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ARTICLE

Significance tests for R2 of out-of-sample
prediction using polygenic scores

Md. Moksedul Momin,1,2,3,4,* Soohyun Lee,5 Naomi R. Wray,6,7 and S. Hong Lee1,2,4,*
Summary
The coefficient of determination (R2) is a well-established measure to indicate the predictive ability of polygenic scores (PGSs). However,

the sampling variance of R2 is rarely considered so that 95% confidence intervals (CI) are not usually reported. Moreover, when compar-

isons are made between PGSs based on different discovery samples, the sampling covariance of R2 is required to test the difference be-

tween them. Here, we show how to estimate the variance and covariance of R2 values to assess the 95% CI and p value of the R2 differ-

ence. We apply this approach to real data calculating PGSs in 28,880 European participants derived from UK Biobank (UKBB) and

Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We quantify the significantly higher predictive ability of

UKBB PGSs compared to BBJ PGSs (p value 7.6e�31 for cholesterol and 1.4e�50 for BMI). A joint model of UKBB and BBJ PGSs signif-

icantly improves the predictive ability, compared to a model of UKBB PGS only (p value 3.5e�05 for cholesterol and 1.3e�28 for BMI).

We also show that the predictive ability of regulatory SNPs is significantly enriched over non-regulatory SNPs for cholesterol (p value

8.9e�26 for UKBB and 3.8e�17 for BBJ). We suggest that the proposed approach (available in R package r2redux) should be used to

test the statistical significance of difference between pairs of PGSs, which may help to draw a correct conclusion about the comparative

predictive ability of PGSs.
Introduction

Complex traits are affected by many risk factors including

polygenic effects.1–3 Genetic profile analysis can quantify

how polygenic effects are associated with future disease

risk at the individual and population levels.4,5 Genetic

profiling has potential benefits that can help people

make informed decisions when they manage their health

and medical care.6–8

Genome-wide association studies (GWASs) have pro-

vided an opportunity to estimate genetic profile or

polygenic scores (PGSs) that represent individual risk pre-

dictions from genetic data.4,9–14 Typically, the effects of

genome-wide single-nucleotide polymorphisms (SNPs)

associated with complex traits are estimated in a discovery

dataset, which are projected in an independent target data-

set. Then, for each individual in the target samples the

weighted genotypic coefficients according to the projected

SNP effects (i.e., PGSs) are derived and correlated with

outcome (trait including affected/unaffected for disease)

to quantify the prediction accuracy. The squared correla-

tion or coefficient of determination (R2) is a useful measure

to quantify the reliability of the PGS. Note that R2 is equiv-

alent to the squared regression coefficient if the dependent

and explanatory variables are column standardized.15

Previously, we introduced ameasure of R2 on the liability

scale that can be comparable across different models and

scales16 when using disease traits or ascertained case-con-
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trol data. Choi et al.12 reported that this R2 measure on

the liability scale outperforms the widely used Nagelkerke

pseudo R2 in controlling for bias due to ascertained case-

control samples. Nagelkerke pseudo R2 estimates depend

on the proportion of affected individuals in the sample.

In contrast, R2 on the liability scale does not depend on

the proportion of cases in the sample but does require an

estimate of the lifetime population prevalence of the

disease.

Wand et al.11 suggested that any PGS study should

report R2 as an indicator of the predictive ability. Choi

et al.12 concluded that R2 is a useful metric to measure as-

sociation and goodness of fit in the interpretation of PGS

predictions. Many studies have demonstrated the predic-

tive ability of PGSs, using R2.12,13,17,18 However, the vari-

ance of R215 has been rarely studied especially in the

context of PGSs although it is the crucial parameter for

estimation of confidence intervals (CI) of R2. Further-

more, estimates of the covariance between a pair of R2

values (e.g., from two sets of PGSs) are necessary to assess

whether they are significantly different from each other,

or if the ratio of two R2 values significantly deviates from

the expectation. This significance test for the difference

or ratio is important when comparing two or multiple

sets of PGSs that are derived from different sets of

SNPs, e.g., genomic partitioning, genome-wide associa-

tion p value thresholds (pT) analysis, or PGSs based on

pathway subsets.19,20
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In this study, we use R2 measures and their variance-

covariance matrix to assess whether the predictive abilities

of PGSs based on different sources are significantly

different from each other. We derive the variance and

covariance of R2 values to generate estimates of its 95%

CI and p value of the R2 difference, considering two sets

of dependent or independent PGSs. We also derive the

variance and covariance matrix (i.e., information matrix)

of squared regression coefficients in a multiple regression

model, testing whether the proportion of the squared

regression coefficient attributable to SNPs in the regulatory

region is significantly higher than expected (i.e., PGS-

based genomic partitioning method). We apply this

approach to real data to compare PGSs calculated in

28,880 European individuals using UK Biobank (UKBB)

and Biobank Japan (BBJ) GWAS summary statistics for

cholesterol and BMI.
Material and methods

We used data from the UK Biobank (https://www.ukbiobank.ac.

uk), the scientific protocol of which has been reviewed and

approved by the Northwest Multi-center Research Ethics Commit-

tee, National Information Governance Board for Health & Social

Care, and Community Health Index Advisory Group. UK Biobank

has obtained informed consent from all participants. Our access to

the UK Biobank data was under the reference number 14575.

Publicly available GWAS summary statistics of Biobank Japan

(BBJ)21,22 were used, following BBJ’s guidelines (http://jenger.

riken.jp/en/result). The research ethics approval of this study has

been obtained from the University of South Australia Human

Research Ethics Committee.

PGS models
We use a linear model that regresses the observed phenotypes on a

single or multiple sets of PGSs. It is assumed that the phenotypes

are already adjusted for other non-genetic and environmental fac-

tors (e.g., demographic variables, ancestry principal components),

and PGSs are already calculated based on GWAS summary

statistics.

A PGS model can be written as

y ¼ Xbþ e (Equation 1)

where y is the vector of standardized phenotypes of trait, X is a

column-standardized N 3 M matrix including M sets of PGS, b is

the vector of regression coefficients of X (i.e., PGS), and e is the

vector of residuals. For example, with two sets of PGSs (M ¼ 2),

X and bb can be expressed as

X ¼ ½x1;x2�

bb ¼
� bb1bb2

�
¼ ðX0XÞ�1X0y ¼ S�1

22 S21 ; (Equation 2)

S ¼
� ðS11Þ ðS12Þ
ðS21Þ ðS22Þ

�
¼
24 ð1Þ �

ry;x1 ry;x2
�

 
ry;x1

ry;x2

!  
1 rx1 ;x2

rx1 ;x2 1

!35
(Equation 3)
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where ry;x1 ; ry;x2 ; and rx1 ;x2 are correlations between y and the first

PGS (x1), y and the second PGS (x2), and between the two PGSs

(x1 and x2), respectively, in the sample. Using bb that are estimated

in the multiple regression (Equation 2), the predicted phenotypes

(by) can be obtained as

by ¼ Xbb:
The coefficient of determination for this multiple regression

model with X ¼ ½x1;x2� in Equation 1 can be written as

r2y;ðx1 ;x2Þ ¼ 1 �
PN
i¼1

�
yi � byi

�2
PN
i¼1

y2i

¼
PN
i¼1

by2

i

N
¼ bb2

1 þ bb2

2 þ 2rx1 ;x2
bb1
bb2:

