratio of 

female and male contributions using the model proposed by Goldberg and Rosenberg is more 
complex and is omitted here.2 

Assuming a generation time of 25 years, the transatlantic slave trade started approximately 
15 generations ago. After 15 generations of random mating within the admixed population, the 
model proposed by Goldberg and Rosenberg has always converged to the equilibrium model.2 
For these reasons, we report the sex ratios for generation 15 after admixture in Tables 1 & 2. 
We do not report sex ratios when either of the ancestry proportions is less than 0.05. Note that 
due to the sensitivity of the models, the results can marginally differ depending on the number 
of reported significant digits for ancestry proportions. Haplogroup imbalances between 
mitochondrial Y chromosomal haplogroups were derived from haplogroup frequencies. Code 
implementing these models can be found at 
https://github.com/LachanceLab/sex_biased_admixture. 

Model failure and boundary conditions 

Here, we infer conditions for model failure of the equilibrium model using the example shown 
in Figure 2A. Recall that we assume 0.123 of all autosomes in an admixed population are from 

𝑆1 (𝐻1
𝐴 = 0.123; this is the autosomal African ancestry proportion in central South America 

reported by Micheletti et al.1) and that there is an equal number of females and males in the 
admixed population. If all contributing individuals of ancestry 𝑆1 were female, what proportion 

of all X chromosomes in the admixed population (𝐻1
𝑋) are from ancestry 𝑆1? In such a 

scenario, 12.3% of all initial individuals in the initially admixing population are females from 𝑆1, 

https://github.com/LachanceLab/sex_biased_admixture


 

 

and 37.7% are females from 𝑆2 (i.e., 24.6% and 75.4% of the females come from 𝑆1 and 𝑆2, 
respectively). Since 𝑆1 does not contribute any males, the remaining 50.0% of all initial 

individuals are males from 𝑆2 (i.e., 100% of all males). Given that each female contributes two 
X chromosomes, and each male contributes a single X chromosome, the total proportion of X 
chromosomes from population 𝑆1 for the equilibrium model can be calculated as follows: 

 
𝔼[𝐻1

𝑋] =
2 × 𝑠1

𝑓 + 𝑠1
𝑚

2 × 𝑠1
𝑓 + 𝑠1

𝑚 + 2 × 𝑠2
𝑓 + 𝑠2

𝑚
=

2 × 0.246 + 0.0

2 × 0.246 + 0.0 + 2 × 0.754 + 1.0
= 0.164 (S8) 

 

Similarly, when all contributing individuals of ancestry 𝑆1 were male, the expected X 

chromosomal ancestry proportion can be calculated as follows: 

𝔼[𝐻1
𝑋] =

2 × 𝑠1
𝑓
+ 𝑠1

𝑚

2 × 𝑠1
𝑓
+ 𝑠1

𝑚 + 2 × 𝑠2
𝑓
+ 𝑠2

𝑚
=

2 × 0.0 + 0.246

2 × 0.0 + 0.246 + 2 × 1 + 0.754
= 0.082 (S9) 

Thus, given the autosomal ancestry proportions 𝐻1
𝐴 = 0.123, the model is only specified for 

𝐻1
𝑋 ∈ [0.082, 0.164]. X chromosomal ancestry proportions outside of this range cause model 

failure, i.e., negative sex ratios. 
Alternatively, boundary conditions of ancestry proportions can also be calculated by 

considering conditions where either the denominator or the numerator in Equation 1 are zero. 
The maximum plausible X chromosome ancestry proportion (i.e., when all initial individuals 
from 𝑆1 are female) is found by setting the left-hand side of Equation S4 equal to zero. 

Similarly, the minimum plausible X chromosome ancestry proportion (i.e., when all initial 
individuals from 𝑆1 are male) is found by setting the left-hand side of Equation S3 equal to 

zero.  

