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Supplemental Note A: The elements of 𝛀 in eq. (7)  

Following Olkin and Finn 1, each element of 𝛀 in eq. (7) can be expressed as  

𝑣𝑎𝑟(𝑟𝑦,𝑥1
) = (1 − 𝜌𝑦,𝑥1

2 )2 𝑁⁄    

𝑣𝑎𝑟(𝑟𝑦,𝑥2
) = (1 − 𝜌𝑦,𝑥2

2 )2 𝑁⁄  

𝑣𝑎𝑟(𝑟𝑥1,𝑥2
) = (1 − 𝜌𝑥1,𝑥2

2 )2 𝑁⁄  

 

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

) = [1/2(2𝜌𝑥1,𝑥2
− 𝜌𝑦,𝑥1

𝜌𝑦,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑥1,𝑥2
3 ] 𝑁⁄  

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑥1,𝑥2

) = [1/2(2𝜌𝑦,𝑥2
− 𝜌𝑦,𝑥1

𝜌𝑥1,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑦,𝑥2
3 ] 𝑁⁄  

𝑐𝑜𝑣(𝑟𝑦,𝑥2
, 𝑟𝑥1,𝑥2

) = [1/2(2𝜌𝑦,𝑥1
− 𝜌𝑦,𝑥2

𝜌𝑥1,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑦,𝑥1
3 ] 𝑁⁄  

 

 

Supplemental Note B: r2redux manual 

The ‘r2redux’ package can be used to derive test statistics for 𝑅2 values from polygenic risk 

score (PGS) models (variance and covariance of 𝑅2 values, p value and 95% confidence 

intervals (CI)) (see manual https://cran.r-project.org/web/packages/r2redux/r2redux.pdf). For 

example, it can test if two sets of 𝑅2 values from two different PGS models are significantly 

different to each other whether the two sets of PGS are independent or dependent. Because 𝑅2 

value is often regarded as the predictive ability of PGS, r2redux package can be useful to assess 

the performances of PGS methods or multiple sets of PGS based on different information 

sources. Furthermore, the package can derive the information matrix of 𝛽̂1
2 and 𝛽̂2

2 from a 

multiple regression (see olkin_beta1_2 or olkin_beta_info function in the manual), which is a 

basis of a PGS-based genomic partitioning method (see r2_enrich or r2_enrich_beta function 

in the manual). It is recommended that the target sample size in the PGS study should be more 

than 2,000 for quantitative traits (Figure S27) and more than 5,000 for binary responses or case-

control studies (Figures S28 and S29). The p value generated from the r2redux package 

provides two types of p values (for one- and two-tailed test) unless the comparison is for nested 

models (e.g. 𝑦 = 𝑃𝐺𝑆1 + 𝑃𝐺𝑆2 + 𝑒 vs. 𝑦 = 𝑃𝐺𝑆2 + 𝑒) where the 𝑅2 of the full model is 

expected to be always higher than the reduced model.  When there are multiple covariates (e.g. 

age, sex and other demographic variables), the phenotypes can be adjusted for the covariates, 

and pre-adjusted phenotypes (residuals) should be used in the r2redux.   

https://cran.r-project.org/web/packages/r2redux/r2redux.pdf


 
 

 

Installation 

To use r2redux: 

install.packages("r2redux")  
library(r2redux) 

or 

install.packages("devtools") 
library(devtools) 
devtools::install_github("mommy003/r2redux") 
library(r2redux) 

Quick start  

We illustrate the usage of r2redux using multiple sets of PGS estimated based on GWAS 

summary statistics from UK Biobank or Biobank Japan (reference datasets). In a target dataset, 

the phenotypes of target samples (y) can be predicted with PGS (a PGS model, e.g. 𝑦 = 𝑃𝐺𝑆 +

𝑒, where y and PGS are column-standardised 1. Note that the target individuals should be 

independent from reference individuals. We can test the significant differences of the predictive 

ability (𝑅2) between a pair of PGS (see r2_diff function and example in the manual). 

Data preparation 

a. Statistical testing of significant difference between 𝑅2 values for p value thresholds: 

r2redux requires only phenotype and estimated PGS (from PLINK or any other software). Note 

that any missing value in the phenotypes and PGS tested in the model should be removed. If 

we want to test the significant difference of 𝑅2 values for p value thresholds, r2_diff function 

can be used with an input file that includes the following fields (also see 

test_ukbb_thresholds_scaled in the example directory form github  

(https://github.com/mommy003/r2redux)  or read dat1 file embedded within the package and 

r2_diff function in the manual (https://cran.r-project.org/web/packages/r2redux/r2redux.pdf). 