(Equation 4)

With a single set of PGSs, i.e., M ¼ 1 andX ¼ ½x1� or ½x2� in Equa-

tion 1, the expression of R2 can be reduced as

r2y;x1 ¼
PN
i¼1

by2

i

N
¼ bb2

1 with X ¼ ½x1�

or

r2y;x2 ¼
PN
i¼1

by2

i

N
¼ bb2

2 with X ¼ ½x2�:

It is noted that r2y;ðx1 ;x2Þ, r
2
y;x1

, or r2y;x2 is an estimate of parameter

r2y;ðx1 ;x2Þ;r
2
y;x1

; or r2y;x2 , and each estimate has a sampling variance.
Variance of R2

The distribution of R2 can be transformed to a non-central c2 dis-

tribution with mean ¼ Mþ l and variance ¼ 23 ðM þ2l) where

l ¼ N3R2

ð1�R2Þ2 is the non-centrality parameter. For example, the vari-

ance of the transformed value for r2y;x1 is

var

�� bb1

sdðbb1Þ

�2�
¼ 1

varðbb1Þ
2
var
�bb2

1

� ¼ 2ðM þ2lÞ:

Therefore,

var
�
r2y;x1

	
¼ var

�bb2

1

� ¼ 2varðbb1Þ
2ðM þ2lÞ (Equation 5)

where varðbb1Þ ¼ 1=N$ð1 � r2y;x1 Þ
2
, M ¼ 1, and r2y;x1 is the squared

correlation in the population and can be approximated as

r2y;x1zr2y;x1 .
23,24

In a similar manner, Equation 5 can be extended to multiple

explanatory variables as

var
�
r2y;ðx1 ;x2 ;.;xM Þ

	
z2

�
1

N
$
�
1 � r2y;ðx1 ;x2 ;.;xM Þ

	2�2
ðM þ2lÞ;

(Equation 6)

that is, Equation 6 is a generalized form of Equation 5.

Wishart25 introduced a formula to obtain the variance of R2

(also see Stuart and Ord26 and Olkin and Finn15) as

Var
�
R2
� ¼

h
43R2 3

�
1 � R2

�2
3 fN � ðM þ 1Þg2

i

�
N2 � 1

�
3 ðN þ 3Þ�

which provides an equivalent estimate as in Equation 6. Wishart25

derived his formula of the variance of R2 based on the hypergeo-

metric series that has been used in the literature including Olkin
y 2, 2023
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and Finn.15 We introduce Equation 6 derived based on the trans-

formation of a non-central c2 distribution. Both Equation 6 and

Wishart equation provide identical estimates of the variance of

R2 (Figure S1). The s.e. of R2 estimate is the square root of varðR2Þ:
Variance of the difference between two R2 values
FollowingOlkin andFinn,15weuse the deltamethod to estimate the

varianceof thedifferencebetweenR2 valuesbasedon twosets of PGS

(x1 andx2). Assuming that the difference of R2 values can be formu-

lated as a function of the correlations, i.e., f ðry;x1 ;ry;x2 ;rx1 ;x2 Þ, the delta
method approximates the variance of the difference as

varðf Þ ¼ q0Uq (Equation 7)

where

q0 ¼
�

vf

vry;x1
;
vf

vry;x2
;

vf

vrx1 ;x2

�
(Equation 8)

is the derivatives of f with respect to the correlations and

U ¼
24 var

�
ry;x1

�
cov
�
ry;x1 ; ry;x2

�
cov
�
ry;x1 ; rx1 ;x2

�
cov
�
ry;x1 ; ry;x2

�
var
�
ry;x2

�
cov
�
ry;x2 ; rx1 ;x2

�
cov
�
ry;x1 ; rx1 ;x2

�
cov
�
ry;x2 ; rx1 ;x2

�
var
�
rx1 ;x2

�
35

Each element of U is shown in Olkin and Finn15 (also see Supple-

mental Note A).

From Equation 7, the following variances of differences can be

estimated and used in our PGS analyses.

R2 difference when using different discovery samples to generate the

PGS

The variance of R2 difference can be written as

var
�
r2y;x1 � r2y;x2

	
with f

�
ry;x1 ; ry;x2 ; rx1 ;x2

� ¼ r2y;x1 � r2y;x2 ;

(Equation 9)

which allows us to compare two PGSmodels that are not nested to

each other (see R2 difference when using different information

sources in results section), for which the conventional log likeli-

hood ratio test cannot be applied.

In Equation 9, the values of r2y;x1 � r2y;x2 from random samples in

the population are normally distributed when the sample size is

sufficient.15 Assuming that our PGS analysis is sufficiently pow-

ered (n > 25,000), the p value for the significance test of the differ-

ence can be derived from�
r2y;x1 � r2y;x2

	2
var
�
r2y;x1 � r2y;x2

	 � c2
1

and the 95% confidence interval is��
r2y;x1 � r2y;x2

	
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;x1 � r2y;x2

	r
;
�
r2y;x1 � r2y;x2

	
þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;x1 � r2y;x2

	r �
(Equation 10)

When comparisons are made between R2 values based on two

sets of PGSs (x1 and x2), the sampling covariance of R2 is required,

which is explicitly used in Equations 7 and 9. If the sampling

covariance ignored, the test statistics can be biased (Figures S2

and S3).

R2 difference when using nested models

When using nested models, the variance of R2 difference can be

written as
The America
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	
with f

�
ry;x1 ; ry;x2 ; rx1 ;x2

� ¼ r2y;ðx1 ;x2Þ � r2y;x2

¼ bb2

1 þ bb2

2 þ2rx1 ;x2
bb1
bb2 � r2y;x2

(Equation 11)

where bb1 and bb2 are the estimated regression coefficients from a

multiple regression (Equation 2), calculated from S (see Equations

2, 3, and 4). Again, the derivative with respect to each of the

correlations can be obtained for this function (Equation 8). Note

that the comparison between r2y;ðx1 ;x2Þ and r2y;x2 is equivalent

to the log likelihood ratio test (i.e., y ¼ x1b1 þ x2b2 þ e vs. y ¼
x2b2 þ e).15

The values of r2y;ðx1 ;x2Þ � r2y;x2 in Equation 11 from random sam-

ples in the population follows a non-central chi-squared distribu-

tion with a non-centrality parameter ¼ N3
r2
y;ðx1 ;x2 Þ

� r2y;x2

ð1� r2
y;ðx1 ;x2 Þ

� r2y;x2
Þ2 . The p

value for the significance test of the difference can be derived from

l � c2
1

and the 95% confidence interval is"�
r2y;ðx1 ;x2Þ � r2y;x2

	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r
x97:5% � l � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ 2lÞp ;

�
r2y;ðx1 ;x2Þ � r2y;x2

	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r
x2:5% � l � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ 2lÞp #
(Equation 12)

where x% is the value at the percentile of the inverse of non-central

chi-squared cumulative distribution function with mean ¼ lþ 1

and d.f. ¼ 1.