A model of sex-biased admixture assuming constant, nonzero admixture 

The model 

Here, we will briefly review the core ideas of the model proposed by Goldberg and Rosenberg 
for the X chromosomal and autosomal admixture fraction for constant, nonzero admixture. 
Interested readers are referred to the original publications for more details.2,4 

The model for constant, nonzero admixture follows the basic logic of the model for a single 
admixture event described above. In the short term, the ancestry proportions depend on the 

initial admixture proportions (𝑠1,0 and 𝑠2,0.) and the constant sex-specific contributions (𝑠1
𝑓
, 𝑠1

𝑚, 

etc.). Additionally, the sex-specific contributions from the admixed population (ℎ𝑓 and ℎ𝑚) 

need to be factored in generations following initial admixture. The expected autosomal 
ancestry proportion is then given by Equation 37 in Goldberg, Verdu, and Rosenberg (2014):4 

 

𝔼[𝐻1,𝑔
𝐴 ]  =  {

𝑠1,0, 𝑔 = 1

𝑠1,0ℎ
𝑔−1 + 𝑠1

1 − ℎ𝑔−1

1 −  ℎ
, 𝑔 ≥  2

 (S10) 

where 𝑠1 and ℎ are the mean of the constant sex-specific contributions from 𝑆1 and 𝐻, 

respectively. 
Initially, the X chromosomal ancestry proportion in males only depends on the initial female 

contributions from 𝑆1 (i.e., 𝑔 = 1). From the second generation on, it depends on the constant 

female contributions from 𝑆1 (i.e., 𝑠1
𝑓
) and the female contributions from the admixed 

population (ℎ𝑓) together with the X chromosome ancestry proportion in females in the previous 

generation (𝔼[𝐻1,𝑔−1,𝑓
𝑋 ]). Then, the recursion equation for the expected X chromosomal 

ancestry proportions in males is given by Equation A2 in Goldberg and Rosenberg (2015):2 



 

 

 
𝔼[𝐻1,𝑔,𝑚

𝑋 ]  =  {
𝑠1,0
𝑓 , 𝑔 = 1

𝑠1
𝑓 + ℎ𝑓𝔼[𝐻1,𝑔−1,𝑓

𝑋 ], 𝑔 ≥  2
 (S11) 

The X chromosomal ancestry fraction in females depends on the overall constant 
contributions from source population 𝑆1 (i.e., 𝑠1), the female contributions from the admixed 

population (ℎ𝑓) together with the X chromosomal ancestry proportion in females in the 

previous generation (𝔼[𝐻1,𝑔−1,𝑓
𝑋 ]), and the male contributions from the admixed population 

(ℎ𝑚) together with the X chromosomal ancestry proportion in males in the previous generation, 

which is equal to X chromosomal ancestry proportion in females two generations ago 

(𝔼[𝐻1,𝑔−2,𝑓
𝑋 ]). The expected X chromosomal ancestry proportion in females is then given by 

the second-order Equation: 

 

𝔼[𝐻1,𝑔,𝑓
𝑋 ]  =  

{
 
 

 
 

𝑠1,0 𝑔 =  1

𝑠1 +
1

2
(𝑠1,0ℎ

𝑓 + 𝑠1,0
𝑓
ℎ𝑚) 𝑔 =  2

𝑠1 +
ℎ𝑓

2
𝔼[𝐻1,𝑔 − 1,𝑓

𝑋 ]  +  
ℎ𝑚

2
(𝑠1
𝑓 + ℎ𝑓𝔼[𝐻1,𝑔−2,𝑓

𝑋 ]) 𝑔 ≥  3

 (S12) 

which is Equation A3 in Goldberg and Rosenberg (2015).2 Goldberg and Rosenberg also 
derived a closed-form expressions for the expectation of X chromosomal ancestry proportion 
in females and males (Equations 17 and 18 in their paper), but we omit them here for 
simplicity.2 

Estimating sex bias for constant, nonzero admixture 

The expectations of the X chromosomal ancestry proportions in females and males depend 
on initial admixture proportions and constant contributions during the first few generations 
immediately after initial admixture. In the long-term, however, the expectations only depend 
on the constant contributions. Since American admixture happened approximately 15 
generations ago, the effect of the initial admixture on the expected X chromosomal ancestry 
proportion is erased.2 For this reason, the choices of initial sex-specific contributions have 
negligible effects on the inferred sex ratios. Here, we chose 0.5 for females and males.  