• Phenotype (𝑦) 

• PGS for p value 1 (𝑥1) 

• PGS for p value 0.5 (𝑥2) 

• PGS for p value 0.4 (𝑥3) 

https://github.com/mommy003/r2redux
https://cran.r-project.org/web/packages/r2redux/r2redux.pdf


 
 

• PGS for p value 0.3 (𝑥4) 

• PGS for p value 0.2 (𝑥5) 

• PGS for p value 0.1 (𝑥6) 

• PGS for p value 0.05 (𝑥7) 

• PGS for p value 0.01 (𝑥8) 

• PGS for p value 0.001 (𝑥9) 

• PGS for p value 0.0001 (𝑥10) 

To get the test statistics for the difference between 𝑅2(y~x[,v1]) and 𝑅2(y~x[,v2]). (here we 

define 𝑅1
2= 𝑅2(y~x[,v1])) and 𝑅2

2=𝑅2(y~x[,v2]))) 

 

 

dat=read.table("test_ukbb_thresholds_scaled") (see example files) or 

dat=dat1 (this example embedded within the package) 

nv=length(dat$V1) 

v1=c(1) 

v2=c(2) 

output=r2_diff(dat,v1,v2,nv) 

r2redux output 

output$var1 (variance of 𝑅1
2) 

0.0001436128 

output$var2 (variance of 𝑅2
2) 

0.0001451358 

output$var_diff (variance of difference between 𝑅1
2and 𝑅2

2) 

5.678517e-07 

output$r2_based_p (p value for significant difference between 𝑅1
2 and 𝑅2

2) 

 0.5514562 

output$mean_diff (differences between 𝑅1
2 and 𝑅2

2) 

-0.0004488044 

output$upper_diff (upper limit of 95% CI for the difference) 

0.001028172 

output$lower_diff (lower limit of 95% CI for the difference) 

-0.001925781 

 

b. PGS-based genomic enrichment analysis: If we want to perform some enrichment analysis 

(e.g., regulatory vs non_regulatory) in the PGS context to test significantly different from the 

expectation (𝑝𝑒𝑥𝑝= # SNPs in the regulatory / total # SNPs = 4%). We simultaneously fit two 

sets of PGS from regulatory and non-regulatory to get 𝛽̂𝑟𝑒𝑔𝑢
2  and 𝛽̂𝑛𝑜𝑛−𝑟𝑒𝑔𝑢

2 , using a multiple 

regression, and assess if the ratio,  
𝛽̂1

2

𝑟𝑦,(𝑥1,𝑥2)
2  are significantly different from the expectation, 𝑝𝑒𝑥𝑝. 

To test this, we need to prepare input file for r2redux that includes the following fields (e.g. 



 
 

test_ukbb_enrichment_choles in example directory or read dat2 file embedded within the 

package and r2_enrich_beta function in the manual). 

• Phenotype (𝑦) 

• PGS for regulatory region (𝑥1) 

• PGS for non-regulatory region (𝑥2) 

To get the test statistic for the ratio which is significantly different from the expectation. 

var(𝛽̂1
2/𝑟𝑦,(𝑥1,𝑥2)

2 ), where 𝛽̂1
2 is the squared regression coefficient of 𝑥1 from a multiple 

regression model, i.e. 𝑦 = 𝑥1𝛽1 + 𝑥2𝛽2 + 𝑒, and 𝑟𝑦,(𝑥1,𝑥2)
2  is the coefficient of determination 

of the model. It is noted that 𝑦, 𝑥1 and 𝑥2 are column standardised (mean 0 and variance 1). 

 

dat=read.table("test_ukbb_enrichment_choles") (see example file) or  

dat=dat2 (this example data is embedded within the package) 

 nv=length(dat$V1) 

v1=c(1) 

v2=c(2) 

dat=dat2 

nv=length(dat$V1) 

v1=c(1) 

v2=c(2) 

output=r2_beta_var(dat,v1,v2,nv) 

r2redux output 

output$beta1_sq (𝛽̂1
2) 

0.01118301 

output$beta2_sq (𝛽̂2
2) 

0.004980285 

output$var1 (variance of 𝛽̂1
2) 

7.072931e-05 

output$var2 (variance of 𝛽̂2
2) 

3.161929e-05 

output$var1_2 (variance of difference between 𝛽̂1
2and 𝛽̂2

2) 