When the sample size is large, the values of r2y;ðx1 ;x2Þ � r2y;x2 from

random samples in the population are normally distributed,15 and

the 95% confidence interval is

h�
r2y;ðx1 ;x2Þ � r2y;x2

	
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r
;�

r2y;ðx1 ;x2Þ � r2y;x2

	
þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y;ðx1 ;x2Þ � r2y;x2

	r i (Equation 13)

Note that Equations 12 and 13 are equivalent when the sample

size is sufficient.15

R2 difference when using two independent sets of PGSs

In this case, there is no correlation structure between two indepen-

dent sets of PGSs (rx1 ;x2 ¼ 0, e.g., PGSs inmale and female individ-

uals), so the variance of R2 difference is simply the sum of the var-

iances of each R2 value, which can be obtained from Equation 5.

For example, assuming rx1 ;x2 ¼ 0, the variance of R2 difference

can be written as

var
�
r2y1 ;x1 � r2y2 ;x2

	
¼ 2

�
1

N1

$
�
1 � r2y1 ;ðx1Þ

	2�2
ð1þ2l1Þ

þ 2

�
1

N2

$
�
1 � r2y2 ;ðx1Þ

	2�2
ð1þ2l2Þ

(Equation 14)

where y1 and y2 are the vectors of standardized phenotypes andN1

and N2 are the sample sizes for the two independent sets of PGSs.

The non-centrality parameters (l1 and l2) for two independent

PGSs can be written as

l1 ¼ N1 3 r2y1 ;x1�
1 � r2y1 ;x1

	2 and l2 ¼ N2 3 r2y2 ;x2�
1 � r2y2 ;x2

	2 :
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The p value for the significance test of the difference can be

derived from �
r2y1 ;x1 � r2y2 ;x2

	2
var
�
r2y1 ;x1 � r2y2 ;x2

	 � c2
1

and the 95% confidence interval15 is��
r2y1 ;x1 � r2y2 ;x2

	
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y1 ;x1 � r2y2 ;x2

	r
;
�
r2y1 ;x1 � r2y2 ;x2

	
þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
r2y1 ;x1 � r2y2 ;x2

	r �
(Equation 15)

PGS-based genomic partitioning analysis

It is of interest to test whether a set of PGSs based on a genomic

region of interest (or a pathway-based SNP subset) can better pre-

dict the phenotypes, compared to the rest of genomic regions. The

proportion of the coefficient of determination explained by x1 can

be estimated as bb2

1=r
2
y;ðx1 ;x2Þ from a multiple regression, y ¼ x1þ

x2 þ e, where x1 is the PGS of a genomic region of interest and x2
is the PGS of the rest of genomic regions. The expected proportion

of the coefficient of determination explained by x1 can be calcu-

lated from prior information, referred to as pexp ¼ # SNPs used

for PGS1/total # SNPs. We are interested in testing whether the

value of bb2

1=r
2
y;ðx1 ;x2Þ is significantly different from its expectation,

pexp, which requires to estimate the sampling variance of bb2

1=

r2y;ðx1 ;x2Þ, using Equation 7. The variance of the proportion can be

written as

var
�bb2

1

.
r2y;ðx1 ;x2Þ

	
with f

�
ry;x1 ; ry;x2 ; rx1 ;x2

� ¼ bb2

1

.
r2y;ðx1 ;x2Þ

(Equation 16)

where bb1 is the estimated regression coefficient of x1, calculated from

S (Equation 3), and r2y;ðx1 ;x2Þ ¼ bb2

1 þ bb2

2 þ 2rx1 ;x2
bb1
bb2 is the coeffi-

cient of determination. Therefore, it is possible to get the derivative

with respect to each of the correlations, ry;x1 ; ry;x2 ; and rx1 ;x2 in Equa-

tion8. This variance canbe used to obtain the significance and95CI

of the observed proportion of the coefficient of determination.

Analogous to Equation 9, the values of
bb2

1

r2
y;ðx1 ;x2 Þ

� pexp with

random samples in the population are asymptotically normal.15

Using aWald test, the p value for the significance test of the differ-

ence can be derived from�� bb2

1

r2
y;ðx1 ;x2Þ

� pexp

��2
var

� bb2

1

r2
y;ðx1 ;x2Þ

� pexp

� � c2
1

The 95% confidence interval of the ratio is

" bb2

1

r2y;ðx1 ;x2Þ
� pexp

!
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

 bb2

1

r2y;ðx1 ;x2Þ
� pexp

!vuut ;

 bb2

1

r2y;ðx1 ;x2Þ
� pexp

!

þ1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

 bb2

1

r2y;ðx1 ;x2Þ
� pexp

!vuut #
(Equation 17)

In addition, the package, r2redux, can provide varðbb2

1Þ, varðbb2

2Þ,
and varðbb2

1 � bb2

2Þ, i.e., the information matrix of the squared

regression coefficients (see Supplemental Note B) that is useful

when comparing the actual values of bb2

1 and bb2

2.
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It is noted that the delta method employed in this study is

a well-established approach to derive the distribution of a

function of an asymptotically normal variable.27 Following

Olkin and Finn,15 we used the delta method to derive the

variances of R2 and their difference as a function of regression

coefficients (Equations 7, 8, 9, 11, and 16). We explicitly

checked that the regression coefficients are asymptotically

normal, using a realistic correlation structure among variables

(Figures S4–S6).
Data
The UK Biobank is a large-scale biomedical database that com-

prises 0.5 million individuals who had been recruited between

2006 and 2010; their age ranged between 40 and 69 years.28,29

The data consist of health-related information for samples who

are genotyped for genome-wide SNPs. A stringent quality control

(QC) process was applied to UKBB data that excludes individuals

with non-white British ancestries, mismatched sex between re-

ported and inferred from genotypic information, genotype call

rate < 0.95, or putative sex chromosome aneuploidy. The SNP

QC criteria filtered out SNPs with an imputation reliability <0.6,

missingness >0.05, minor allele frequency (MAF) < 0.01, or

Hardy-Weinberg equilibrium p value <10�7. We also applied a

relatedness cut-off QC (>0.05) so that there was no high pairwise

relatedness among individuals. After QC, 288,792 individuals and

7,701,772 SNPs were retained.
Discovery GWAS data
Ninety percent of the individuals from the 288,792 QCed indi-

viduals were randomly selected as discovery samples (n ¼
259,912 to generate GWAS summary statistics (UKBB hereafter)

for the 7,701,772 SNPs.. For the GWAS with the 259,912 UKBB

discovery samples, we used BMI and cholesterol that were

adjusted for age, sex, birth year, Townsend Deprivation Index

(TDI), education, genotype measurement batch, assessment cen-

ter, and the first 10 ancestry principal components using a linear

regression.