Then, a grid search using 0.02 increments of permissible constant sex-specific 

contributions (i.e., 0 < ℎ < 1) was performed to identify combinations of 𝑠1
𝑓
, 𝑠1

𝑚, 𝑠2
𝑓
, and 𝑠2

𝑚 

that can describe the observed ancestry proportions using Equations S10 - S12. The 
goodness of the parameter fit was assessed by computing the Euclidean distance between 
the observed ancestry proportions and the expected ancestry proportions: 

 
𝐷 =  √[𝑞𝐴  −  𝔼[𝐻1,𝑔

𝐴 ] ]
2
+ [𝑞𝑋  −  (𝑝𝑓𝔼[𝐻1,𝑔,𝑓

𝑋 ]  +  𝑝𝑚𝔼[𝐻1,𝑔,𝑚
𝑋 ])]

2
 (S13) 

where 𝑝𝑓 and 𝑝𝑚 are the fraction of females and males in the sample, respectively. Equation 

S13 is Equation 25 in Goldberg and Rosenberg (2015).2 We accepted all parameter 
combinations for which 𝐷 ≤  0.01. Furthermore, only parameter combinations were accepted 

for which the sex ratios were neither zero nor infinity (i.e., when only one sex contributed). 
The model deals with a scenario of two-way admixture. We extended it to the present 

scenario of three-way admixture (i.e., African, European, and Native American admixture) by 
computing plausible sex-specific contributions for each ancestry separately while aggregating 
the contributions of the two other ancestries. Code implementing this model can be found at 
https://github.com/LachanceLab/sex_biased_admixture. 

https://github.com/LachanceLab/sex_biased_admixture


 

 

Simulations of American admixture and estimation of ancestry proportions 

To evaluate how sampling sizes and violations of demographic assumptions impact the results 
of the above models, we simulated American admixture 15 generations ago. We used Gravel’s 
model of African, European, and Asian demographic history to simulate ancestral continental 
populations.6 Then, we simulated three-way admixture of these continental populations with 
admixture proportions taken from Browning and Browning (2018).7 Because the admixture 
proportions were chosen arbitrarily, we replace the notion of African, European, and Asian 
source populations with source populations 1 (𝑆1), 2 (𝑆2), and 3 (𝑆3), respectively. This is to 

avoid any misleading associations with a specific ancestry by the reader later in the text. 

American admixture 

Prior to admixture, we simulated three continental ancestries using Gravel’s model.6 The 
ancestral 𝑆1 population had an effective population size of 7,310 and experienced a population 
size expansion to 14,475 individuals 5,919 generations ago (148kya assuming 25 years per 
generation). The ancestral population of 𝑆2 and 𝑆3 split 2056 generations ago (~51kya), 
experiencing an initial bottleneck with a population size of 1,861. The split of 𝑆2 and 𝑆3 

occurred 940 generations ago (~23kya). 𝑆2 and 𝑆3 then grew exponentially at rates of 0.38% 

and 0.48%, respectively. Symmetrical migration between the different populations was 
simulated at rates determined by Gravel et al.6 Three-way admixture of 𝑆1, 𝑆2, and 𝑆3 was 

simulated 15 generations ago, using the admixture proportions from Browning et al. (2018) 
(1/6 𝑆1, 1/3 𝑆2, and 1/2 𝑆3).8 The contributions from 𝑆1 and 𝑆3 were simulated to be female-

biased with ratios of two and 1.25 females to one male, respectively, while contributions from 
𝑆2 were simulated to be male-biased with a ratio of two males to one female. These ratios 
guaranteed the same number of females and males in the initially admixed population, given 
the admixture proportions.  

Similarly to Gravel et al., we also assumed a recombination rate of 1 x 10-8 and a mutation 
rate of 2.36 x 10-8 per base pair per generation.6 The mutation rate is higher than more recent 
estimates,9 but we decided to stick to it to ensure realistic levels of genetic diversity. 