0.000162113 

output$cov (covariance between 𝛽̂1
2and 𝛽̂2

2) 

-2.988221e-05 

output$upper_beta1_sq (upper limit of 95% CI for 𝛽̂1
2) 

0.03037793 

output$lower_beta1_sq (lower limit of 95% CI for 𝛽̂1
2) 

-0.00123582 

output$upper_beta2_sq (upper limit of 95% CI for 𝛽̂2
2) 

0.02490076 

output$lower_beta2_sq (lower limit of 95% CI for 𝛽̂2
2) 

-0.005127546 

 

dat=dat2 (this example data is embedded within the package) 

nv=length(dat$V1) 

v1=c(1) 



 
 

v2=c(2) 

expected_ratio=0.04 

output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio) 

r2redux output 

output$beta1_sq (𝛽̂1
2) 

0.01118301 

output$beta2_sq (𝛽̂2
2) 

0.004980285 

output$ratio1 (𝛽̂1
2/𝑅2) 

0.4392572 

output$ratio2 (𝛽̂2
2/𝑅2) 

0.1956205 

output$ratio_var1 (variance of ratio 1) 

0.08042288 

output$ratio_var2 (variance of ratio 2) 

0.0431134 

output$upper_ratio1 (upper limit of 95% CI for ratio 1) 

0.9950922 

output$lower_ratio1 (lower limit of 95% CI for ratio 1) 

-0.1165778 

output$upper_ratio2 upper limit of 95% CI for ratio 2) 

0.6025904 

output$lower_ratio2 (lower limit of 95% CI for ratio 2) 

-0.2113493 

output$enrich_p1 (two tailed p value for 𝛽̂1
2/𝑅2is significantly different from exp1) 

0.1591692 

output$enrich_p1_one_tail (one tailed p value for 𝛽̂1
2/𝑅2 is significantly different from exp1) 

0.07958459 

output$enrich_p2 (two tailed p value for 𝛽̂2
2/R2 is significantly different from (1-exp1)) 

0.000232035 

output$enrich_p2_one_tail (one tailed p value for 𝛽̂2
2/𝑅2 is significantly different from (1-

exp1)) 

0.0001160175 

 

A code for an additional unit test is available in “r2redux/tests/testthat/” directory 

 

The r2redux manual (https://cran.r-project.org/web/packages/r2redux/r2redux.pdf) and their 

example files can be downloaded from https://github.com/mommy003/r2redux or from CRAN 

[install.packages("r2redux") in R].  

 

 

 

 

 

 

https://cran.r-project.org/web/packages/r2redux/r2redux.pdf
https://github.com/mommy003/r2redux


 
 

 

Supplemental figures  

 

 

 

 

Figure S1: Wishart’s equation and Equation 6 provide identical results for any 𝑹𝟐 values 

ranging from 0 to 1 using sample size 25000.  

 

 

 

 

 

 



 
 

 

Figure S2: Incorrect type I error rate for testing the difference between two 𝑹𝟐 values (𝒓𝒚,𝒙𝟏
𝟐  vs. 

𝒓𝒚,𝒙𝟐
𝟐 ) when ignoring the correlation between two sets of PGS (𝒓𝒙𝟏,𝒙𝟐

> 0). Simulations of y, 𝑥1 and 

𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.100 0.100
0.100 1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠
0.100 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1

], and 

𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒 in each replicate (the type I error 

rate was obtained over 10,000 replicates). In each replicate, chi-squared test is used, i.e. 𝜒1
2 =

𝑑2

𝜎𝑑
2, where 

d = 𝑟𝑦,𝑥1
– 𝑟𝑦,𝑥2

and 𝜎𝑑
2 = 𝜎𝑟𝑦,𝑥1

2
2 + 𝜎𝑟𝑦,𝑥2

2
2 when ignoring the covariance term, and 𝜎𝑑

2 = 𝜎𝑟𝑦,𝑥1
2

2 +  𝜎𝑟𝑦,𝑥2
2

2 −

2𝑐𝑜𝑣(𝑟𝑦,𝑥1
2 , 𝑟𝑦,𝑥2

2 ) when considering the covariance term. The sample size is 25,000 in each replication. 

We used a significance level at p value = 0.05 (red dashed line).    