We also have access to Japanese Biobank (BBJ) (http://jenger.

riken.jp/en/result) GWAS summary statistics (BBJ hereafter) for

BMI21 (n ¼ 158,284) and cholesterol22 (n ¼ 128,305) for

5,961,601 SNPs.
Target data
Ten percent of the individuals from the 288,792 QCed individuals

were randomly selected as an independent target dataset (n ¼
28,880) that were non-overlapping and unrelated with the UKBB

and BBJ discovery samples. In the PGS analyses, we used only

4,113,630 SNPs that were common between UKBB and BBJ

GWAS data after excluding ambiguous SNPs and SNPs with any

strand issue.

In the target dataset (n ¼ 28,880), the phenotypes of each trait

were adjusted for age, sex, birth year, TDI, education, genotype

batch, assessment center, and the first 10 principal components

using a linear regression. The pre-adjusted phenotypes were corre-

lated with PGSs estimated in the following step. For each trait, we

used the UKBB and BBJ GWAS summary statistics to estimate two

sets of PGSs (UKBB PGSs vs. BBJ PGSs for the 28,880 target individ-

uals ), using PLINK2 (https://www.cog-genomics.org/plink/2.0/)

with the score function.30 Then, we estimated the correlation be-

tween the PGS and pre-adjusted phenotypes to obtain R2 values in

the PGS analyses.
y 2, 2023
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Figure 1. The predictive ability (R2) of
PGSs when predicting 28,880 European in-
dividuals using UKBB or BBJ discovery
GWAS dataset
(A) The main bars represent R2 values and
error bars correspond 95% confidence inter-
vals. Two sets of GWAS summary statistics
were obtained fromUKBB and BBJ discovery
GWAS datasets to estimate two sets of PGSs.
(B) Dot points represent the differences of
R2 values between UKBB and BBJ PGS
models, and error bars indicate 95% confi-
dence intervals of the difference.
Functional annotation of the genome
We annotated the genome using pre-defined functional categories

(regulatory vs. non-regulatory genomic regions).31 Regulatory re-

gion includes SNPs from coding regions, untranslated regions

(UTRs), andpromotors.Non-regulatory region includes all theother

regions except the regulatory region. The number of SNPs belong to

regulatory and non-regulatory is 158,653 and 3,954,947 (i.e., 4% of

the total SNPs are located in the regulatory region).

Simulation of dependent and explanatory variables
For a quantitative trait, we simulated dependent variable (y) and

PGSs (x1 and x2), varying the correlation structure of24 1 ry;x1 ry;x2
ry;x1 1 rx1 ;x2
ry;x2 rx1 ;x2 1

35 and the sample size (detailed simulation

parameters are shown in Figures S7–S15). For a disease trait, the

same simulation procedure was used, and the simulated quantita-

tive phenotypes were transformed to binary responses using a

liability threshold model with a population prevalence of k ¼
0.05. For example, case-control status was assigned to individuals

according to their standardized quantitative phenotypes (i.e., lia-

bility), i.e., cases have liability greater than a threshold such that

the proportion of cases is k ¼ 0.05. The empirical variances of

r2y;x1 , r
2
y;x1

� r2y;x2 , r
2
y;ðx1 ;x2Þ � r2y;x2 , and

bb2

1

r2
y;ðx1 ;x2 Þ

� pexp were obtained

over 10,000 replicates, which were compared to the

theoretical variances estimated using Equations 6, 9, 11, and 17,

respectively.
Results

Simulation verification

The theory of the proposed method has been explicitly

verified using simulations, varying sample size, and values

of r2y;x1 , r2y;x1 � r2y;x2 , r2y;ðx1;x2Þ � r2y;x2 , and
bb2

1

r2
y;ðx1 ;x2Þ

� pexp

(Figures S7–S15). The empirical variances obtained

from 10,000 simulated replicates are almost perfectly

correlated with the theoretical variance for the values of

r2y;x1 , r2y;x1 � r2y;x2 , r2y;ðx1 ;x2Þ � r2y;x2 ,
bb2

1

r2
y;ðx1 ;x2Þ

� pexp when

varying the sample size (Figures S7–S10) and when varying

R2 values (Figures S11–S14). When considering two inde-

pendent PGSs, the theoretical and empirical variances are

also agreed well (Figure S15).
The America
R2 difference when using different information sources:

UKBB vs. BBJ

It is of interest to determine whether different information

sources (e.g., ancestries) have significantly different predic-

tive abilities in PGS analyses, which can be assessed using

Equations 9 and 10. Figure 1 illustrates that when predict-

ing the 28,880 European target samples, the coefficient of

determinations (R2) with the UKBB and BBJ PGSs were

0.024 (95% CI ¼ 0.021–0.028) and 0.003 (95% CI ¼
0.002–0.004), respectively, for cholesterol. However, these

R2 values and CIs cannot be used to assess their difference

because the two sets of PGSs are not independent. Further-

more, the two PGS models with UKBB and BBJ are not

nested to each other, so the likelihood ratio test could

not be used either. For this problem, we used Equations 9

and 10 to obtain the variance, 95% CI (0.0175–0.0247),

and p value (7.6e�31) of the R2 difference, accounting

for the dependency between UKBB and BBJ PGSs, for

cholesterol (Figure 1). Similarly, the test statistics of the

R2 difference was obtained for BMI, 0.035–0.046 for 95%

CI and p value ¼ 1.4e�50 (Figure 1).

It is also interesting to whether BBJ PGSs provides a signif-

icant improvement in the predictive ability, in addition to

UKBB PGSs, when predicting the 28,880 European target

samples. Figure 2 compares R2 value with each UKBB or

BBJ PGSs to R2 value from a joint model fitting UKBB and

BBJ PGSs simultaneously. Using Equations 11 and 12, we ac-

quired the variance, 95% CI (0.0001–0.001), and p value

(3.5e�05) of R2 difference when comparing the joint model

with a single model with UKBB, indicating that BBJ PGSs

contributed to a significant improvement for cholesterol.

Similarly, BBJ PGSs improved the predictive ability signifi-

cantly (p value ¼ 1.3e�28) for BMI. As expected, excluding

UKBB PGSs from the joint model substantially decreased

the prediction accuracy (p value ¼ 1.6e�136 for cholesterol

and 3.0e�308 for BMI).
R2 difference when using two independent sets of PGSs:

male vs. female

We were also interested in testing whether the PGSs could

predict the adjusted phenotypes of the target individuals

equally well for males and females. In this case, there is

no correlation structure between male and female PGSs,
n Journal of Human Genetics 110, 349–358, February 2, 2023 353



Figure 2. The predictive ability (R2) of a
PGSmodel based on UKBB or BBJ discovery
dataset, compared to the joint model of
both UKBB and BBJ when predicting
28,880 European individuals
(A) The main bars represent R2 values and er-
ror bars correspond 95% confidence inter-
vals. Two sets of GWAS summary statistics
were obtained from UKBB and BBJ discovery
GWAS datasets to estimate two sets of PGSs,
i.e., UKBB and BBJ PGSs. In addition, a joint
model fitting both UKBB and BBJ PGSs was
compared.