We simulated a 100 Mb autosome, 100Mb sex chromosomes (X and Y chromosome), and 
20 kb mitochondrial DNA in SLiM v3.7.1 using tree-sequence recording.10,11 Tree-sequence 
recording allowed to omit neutral mutation during the forward simulations and superimpose 
them later, increasing computational efficiency. To ensure full coalescence, the tree 
sequences were first recapitated in Python3 using pyslim v0.7. Subsequently, neutral 
mutations were added using msprime v1.1.1 in Python3.12,13 Finally, random individuals were 
sampled from each population without replacement (i.e., 𝑆1, 𝑆2, 𝑆3, and the admixed 
population), and the corresponding data was written to a VCF file. Code implementing these 
simulations can be found at: https://github.com/LachanceLab/sex_biased_admixture. 

Alternative demographic scenarios 

As American admixture was more complex than a simple single admixture event,8,14–19 we 
assessed the impact of violations of demographic assumptions on inferred sex ratios by 
simulating alternative scenarios, including population growth, gene flow after initial admixture, 
and sex-specific assortative mating.  

The models assume a constant population size of the admixed population, but admixed 
populations in the Americas evidently experienced recent population growth.8 Therefore, we 
assessed the effect of population growth on the inferred sex-specific contributions by 
simulating exponential population growth of the admixed population at a rate of 𝑟 = 0.05. 

Furthermore, the assumption of no gene flow after initial admixture has been violated during 
admixture in the Americas.14 To assess the effect of violations of this assumption, we 
simulated constant, nonzero gene flow from the source population into the admixed population 
with a migration rate from 𝑆1  of 𝑚1 = 0.05, an 𝑆2 migration rate of 𝑚2 = 0.025, and an 𝑆3 
migration rate of 𝑚3 = 0.01. Constant migration was assumed to have the same sex biases 

as the initial admixture event (i.e., two 𝑆1 females for every male, two 𝑆2 males for every 
female, and 1.25 𝑆3 females for every male). As population growth and constant gene flow 
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both have happened to admixed populations in the Americas, we also assessed the combined 
effect on inferred sex ratios (i.e., 𝑚1 = 0.05, 𝑚2 = 0.025, 𝑚3 = 0.01, and 𝑟 = 0.05).  

From historical records, it is well established that random mating did not occur in admixed 
populations in the Americas. For instance, European males mated with African or Native 
American females more frequently than European females mated with African or Native 
American males as a consequence of anti-miscegenation laws and sexual exploitation of 
enslaved women by enslavers.15–19 In previous theoretical work, Goldberg, Rastogi, and 
Rosenberg showed that assortative mating does not affect sex ratios inferred from X 
chromosomal and autosomal data because it does not change expected mean ancestry 
proportions. They showed that assortative mating only increases the variances if mating 
preferences are symmetrical with respect to sex. However, sex-specific assortative changes 
expected mean ancestry proportions, and thus the appalling laws and social norms in the 
aftermath of the transatlantic slave trade may have affected sex ratios inferred from X 
chromosomal and autosomal data.20 To evaluate the effect of sex-specific assortative mating, 
we performed simulations in which 𝑆2 females are asymmetrically more likely to mate with 𝑆2 
males. This was achieved by rejecting a mating partner of an 𝑆2 female in 40% of the cases 

(p=0.4) if the partner was a non-𝑆2 male and selecting a random 𝑆2 male instead. In this mating 

scheme, female contributions from the different populations remain unchanged, but male 
contributions change, with 𝑆2 males contributing more and males from all other populations 

contributing less than expected under a random mating scheme (Table S3). For example, for 
a single admixture event, the male contributions from 𝑆2 are increased by approximately 0.05, 

while the male contributions from 𝑆1 and 𝑆3 are decreased by approximately 0.01 and 0.04. 

We also evaluated the effects of more extreme sex-specific assortative mating, rejecting non-
𝑆2 males in 90% of the cases (p=0.9). Code implementing these simulations can be found at: 

https://github.com/LachanceLab/sex_biased_admixture. 

Post-processing 

The obtained VCF files were normalized using bcftools v1.14-36-g9560eb.21 Subsequently, 
linkage disequilibrium (LD) pruning of SNPs with an r2 threshold of 0.1 (--indep-pairwise 50 kb 
1 0.1) and minor allele frequency filtering (MAF ≥ 0.01) was performed on the simulated X 
chromosomes and autosomes using plink v2.00a3LM.22 X chromosomal and autosomal 
ancestry proportions were then inferred using ADMIXTURE v1.3.0 with K=3, using sampled 
individuals from the source populations for supervised training (--supervised).23 Males were 
treated as haploid on the X chromosome (--haploid=”male:23”). Admixed individuals with more 
than 95% of one ancestry were excluded from subsequent analyses. 