 

 

 

 

 

 

 



 
 

 

Figure S3: Reduced power for testing the difference between two 𝑹𝟐 values (𝒓𝒚,𝒙𝟏
𝟐  𝐯𝐬. 𝒓𝒚,𝒙𝟐

𝟐 ) when 

ignoring the correlation between two sets of PGS (𝒓𝒙𝟏,𝒙𝟐
> 0). Simulations of y, 𝑥1 and 𝑥2 were based 

on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.120 0.100
0.120 1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠
0.100 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  

were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒 in each replicate (the power was obtained over 

10,000 replicates). In each replicate, chi-squared test is used (the same as in Figure S1). The sample 

size is 25,000 in each replication. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S4: Distribution of regression coefficients are asymptotically normal when correlation 

between two PGS is 0.10. Simulations of y and 𝑥1 were based on a correlation of 𝑟𝑦,𝑥1
= 0.10 and the 

regression coefficient was estimated from a model 𝑦 = 𝑥1 + 𝑒 using 5,000 replications. The sample 

size varies from N=100 to N=25,000. The p value is to test the normality of estimated regression 

coefficients, using Shapiro-Wilk test, i.e. P < 0.05 means that the regression coefficients are not 

normally distributed. Skewness and kurtosis are close to 0 and 3 if regression coefficients are normally 

distributed. For 𝑟𝑦,𝑥1
= 0.10, the regression coefficients are approximately normal for all the sample 

sizes considered (N=100 – 25,000). 

 

 



 
 

 

Figure S5: Distribution of regression coefficients are asymptotically normal when correlation 

between two PGS is 0.25. Simulations of y and 𝑥1 were based on a correlation of 𝑟𝑦,𝑥1
= 0.25 and the 

regression coefficient was estimated from a model 𝑦 = 𝑥1 + 𝑒 using 5,000 replications. The sample 

size varies from N=100 to N=25,000. The p value is to test the normality of estimated regression 

coefficients, using Shapiro-Wilk test, i.e. P < 0.05 means that the regression coefficients are not 

normally distributed. Skewness and kurtosis are close to 0 and 3 if regression coefficients are normally 

distributed. For 𝑟𝑦,𝑥1
= 0.25, the regression coefficients are approximately normal for all the sample 

sizes investigated except N=100. 

 

 

 



 
 

 

Figure S6: Distribution of regression coefficients are asymptotically normal when correlation 

between two PGS is 0.50. Simulations of y and 𝑥1 were based on a correlation of 𝑟𝑦,𝑥1
= 0.50 and the 

regression coefficient was estimated from a model 𝑦 = 𝑥1 + 𝑒 using 5,000 replications. The sample 

size varies from N=100 to N=25,000. The p value is to test the normality of estimated regression 

coefficients, using Shapiro-Wilk test, i.e. P < 0.05 means that the regression coefficients are not 

normally distributed. Skewness and kurtosis are close to 0 and 3 if regression coefficients are normally 

distributed. For 𝑟𝑦,𝑥1
= 0.50, the regression coefficients are approximately normal when the sample 

sizes investigated was N> 5000. 

 

 

 

 

 

  

 

 

 

 

 



 
 

 

Figure S7: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates when varying sample size. Simulations of y, 𝑥1 and 𝑥2 

were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) 

was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. The empirical variance of 𝑅2 over 10,000 

replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point in 

the diagonal represents the variance of 𝑅2 with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 

 

 

 

 

 

 



 
 

 

Figure S8: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates when varying sample size. 

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 0.246 0.139

0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒, 

respectively, to get their difference in each replicate. The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  over 10,000 

replicates was estimated. The theoretical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. (9). Each data 

point in the diagonal represents the variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with a sample size of 50000, 40000, 30000, 

20000 and 10000.  

 

 

 

 

 



 
 

 

Figure S9: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference of (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates when varying sample 

size. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 0.246 0.139

0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2  were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒 and 𝑦 =

𝑥1 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  

over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was obtained from 

eq. (11). Each data point in the diagonal represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with a sample size 

of 50000, 40000, 30000, 20000 and 10000.  

.  

 

 

 

 

 

 

 

 

 



 
 

 

Figure S10: Nearly identical values between the theoretical and empirical variances of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates when varying sample size. Simulations of y, 𝑥1 and 𝑥2 

were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.176 0.148
0.176 1 0.610
0.148 0.610 1

], and 𝛽̂1
2 and 

𝑅2 were obtained from a multiple regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the 

coefficient of determination explained by 𝑥1 in each replicate. It was assumed that the expectation is 

known (𝑝
𝑒𝑥𝑝

= 0.04 was used). The empirical variance of 
𝛽̂1

2

𝑅2 −  𝑃𝑒𝑥𝑝 over 10,000 replicates was 

estimated. The theoretical variance of 
𝛽̂1

2

𝑅2 −  𝑃𝑒𝑥𝑝 was obtained from eq. (16). Each data point in the 

diagonal represents the variance of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 with a sample size of 50000, 40000, 30000, 20000 and 

10000.  