(B) Dot points represent the differences of R2 values between the joint model and UKBB or BBJ PGS model, and error bars indicate 95%
confidence intervals of the difference.
so the variance of R2 difference is simply the sum of the

variances of each R2 value, which can be obtained from

Equation 5 or 6. Figure S16 shows that there was no signif-

icant difference between male and female PGSs in their

predictive ability for cholesterol and BMI whether using

UKBB or BBJ discovery GWAS dataset.

PGSs with genome-wide association p value thresholds

(pT)

PGSs also have beenwidely used to determine which pT pro-

vides the highest prediction accuracy, for example, using

PGS software such as PLINK.30,32 However, there is a lack of

test statistics that can assess whether the predictive ability

of the best-performing pT is significantly different from the

other pT. Figure 3A illustrates that R2 value is the highest at

pT ¼ 0.3 when predicting 28,880 European individuals in

the target dataset, using BBJ discovery GWAS dataset (BMI).

However, it is not clear if the predictive ability at pT ¼ 0.3 is

significantly higher than the adjacent pT (e.g., pT ¼ 0.2 or

0.4), and it may be important to report pT of which the pre-

dictive ability is not statistically different from the best-per-

forming pT. Using Equations 9 and10,we assessed the signif-

icanceofdifferencebetweenthebest-performingpTandeach

of the other pT (Figure 3B). From this analysis, we found that

the best-performing pT was not significantly different from

pT ranging between 0.1 and 1, but significantly different

from pT < 0.05 (Figure 3B). When using the UKBB discovery

GWAS dataset to predict the 28,880 European individuals,

the highest R2 value at the pTof 1 was significantly different

from all the other pT (Figure S17B).

Interestingly, the highest R2 value was found at pT ¼
1e�04 (Figure 4A) when predicting the European target

samples using BBJ discovery GWAS dataset for cholesterol,

which was not statistically different from pT ¼ 0.001 but

was significantly higher than the other pT (Figure 4B). For

the same target samples and trait, the best R2 value was ob-

tained from pT ¼ 0.01 when using the UKBB discovery

GWAS dataset (Figure S18A). Except for pT ¼ 0.01, 0.05,

and 0.1, R2 values at the other pT were significantly

different from the best R2 values (Figure S18B).

PGS-based genomic partitioning analyses

Genomic partitioning analyses have been widely

applied.31,33–35 Such analysis could be useful in the PGS
354 The American Journal of Human Genetics 110, 349–358, Februar
context. Using Equation 16, we can estimate the variance

of the
bb2

regu

R2 where bbregu is the estimated regression coefficient

from a multiple regression (Equation 2), and assess

whether the observed proportion (
bb2

regu

R2 ) is significant

different from pexp (i.e., the coverage of the SNPs belonged

to the category). For example, we partitioned the genome-

wide SNPs into the regulatory (158,653) and non-regulato-

ry (3,954,947) regions, following Gusev et al.,31 resulting

pexp ¼ 4% of SNP coverage for the regulatory region as

the expectation. We simultaneously fit two sets of PGSs

from regulatory and non-regulatory regions to get bb2

regu

and bb2

non� regu, using a multiple regression, then assess

whether the value of
bb2

regu

R2 � pexp is significantly different

from zero (Equation 17). Figure 5 shows that the predictive

ability of regulatory SNPs was significantly higher than the

expectation (p value ¼ 8.9e�26 for UKBB and 3.8e�17 for

BBJ) for cholesterol. In contrast, the predictive ability of

regulatory SNPs was not better than the expectation for

BMI (Figure 5).
Application to binary responses and ascertained case-

control data

The proposed method is also explicitly verified using simu-

lation for binary or case-control data, varying sample size

and values of r2y;x1 , r2y;x1 � r2y;x2 , r2y;ðx1;x2Þ � r2y;x2 , andbb2

1

R2 � pexp (Figures S19–S26). The empirical variances ob-

tained from 10,000 simulated replicates are almost iden-

tical with the theoretical variances for the values of r2y;x1 ,

r2y;x1 � r2y;x2 , r2y;ðx1;x2Þ � r2y;x2 , and
bb2

1

R2 � pexp when varying

the sample size (Figures S19–S22) and when varying R2

values (Figures S23–S26). In the case of ascertained case-

control, a similar pattern is shown, i.e., the empirically

observed variances obtained from 10,000 simulated repli-

cates are agreed well with the theoretical variances for

the values (Figures S27–S30). This finding shows that the

proposed method can be applied to test the significance

of difference between predictive abilities of PGSs for binary

traits and ascertained case-control traits when R2 is not
y 2, 2023



Figure 3. The predictive ability (R2) of PGSs estimated based on
SNPs below pT when predicting BMI in 28,880 European samples
using BBJ discovery samples (GWAS summary statistics)
(A) The main bars represent R2 values and error bars correspond
95% confidence intervals. The values above 95% CIs are p values
indicating that R2 values are not different from zero.
(B) Themain bars represent the difference of R2 values between the
corresponding pT and the best-performing pT and error bars indi-
cate 95% confidence intervals. The values above 95% CIs are p
values indicating the significance of the difference between the
pairs of R2 values.

Figure 4. The predictive ability (R2) of PGSs estimated based on
SNPs below the pT when predicting cholesterol in 28,880 Euro-
pean samples using BBJ discovery samples (GWAS summary sta-
tistics)
(A) The main bars represent R2 values and error bars correspond
95% confidence intervals. The values above 95% CIs are p values
indicating that R2 values are not different from zero.
(B) Themain bars represent the difference of R2 values between the
corresponding pT and the best-performing pT and error bars indi-
cate 95% confidence intervals. The values above 95% CIs are p
values indicating the significance of the difference between the
pairs of R2 values.
very high (<0.1). Note that the empirical and theoretical

variances diverge when R2 values on the observed scale

are more than 0.1 for binary responses and ascertained

case control (Figures S31 and S32). Although R2

value > 0.1 is not frequently observed in the current PGS

studies (Table S2), a careful interpretation is required for

the variance of such high R2, and we would not recom-

mend using the theoretical approximation.
Discussion

R2 has been widely used tomeasure the predictive ability of

PGSs.13 However, the confidence interval of R2 has rarely

been reported, and the test statistic for the difference of

two R2 values has not been well documented. Here, we
The America
show how to get the variance of each estimated R2 value

and covariance between two R2 estimates (from two sets

of PGSs) that can be used to assess whether they are signif-

icantly different from each other.

Martin et al.18 reported that the PGS prediction accuracy

is higher when discovery and target samples are from the

same ancestry background, compared to when the samples

are from different ancestries. However, they did not

formally assess the statistical significance of the increase

(no p value provided). More importantly, they did not

consider the correlation structure between predictors

when they compared two PGSs. We applied the proposed

approach and found that the predictive ability of PGSs
n Journal of Human Genetics 110, 349–358, February 2, 2023 355



Figure 5. PGS-based genomic partition-
ing method to assess whether the predic-
tive ability is enriched in the regulatory re-
gion for cholesterol and BMI
Here pexp ¼ 0.04 is the expectation for
the regulatory SNPs based on the
proportion of SNPs allocated to this anno-
tation.
(A) Themain bars represent squared regres-
sion coefficients attributable to SNPs in the

regulatory region (bb2

regu) andnon-regulatory

region (bb2

non� regu), and error bars correspond to 95% confidence intervals when predicting 28,880 European samples using UKBB or BBJ

GWAS summary statistics.
(B)Dotpoints represent thedifferencebetween theobserved and expectedproportions (

bb2

regu

R2 � pexp) and error bars indicate 95%confidence
intervals of the difference.
based on UKBB discovery GWASs is significantly higher

than that of PGSs based on BBJ discovery GWASs, by

formally deriving the 95% CI and p value of the R2

difference.