Established methods for inferring mtDNA and Y chromosome haplogroups such as 
haplogrep224 and yHaplo25 rely on human reference data, and thus cannot be used for inferring 
haplogroups of our simulated data. Instead, mtDNA and Y chromosome haplogroups were 
inferred by performing a PCA with plink v2.00a3LM and subsequent clustering of the samples 
of the three source populations (i.e., 𝑆1, 𝑆2, and 𝑆3). For each cluster, a representative 

ancestral haplogroup was assigned based on the population from which most individuals in 
each cluster were sampled. For example, if a cluster consisted of 100 individuals, of which 90 
were sampled from 𝑆1, six from 𝑆2, and four from 𝑆3, the representative ancestral haplogroup 
of this cluster would be 𝑆1. Admixed individuals were then assigned the ancestral haplogroup 

of their closest neighbor, who was sampled from one of the source populations. 
We tested several clustering algorithms implemented in scikit-learn v1.0.226 (incl. 

agglomerative clustering, k-Means, DBSCAN, affinity propagation, spectral clustering, and 
mean shift) with various hyperparameters. We selected the algorithm and hyperparameters 
that produced the most homogenous clusters, i.e., clusters mainly consisted of individuals 
sampled from the same source population. The homogeneity of clusters was assessed using 
the loss function: 

 
𝐿 =∑∑𝑑(𝐼, 𝑗)  ×  𝜃

𝑛

𝑗=1

𝑛

𝑖=1

 (S14) 
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where n is the number of sampled individuals, 𝑑(𝑖, 𝑗) is the Euclidean distance between the ith 
and jth individual in the PCA space, and θ is a Heaviside step function, which is one if the ith 

and the jth individual were clustered together but were sampled from different populations, and 
0 otherwise.  

This clustering-based approach of assigning haplogroups is imperfect as migration can 
possibly bias the haplogroup assignment (this is a general caveat when using mtDNA and Y 
chromosome haplogroups), e.g., an individual that recently migrated from 𝑆1 to 𝑆2 probably 

has an 𝑆1 haplogroup and not an 𝑆2. However, in practice, we found that the low levels of 
simulated migrations between the source population did not bias our haplogroup assignment 
in admixed individuals, and the predicted frequencies of 𝑆1, 𝑆2, and 𝑆3 haplogroups in the 
admixed population reflected the simulated admixture proportions.  

Code implementing these analyses can be found at 
https://github.com/LachanceLab/sex_biased_admixture. 
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Supplemental Results 

Estimating sex biases from summary statistics of Micheletti et al. using a 
constant admixture model 

Although we did not observe sex ratios as large as those reported by Micheletti et al. or any 
cases of model failure when simulating constant gene flow after initial admixture (Table 2), it 
may have been a confounding factor in their analysis. For this reason, we estimated sex biases 
based on the X chromosomal and autosomal ancestry proportions reported by Micheletti et al. 
in Table S91 (also see Table 1) using a model that assumes constant, nonzero admixture.2 
This model identifies a set of constant, nonzero sex-specific contributions for each population 
that fit the observed X chromosomal and autosomal ancestry proportions. In general, this 
model yields more moderate sex ratios (Figure S1). However, often the range of possible sex 
ratios is wide, indicating that sex biases of various magnitudes and either female or male sex 
bias could explain the data. For instance, in regions with substantial amounts of unassigned 
ancestry (i.e., the Latin Caribbean, northern South America, central South America, and 
Central America), the range of possible sex ratios for European ancestry (yellow) spans a 
wide range, and median sex ratios are close to one, so that it is unclear whether European 
contributions were female- or male-biased (Figure S1). This wide range of possible sex ratios 
indicates that unassigned ancestry causes problems even if a model is used that assumes a 
more appropriate demographic scenario.   
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