 

 

 

 

 

 

 

 



 
 

 

Figure S11: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates when varying 𝑹𝟐 value. Simulations of y, 𝑥1 and 𝑥2 

were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.447
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.447 0.800 1
] and 𝑅2   

(𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. The empirical variance of 𝑅2   over 

10,000 replicates was estimated. The theoretical variance of 𝑅2  was obtained from eq. (6). A sample 

size of 30,000 was used. Each data point in the diagonal represents the variance of 𝑅2 with 𝑟𝑦,𝑥1
2  = 0.80, 

0.70, 0.10, 0.60, 0.50, 0.20, 0.40 and 0.30.  

 

 

 

 

 

 



 
 

 

Figure S12: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates when varying 𝑹𝟐 difference. 

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.447

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.447 0.800 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 =

𝑥2 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  

over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. 

(9). A sample size of 30,000 was used. Each data point in the diagonal represents the variance of 𝑟𝑦,𝑥1
2 −

𝑟𝑦,𝑥2
2  with 𝑟𝑦,𝑥1

2 − 𝑟𝑦,𝑥2
2  = 0.50, 0.40, 0, 0.30, 0.10 and 0.20.  

 

 

 

 

 



 
 

 

Figure S13: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates when varying 𝑹𝟐 

difference. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.447

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.447 0.800 1

], and  𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2   were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒  

and 𝑦 = 𝑥1 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 

𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was 

obtained from eq. (11). A sample size of 30,000 was used. Each data point in the diagonal represents 

the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  = 0.10, 0.20, 0, 0.30, 0.40 and 0.50.  

 

 

 



 
 

 

Figure S14. Nearly identical values between the theoretical and empirical variances of 
𝛽̂1

2

𝑅2 −  𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates when varying correlation structure. Simulations of y, 

𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.148

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.610
0.148 0.610 1

], and 𝛽̂1
2 and 𝑅2 were obtained from a multiple regression model 𝑦 =

𝑥1 + 𝑥2 + 𝑒 to get the proportion of the coefficient of determination explained by 𝑥1 in each replicate. 

It was assumed that the expectation is known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). The empirical variance of 
𝛽̂1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 was obtained from 

eq. (16). A sample size of 30,000 was used. Each data point in the diagonal represents the variance of 
𝛽̂1

2

𝑅2 −  𝑃𝑒𝑥𝑝 with 𝑟𝑦,𝑥1
 = 0.10, 0.30, 0.25, 0.05, 0.15, 0.20 and 0.176 (resulting in 

𝛽̂1
2

𝑅2 −  𝑃𝑒𝑥𝑝 = -0.026, 

1.173, 0.994, 0.130, 0.286, 0.703 and 0.516).  

 



 
 

 

Figure S15: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚𝟏,𝒙𝟏
𝟐 − 𝒓𝒚𝟐,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates when using two sets of 

independent PGS (e.g., Male vs female PGS). Simulations of 𝑦1 and 𝑥1 were based on a correlation 

structure [
1 𝑟𝑦1,𝑥1

𝑟𝑦1,𝑥1
1

] = [
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1
], simulations of 𝑦2 and 𝑥2 were based on a correlation 

structure [
1 𝑟𝑦2,𝑥2

𝑟𝑦2,𝑥2
1

] = [
1 0.447

0.447 1
] and 𝑟𝑦1,𝑥1

2  and 𝑟𝑦2,𝑥2
2  were obtained from models 𝑦1 = 𝑥1 +

𝑒 and 𝑦2 = 𝑥2 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 

𝑟𝑦1,𝑥1

2 − 𝑟𝑦2,𝑥2

2  over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2  was 

obtained from eq. (14). A sample size of 15,000 and 17,000 were used for 1st and 2nd PGS, respectively. 

Each data point in the diagonal represents the variance of 𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2  with 𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2  = 0, 0.02, 

0.04, 0.06, 0.08 and 0.10.  

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Figure S16: The predictive ability of (𝑹𝟐) for male and female, when predicting European male 

and female separately using UKBB and BBJ discovery samples. 

Panel A: The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals.  

Panel B: Dot points represent the differences of 𝑅2 values between male and female PGS models, 

and error bars indicate 95% confidence intervals of the difference. 