Many studies evaluating PGSs use the pT method12

and report the pT that maximizes performance. This

provides useful information when inferring the genetic

architecture of the trait of interest and when fine-tuning

pT as a hyper-parameter in PGS methods.32,36–38 For such

cases, it may be crucial to determine if the best-perform-

ing pT is genuinely better than other (adjacent) pT or if

it occurs just by random chance (i.e., sampling

error). For example, in Figure 3, the best-performing pT
is 0.3 (the set of SNPs with pT % 0.3), which is, however,

not statistically different from pT % 0.2 or % 0.1. Note

that the set of SNPs with pT % 0.1 is nested within

SNPs with pT % 0.3, meaning that the additional

SNPs in the latter would not significantly improve

the prediction accuracy. Therefore, pT % 0.1 should be

used instead of the pT % 0.3 as the former is a more parsi-

monious model than the latter. Our proposed approach

can formally assess statistical difference among pT,

providing 95% CI of the difference with a significance

p value.

We also derived an informationmatrix of squared regres-

sion coefficients in a multiple regression model, establish-

ing a PGS-based genomic partitioning method that could

test whether the ratio of two squared regression coeffi-

cients is significantly deviated from its expectation given

the proportion of SNPs allocated to each partition. This is

analogous to the existing genomic partitioning approaches

using GREML or LDSC31,33–35 that may have an overfitting

issue because SNP effects and genomic partitioning are esti-

mated in the same samples.

In conclusion, we show how to estimate the variance

and covariance of R2 estimates to quantify the 95% CI

and p value of the difference and ratio when comparing

two PGSs, which is available in R package r2redux (see Sup-

plemental Note B). We suggest that the proposed approach

should be used to test the statistical significance of differ-

ence and ratio between pairs of PGSs, which may help to

draw a correct conclusion about the predictive ability

of PGSs.
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Data and code availability

The genotype and phenotype data of the UK Biobank can be ac-

cessed through procedures described on its webpage (https://

www.ukbiobank.ac.uk/) and summary statistics of BMI and

cholesterol from Japanese Biobank (BBJ) can be obtained from

its website (http://jenger.riken.jp/en/). r2redux can be down-

loaded from (https://github.com/mommy003/r2redux) or from

CRAN [install.packages("r2redux") in R] (also see Supplemental

Note B).
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.01.004.
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Supplemental Note A: The elements of 𝛀 in eq. (7)  

Following Olkin and Finn 1, each element of 𝛀 in eq. (7) can be expressed as  

𝑣𝑎𝑟(𝑟𝑦,𝑥1
) = (1 − 𝜌𝑦,𝑥1

2 )2 𝑁⁄    

𝑣𝑎𝑟(𝑟𝑦,𝑥2
) = (1 − 𝜌𝑦,𝑥2

2 )2 𝑁⁄  

𝑣𝑎𝑟(𝑟𝑥1,𝑥2
) = (1 − 𝜌𝑥1,𝑥2

2 )2 𝑁⁄  

 

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑦,𝑥2

) = [1/2(2𝜌𝑥1,𝑥2
− 𝜌𝑦,𝑥1

𝜌𝑦,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑥1,𝑥2
3 ] 𝑁⁄  

𝑐𝑜𝑣(𝑟𝑦,𝑥1
, 𝑟𝑥1,𝑥2

) = [1/2(2𝜌𝑦,𝑥2
− 𝜌𝑦,𝑥1

𝜌𝑥1,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑦,𝑥2
3 ] 𝑁⁄  

𝑐𝑜𝑣(𝑟𝑦,𝑥2
, 𝑟𝑥1,𝑥2

) = [1/2(2𝜌𝑦,𝑥1
− 𝜌𝑦,𝑥2

𝜌𝑥1,𝑥2
)(1 − 𝜌𝑥1,𝑥2

2 − 𝜌𝑦,𝑥1
2 − 𝜌𝑦,𝑥2

2 ) +  𝜌𝑦,𝑥1
3 ] 𝑁⁄  

 

 

Supplemental Note B: r2redux manual 

The ‘r2redux’ package can be used to derive test statistics for 𝑅2 values from polygenic risk 

score (PGS) models (variance and covariance of 𝑅2 values, p value and 95% confidence 

intervals (CI)) (see manual https://cran.r-project.org/web/packages/r2redux/r2redux.pdf). For 

example, it can test if two sets of 𝑅2 values from two different PGS models are significantly 

different to each other whether the two sets of PGS are independent or dependent. Because 𝑅2 

value is often regarded as the predictive ability of PGS, r2redux package can be useful to assess 

the performances of PGS methods or multiple sets of PGS based on different information 

sources. Furthermore, the package can derive the information matrix of �̂�1
2 and �̂�2

2 from a 

multiple regression (see olkin_beta1_2 or olkin_beta_info function in the manual), which is a 

basis of a PGS-based genomic partitioning method (see r2_enrich or r2_enrich_beta function 

in the manual). It is recommended that the target sample size in the PGS study should be more 

than 2,000 for quantitative traits (Figure S27) and more than 5,000 for binary responses or case-

control studies (Figures S28 and S29). The p value generated from the r2redux package 

provides two types of p values (for one- and two-tailed test) unless the comparison is for nested 

models (e.g. 𝑦 = 𝑃𝐺𝑆1 + 𝑃𝐺𝑆2 + 𝑒 vs. 𝑦 = 𝑃𝐺𝑆2 + 𝑒) where the 𝑅2 of the full model is 

expected to be always higher than the reduced model.  When there are multiple covariates (e.g. 

age, sex and other demographic variables), the phenotypes can be adjusted for the covariates, 

and pre-adjusted phenotypes (residuals) should be used in the r2redux.   

https://cran.r-project.org/web/packages/r2redux/r2redux.pdf


 
 

 

Installation 

To use r2redux: 

install.packages("r2redux")  
library(r2redux) 

or 

install.packages("devtools") 
library(devtools) 
devtools::install_github("mommy003/r2redux") 
library(r2redux) 

Quick start  

We illustrate the usage of r2redux using multiple sets of PGS estimated based on GWAS 

summary statistics from UK Biobank or Biobank Japan (reference datasets). In a target dataset, 

the phenotypes of target samples (y) can be predicted with PGS (a PGS model, e.g. 𝑦 = 𝑃𝐺𝑆 +

𝑒, where y and PGS are column-standardised 1. Note that the target individuals should be 

independent from reference individuals. We can test the significant differences of the predictive 

ability (𝑅2) between a pair of PGS (see r2_diff function and example in the manual). 

Data preparation 

a. Statistical testing of significant difference between 𝑅2 values for p value thresholds: 

r2redux requires only phenotype and estimated PGS (from PLINK or any other software). Note 

that any missing value in the phenotypes and PGS tested in the model should be removed. If 

we want to test the significant difference of 𝑅2 values for p value thresholds, r2_diff function 

can be used with an input file that includes the following fields (also see 

test_ukbb_thresholds_scaled in the example directory form github  

(https://github.com/mommy003/r2redux)  or read dat1 file embedded within the package and 

r2_diff function in the manual (https://cran.r-project.org/web/packages/r2redux/r2redux.pdf). 

• Phenotype (𝑦) 

• PGS for p value 1 (𝑥1) 

• PGS for p value 0.5 (𝑥2) 

• PGS for p value 0.4 (𝑥3) 

https://github.com/mommy003/r2redux
https://cran.r-project.org/web/packages/r2redux/r2redux.pdf


 
 

• PGS for p value 0.3 (𝑥4) 

• PGS for p value 0.2 (𝑥5) 

• PGS for p value 0.1 (𝑥6) 

• PGS for p value 0.05 (𝑥7) 

• PGS for p value 0.01 (𝑥8) 

• PGS for p value 0.001 (𝑥9) 

• PGS for p value 0.0001 (𝑥10) 

To get the test statistics for the difference between 𝑅2(y~x[,v1]) and 𝑅2(y~x[,v2]). (here we 

define 𝑅1
2= 𝑅2(y~x[,v1])) and 𝑅2

2=𝑅2(y~x[,v2]))) 

 

 

dat=read.table("test_ukbb_thresholds_scaled") (see example files) or 

dat=dat1 (this example embedded within the package) 

nv=length(dat$V1) 

v1=c(1) 

v2=c(2) 

output=r2_diff(dat,v1,v2,nv) 

r2redux output 

output$var1 (variance of 𝑅1
2) 

0.0001436128 

output$var2 (variance of 𝑅2
2) 

0.0001451358 

output$var_diff (variance of difference between 𝑅1
2and 𝑅2

2) 

5.678517e-07 

output$r2_based_p (p value for significant difference between 𝑅1
2 and 𝑅2

2) 

 0.5514562 

output$mean_diff (differences between 𝑅1
2 and 𝑅2

2) 

-0.0004488044 

output$upper_diff (upper limit of 95% CI for the difference) 

0.001028172 

output$lower_diff (lower limit of 95% CI for the difference) 

-0.001925781 

 

b. PGS-based genomic enrichment analysis: If we want to perform some enrichment analysis 

(e.g., regulatory vs non_regulatory) in the PGS context to test significantly different from the 

expectation (𝑝𝑒𝑥𝑝= # SNPs in the regulatory / total # SNPs = 4%). We simultaneously fit two 

sets of PGS from regulatory and non-regulatory to get �̂�𝑟𝑒𝑔𝑢
2  and �̂�𝑛𝑜𝑛−𝑟𝑒𝑔𝑢

2 , using a multiple 

regression, and assess if the ratio,  
�̂�1

2

𝑟𝑦,(𝑥1,𝑥2)
2  are significantly different from the expectation, 𝑝𝑒𝑥𝑝. 

To test this, we need to prepare input file for r2redux that includes the following fields (e.g. 



 
 

test_ukbb_enrichment_choles in example directory or read dat2 file embedded within the 

package and r2_enrich_beta function in the manual). 

• Phenotype (𝑦) 

• PGS for regulatory region (𝑥1) 

• PGS for non-regulatory region (𝑥2) 

To get the test statistic for the ratio which is significantly different from the expectation. 

var(�̂�1
2/𝑟𝑦,(𝑥1,𝑥2)

2 ), where �̂�1
2 is the squared regression coefficient of 𝑥1 from a multiple 

regression model, i.e. 𝑦 = 𝑥1𝛽1 + 𝑥2𝛽2 + 𝑒, and 𝑟𝑦,(𝑥1,𝑥2)
2  is the coefficient of determination 

of the model. It is noted that 𝑦, 𝑥1 and 𝑥2 are column standardised (mean 0 and variance 1). 

 

dat=read.table("test_ukbb_enrichment_choles") (see example file) or  

dat=dat2 (this example data is embedded within the package) 

 nv=length(dat$V1) 

v1=c(1) 

v2=c(2) 

dat=dat2 

nv=length(dat$V1) 

v1=c(1) 

v2=c(2) 

output=r2_beta_var(dat,v1,v2,nv) 

r2redux output 

output$beta1_sq (�̂�1
2) 

0.01118301 

output$beta2_sq (�̂�2
2) 

0.004980285 

output$var1 (variance of �̂�1
2) 

7.072931e-05 

output$var2 (variance of �̂�2
2) 

3.161929e-05 

output$var1_2 (variance of difference between �̂�1
2and �̂�2

2) 

0.000162113 

output$cov (covariance between �̂�1
2and �̂�2

2) 

-2.988221e-05 

output$upper_beta1_sq (upper limit of 95% CI for �̂�1
2) 

0.03037793 

output$lower_beta1_sq (lower limit of 95% CI for �̂�1
2) 

-0.00123582 

output$upper_beta2_sq (upper limit of 95% CI for �̂�2
2) 

0.02490076 

output$lower_beta2_sq (lower limit of 95% CI for �̂�2
2) 

-0.005127546 

 

dat=dat2 (this example data is embedded within the package) 

nv=length(dat$V1) 

v1=c(1) 



 
 

v2=c(2) 

expected_ratio=0.04 

output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio) 

r2redux output 

output$beta1_sq (�̂�1
2) 

0.01118301 

output$beta2_sq (�̂�2
2) 

0.004980285 

output$ratio1 (�̂�1
2/𝑅2) 

0.4392572 

output$ratio2 (�̂�2
2/𝑅2) 

0.1956205 

output$ratio_var1 (variance of ratio 1) 

0.08042288 

output$ratio_var2 (variance of ratio 2) 

0.0431134 

output$upper_ratio1 (upper limit of 95% CI for ratio 1) 

0.9950922 

output$lower_ratio1 (lower limit of 95% CI for ratio 1) 

-0.1165778 

output$upper_ratio2 upper limit of 95% CI for ratio 2) 

0.6025904 

output$lower_ratio2 (lower limit of 95% CI for ratio 2) 

-0.2113493 

output$enrich_p1 (two tailed p value for �̂�1
2/𝑅2is significantly different from exp1) 

0.1591692 

output$enrich_p1_one_tail (one tailed p value for �̂�1
2/𝑅2 is significantly different from exp1) 

0.07958459 

output$enrich_p2 (two tailed p value for �̂�2
2/R2 is significantly different from (1-exp1)) 

0.000232035 

output$enrich_p2_one_tail (one tailed p value for �̂�2
2/𝑅2 is significantly different from (1-

exp1)) 

0.0001160175 

 

A code for an additional unit test is available in “r2redux/tests/testthat/” directory 

 

The r2redux manual (https://cran.r-project.org/web/packages/r2redux/r2redux.pdf) and their 

example files can be downloaded from https://github.com/mommy003/r2redux or from CRAN 

[install.packages("r2redux") in R].  