95% confidence interval for the differences of 𝑅2 between two independent sets of PGS (male and 

female) was estimated from eq. (15).   

 

 

 



 
 

 

Figure S17: The predictive ability (𝑹𝟐) of PGS estimated based on SNPs below the 𝒑𝑻when 

predicting BMI in 28,880 European samples using UKBB discovery samples (GWAS summary 

statistics). 

A) The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals. The values 

above 95% CIs are p values indicating that 𝑅2 values are not different from zero.  

B) The main bars represent the difference of 𝑅2 values between the corresponding threshold and the 

best-performing threshold and error bars indicate 95% confidence intervals. The values above 95% CIs 

are p values indicating the significance of the difference between the pairs of 𝑅2 values.  

 

 

 



 
 

 

Figure S18: The predictive ability (𝑹𝟐) of PGS estimated based on SNPs below the 𝒑𝑻 when 

predicting cholesterol in 28,880 European samples using UKBB discovery samples (GWAS 

summary statistics). 

A) The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals. The values 

above 95% CIs are p values indicating that 𝑅2 values are not different from zero.  

B) The main bars represent the difference of 𝑅2 values between the corresponding threshold and the 

best-performing threshold and error bars indicate 95% confidence intervals. The values above 95% CIs 

are p values indicating the significance of the difference between the pairs of 𝑅2 values.  

 

 

 

 



 
 

 

Figure S19: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying sample size.  Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 +

𝑒 in each replicate. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical 

variance of 𝑅2 was obtained from eq. (6). Each data point in the diagonal represents the variance of 𝑅2 

with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S20: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates of binary responses assuming 

5% disease prevalence when varying sample size. Simulations of y, 𝑥1 and 𝑥2 were based on a 

correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were 

obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒, respectively, to get their difference in each replicate. 

The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  over 10,000 replicates was estimated. The theoretical variance 

of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. (9). Each data point in the diagonal represents the variance of 

𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 



 
 

 

Figure S21: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates of binary responses 

assuming 5% disease prevalence when varying sample size. Simulations of y, 𝑥1 and 𝑥2 were based 

on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2  

were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒 and 𝑦 = 𝑥1 + 𝑒, respectively, to get their difference in 

each replicate. The empirical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  over 10,000 replicates was estimated. The 

theoretical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was obtained from eq. (11). Each data point in the diagonal 

represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with a sample size of 50000, 40000, 30000, 20000 and 

10000.  

 

 

 

 

 

 

 



 
 

 

Figure 22:  Nearly identical values between the theoretical and empirical variances of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying sample size. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.176 0.148
0.176 1 0.610
0.148 0.610 1

], and 𝛽̂1
2 and 𝑅2 were obtained from a multiple 

regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the coefficient of determination explained 

by 𝑥1 in each replicate. It was assumed that the expectation is known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). The 

empirical variance of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 
𝛽̂1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 was obtained from eq. (16). Each data point in the diagonal represents the variance of 
𝛽̂1

2

𝑅2 −

 𝑃𝑒𝑥𝑝with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 

 

 

 

 



 
 

 

Figure S23: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying 𝑹𝟐 value. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
] and 𝑅2(𝑟𝑦,𝑥1

2 ) was obtained from a model 𝑦 =

𝑥1 + 𝑒 in each replicate. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The 

theoretical variance of 𝑅2 was obtained from eq. (6). A sample size of 30,000 was used. Each data point 

in the diagonal represents the variance of 𝑅2 with 𝑟𝑦,𝑥1
2  = 0.02, 0.04, 0.06, 0.08, and 0.10.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S24: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates of binary responses assuming 

5% disease prevalence when varying 𝑹𝟐 difference. Simulations of y, 𝑥1 and 𝑥2 were based on a 

correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
], and 𝑟𝑦,𝑥1

2  and 𝑟𝑦,𝑥2
2  were 

obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒, respectively, to get their difference in each replicate. 

The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  over 10,000 replicates was estimated. The theoretical variance 

of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. (9). A sample size of 30,000 was used. Each data point in the 

diagonal represents the variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  = 0, 0.02, 0.04, 0.0.06, and 0.08.  

 

 

 



 
 

 

Figure S25: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates of binary responses 

assuming 5% disease prevalence when varying 𝑹𝟐 difference. Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
], and  

𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2   were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒  and 𝑦 = 𝑥1 + 𝑒, respectively, to get 

their difference in each replicate. The empirical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  over 10,000 replicates was 

estimated. The theoretical variance of𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was obtained from eq. (11). A sample size of 

30,000 was used. Each data point in the diagonal represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with 

𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  = 0.02, 0.00, 0.04, 0.0.06, and 0.08.  

 

 

 

 

 

 

 

 

 



 
 

 

Figure S26: Nearly identical values between the theoretical and empirical variances of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying correlation structure.  Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.148
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.610

0.148 0.610 1
], and 𝛽̂1

2  and 𝑅2 were obtained from a multiple 

regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the coefficient of determination explained 

by 𝑥1 in each replicate. It was assumed that the expectation is known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). The 

empirical variance of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 
𝛽̂1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 was obtained from eq. (16). A sample size of 30,000 was used. Each data point in the diagonal 

represents the variance 
𝛽̂1

2

𝑅2 −  𝑃𝑒𝑥𝑝 with 𝑟𝑦,𝑥1
 = 0.10, 0.30, 0.25, 0.05, 0.15, 0.20 and 0.176 (resulting in 

𝛽̂1
2

𝑅2 −  𝑃𝑒𝑥𝑝 = -0.017, 1.171, 0.993, 0.137, 0.294, 0.702, 0.517 and 0.605). 

 

 

  

 



 
 

 

Figure S27: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates of ascertained case-control (10000 cases and 10000 

controls) assuming 5% disease prevalence and 20000 individuals.   Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
] and 𝑅2 (𝑟𝑦,𝑥1

2 ) 

was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and disease 

prevalence, we simulated 200,000 dependent and explanatory variables and randomly selected 10000 

cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The 

theoretical variance of 𝑅2 was obtained from eq. (6). Each data point in the diagonal represents the 

variance of 𝑅2 with 𝑟𝑦,𝑥1
2  = 0.02, 0.04, 0.06, 0.08, and 0.10. 

 

 

 

 



 
 

 

Figure S28: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates of ascertained case-control 

(10000 cases and 10000 controls) assuming 5% disease prevalence and 20000 individuals.   

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] =

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.141 0.8 1

] and  𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 =

𝑥2 + 𝑒, respectively, to get their difference in each replicate. . Following the correlation structure and 

disease prevalence, we simulated 200,000 dependent and explanatory variables and randomly selected 

10000 cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was estimated. 

The theoretical variance of 𝑅2 was obtained from eq. (9). Each data point in the diagonal represents the 

variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  = 0, 0.02, 0.04, 0.06, and 0.08. 

 

 



 
 

 

Figure S29: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates of ascertained case-

control (10000 cases and 10000 controls) assuming 5% disease prevalence and 20000 individuals.   

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] =

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.141 0.8 1

] and  𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2  were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒 and 

𝑦 = 𝑥1 + 𝑒, respectively, to get their difference in each replicate. Following the correlation structure 

and disease prevalence, we simulated 200,000 dependent and explanatory variables and randomly 

selected 10000 cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was 

estimated. The theoretical variance of 𝑅2 was obtained from eq. (11). Each data point in the diagonal 

represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  = 0, 0.04, 0.08, 0.12, and 0.16. 

 

 



 
 

 

Figure S30:  Nearly identical values between the theoretical and empirical variances of 
𝛽̂1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates of ascertained case-control (10000 cases and 10000 

controls) assuming 5% disease prevalence and 20000 individuals. Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.148
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.610

0.148 0.610 1
], and 𝛽̂1

2 and 𝑅2 

were obtained from a multiple regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the 

coefficient of determination explained by 𝑥1 in each replicate. It was assumed that the expectation is 

known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). Following the correlation structure and disease prevalence, we simulated 

200,000 dependent and explanatory variables and randomly selected 10000 cases and 10000 controls. 

The empirical variance of 
𝛽̂1

2

𝑅2 −  𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 

𝛽̂1
2

𝑅2 −  𝑃𝑒𝑥𝑝 was obtained from eq. (17). Each data point in the diagonal represents the variance of  
𝛽̂1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 with 𝑟𝑦,𝑥1
 = 0.10, 0.30, 0.25, 0.05, 0.15, 0.20 and 0.176 (resulting in 

𝛽̂1
2

𝑅2 − 𝑃𝑒𝑥𝑝 = -0.026, 1.172, 

0.995, 0.127, 0.0.288, 0.703 and 0.514). 

 

 

 

 

 



 
 

 

Figure S31: The empirical and theoretical variances diverge when 𝑹𝟐  values are more than 0.1 for binary responses, noting that 𝑹𝟐 > 0.1 is not 

frequently observed (see Supplemental Table 2). Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] =

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.141 0.8 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and disease 

prevalence, we simulated 30,000 dependent and explanatory variables. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical 

variance of 𝑅2 was obtained from eq. (6). Each data point represents the variance of 𝑅2 ranged from 0.02 to 0.2. 



 
 

 

Figure S32: The empirical and theoretical variances become disagreed when 𝑹𝟐  values are more than 0.1 for ascertained case-control samples in the 

reference dataset (10000 cases and 10000 controls), noting that 𝑹𝟐  > 0.1 is not frequently observed (see Supplemental Table 2). Simulations of y, 𝑥1 and 

𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
] and 𝑅2 (𝑟𝑦,𝑥1

2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each 

replicate. Following the correlation structure and disease prevalence, we simulated 200,000 dependent and explanatory variables and randomly selected 10000 

cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each 

data point represents the variance of 𝑅2 ranged from 0.02 to 0.2. 



 
 

 

Figure S33: The empirical and theoretical variances agree even with sample size 2000 for quantitative phenotypes. Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.44 0.31
0.44 1 0.800
0.31 0.8 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. 

Following the correlation structure and disease prevalence, we simulated dependent and explanatory variables. The empirical variance of 𝑅2   over 10,000 

replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point represents the variance of 𝑅2 for different sample size. 

 

 



 
 

 

Figure S34: The empirical and theoretical variances become disagreed when sample size is < 5000 for binary responses under scenario of different 

prevalence rate (k). Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.44 0.31
0.44 1 0.800
0.31 0.8 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was 

obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and disease prevalence, we simulated dependent and explanatory 

variables. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point 

represents the variance of 𝑅2 for different sample size. 



 
 

 

 

Figure S35: The empirical and theoretical variances become disagreed when sample size is < 5000 for ascertained case-control samples in the reference 

dataset (50% cases and 50% controls) under scenario of different prevalence rate (k). Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.44 0.31
0.44 1 0.800
0.31 0.8 1

]  and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and 

disease prevalence, we simulated 100,000 dependent and explanatory variables and randomly selected cases and controls. The empirical variance of 𝑅2 over 

10,000 replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point represents the variance of 𝑅2 for different sample 

size. 



 
 

Supplemental tables 

 

 

P value 

Threshold 

BMI Cholesterol 

No of SNPs (UKBB) No of SNPs (BBJ) No of SNPs (UKBB) No of SNPs (BBJ) 

1 4113630 4113630 4113630 4113630 

0.5 2539432 2365077 2254467 2143406 

0.4 2199702 1996741 1864917 1746560 

0.3 1841948 1610857 1468402 1346257 

0.2 1442727 1201525 1059630 936383 

0.1 976865 746948 618466 508651 

5e-02 675502 475337 376346 280526 

1e-02 318902 128704 140757 76284 

1e-03 134943 57272 54829 19216 

1e-04 67528 24320 30741 8636 

Table S1: Number of SNPs across different p value thresholds for BMI and cholesterol for UKBB and BBJ 

 

 

 

 

 

 

 

 

 

 



 
 

 

Disease Prevalence in discovery GWAS (n) 

 

Prevalence in validation dataset AUC (95% CI) in 

validation dataset  

Predictive ability 

(𝑹𝟐)  

Coronary Artery disease 

(CAD) 

60,801 cases and 123,504 controls 

(32.9%)3  

3,963 cases and 116,317 controls 

(3.4%) 

0.81 (0.80–0.81) 0.040 

Atrial fibrillation 17,931 cases and 115,142 controls 

(13.4%)4   

2,024 cases and 118,256 controls 

(1.7%) 

0.77 (0.76–0.78) 0.016 

Type 2 diabetes 6,676 cases and  132,532 controls 

(16.7%)5 

2,785 cases and 117,495 controls 

(2.4%) 

0.72 (0.72–0.73) 0.012 

Inflammatory bowel 

disease 

2,882 cases and 21,770 controls 

(37.2)6 

1,360 cases and 118,920 controls 

(1.1%) 

0.63 (0.62–0.65) 0.003 

Breast cancer 122,977 cases and 105,974 controls 

(53.7)7 

2,576 cases and 60,771 controls 

(4.1%) 

0.68 (0.67–0.69) 0.017 

Table S2: The AUC values (reported in Khera et al.2 ) and 𝑹𝟐 values converted from the AUC given the sample size, prevalence in discovery and 

testing datasets. 𝑅2 values were converted from the AUC using the well-established theory8; 9. 
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