 

 

 

 

 

 

https://cran.r-project.org/web/packages/r2redux/r2redux.pdf
https://github.com/mommy003/r2redux
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Figure S1: Wishart’s equation and Equation 6 provide identical results for any 𝑹𝟐 values 

ranging from 0 to 1 using sample size 25000.  

 

 

 

 

 

 



 
 

 

Figure S2: Incorrect type I error rate for testing the difference between two 𝑹𝟐 values (𝒓𝒚,𝒙𝟏
𝟐  vs. 

𝒓𝒚,𝒙𝟐
𝟐 ) when ignoring the correlation between two sets of PGS (𝒓𝒙𝟏,𝒙𝟐

> 0). Simulations of y, 𝑥1 and 

𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.100 0.100
0.100 1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠
0.100 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1

], and 

𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒 in each replicate (the type I error 

rate was obtained over 10,000 replicates). In each replicate, chi-squared test is used, i.e. 𝜒1
2 =

𝑑2

𝜎𝑑
2, where 

d = 𝑟𝑦,𝑥1
– 𝑟𝑦,𝑥2

and 𝜎𝑑
2 = 𝜎𝑟𝑦,𝑥1

2
2 + 𝜎𝑟𝑦,𝑥2

2
2 when ignoring the covariance term, and 𝜎𝑑

2 = 𝜎𝑟𝑦,𝑥1
2

2 +  𝜎𝑟𝑦,𝑥2
2

2 −

2𝑐𝑜𝑣(𝑟𝑦,𝑥1
2 , 𝑟𝑦,𝑥2

2 ) when considering the covariance term. The sample size is 25,000 in each replication. 

We used a significance level at p value = 0.05 (red dashed line).    

 

 

 

 

 

 

 



 
 

 

Figure S3: Reduced power for testing the difference between two 𝑹𝟐 values (𝒓𝒚,𝒙𝟏
𝟐  𝐯𝐬. 𝒓𝒚,𝒙𝟐

𝟐 ) when 

ignoring the correlation between two sets of PGS (𝒓𝒙𝟏,𝒙𝟐
> 0). Simulations of y, 𝑥1 and 𝑥2 were based 

on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.120 0.100
0.120 1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠
0.100 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  

were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒 in each replicate (the power was obtained over 

10,000 replicates). In each replicate, chi-squared test is used (the same as in Figure S1). The sample 

size is 25,000 in each replication. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S4: Distribution of regression coefficients are asymptotically normal when correlation 

between two PGS is 0.10. Simulations of y and 𝑥1 were based on a correlation of 𝑟𝑦,𝑥1
= 0.10 and the 

regression coefficient was estimated from a model 𝑦 = 𝑥1 + 𝑒 using 5,000 replications. The sample 

size varies from N=100 to N=25,000. The p value is to test the normality of estimated regression 

coefficients, using Shapiro-Wilk test, i.e. P < 0.05 means that the regression coefficients are not 

normally distributed. Skewness and kurtosis are close to 0 and 3 if regression coefficients are normally 

distributed. For 𝑟𝑦,𝑥1
= 0.10, the regression coefficients are approximately normal for all the sample 

sizes considered (N=100 – 25,000). 

 

 



 
 

 

Figure S5: Distribution of regression coefficients are asymptotically normal when correlation 

between two PGS is 0.25. Simulations of y and 𝑥1 were based on a correlation of 𝑟𝑦,𝑥1
= 0.25 and the 

regression coefficient was estimated from a model 𝑦 = 𝑥1 + 𝑒 using 5,000 replications. The sample 

size varies from N=100 to N=25,000. The p value is to test the normality of estimated regression 

coefficients, using Shapiro-Wilk test, i.e. P < 0.05 means that the regression coefficients are not 

normally distributed. Skewness and kurtosis are close to 0 and 3 if regression coefficients are normally 

distributed. For 𝑟𝑦,𝑥1
= 0.25, the regression coefficients are approximately normal for all the sample 

sizes investigated except N=100. 

 

 

 



 
 

 

Figure S6: Distribution of regression coefficients are asymptotically normal when correlation 

between two PGS is 0.50. Simulations of y and 𝑥1 were based on a correlation of 𝑟𝑦,𝑥1
= 0.50 and the 

regression coefficient was estimated from a model 𝑦 = 𝑥1 + 𝑒 using 5,000 replications. The sample 

size varies from N=100 to N=25,000. The p value is to test the normality of estimated regression 

coefficients, using Shapiro-Wilk test, i.e. P < 0.05 means that the regression coefficients are not 

normally distributed. Skewness and kurtosis are close to 0 and 3 if regression coefficients are normally 

distributed. For 𝑟𝑦,𝑥1
= 0.50, the regression coefficients are approximately normal when the sample 

sizes investigated was N> 5000. 

 

 

 

 

 

  

 

 

 

 

 



 
 

 

Figure S7: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates when varying sample size. Simulations of y, 𝑥1 and 𝑥2 

were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) 

was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. The empirical variance of 𝑅2 over 10,000 

replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point in 

the diagonal represents the variance of 𝑅2 with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 

 

 

 

 

 

 



 
 

 

Figure S8: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates when varying sample size. 

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 0.246 0.139

0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒, 

respectively, to get their difference in each replicate. The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  over 10,000 

replicates was estimated. The theoretical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. (9). Each data 

point in the diagonal represents the variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with a sample size of 50000, 40000, 30000, 

20000 and 10000.  

 

 

 

 

 



 
 

 

Figure S9: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference of (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates when varying sample 

size. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 0.246 0.139

0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2  were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒 and 𝑦 =

𝑥1 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  

over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was obtained from 

eq. (11). Each data point in the diagonal represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with a sample size 

of 50000, 40000, 30000, 20000 and 10000.  

.  

 

 

 

 

 

 

 

 

 



 
 

 

Figure S10: Nearly identical values between the theoretical and empirical variances of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates when varying sample size. Simulations of y, 𝑥1 and 𝑥2 

were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.176 0.148
0.176 1 0.610
0.148 0.610 1

], and �̂�1
2 and 

𝑅2 were obtained from a multiple regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the 

coefficient of determination explained by 𝑥1 in each replicate. It was assumed that the expectation is 

known (𝑝
𝑒𝑥𝑝

= 0.04 was used). The empirical variance of 
�̂�1

2

𝑅2 −  𝑃𝑒𝑥𝑝 over 10,000 replicates was 

estimated. The theoretical variance of 
�̂�1

2

𝑅2 −  𝑃𝑒𝑥𝑝 was obtained from eq. (16). Each data point in the 

diagonal represents the variance of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 with a sample size of 50000, 40000, 30000, 20000 and 

10000.  

 

 

 

 

 

 

 

 



 
 

 

Figure S11: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates when varying 𝑹𝟐 value. Simulations of y, 𝑥1 and 𝑥2 

were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.447
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.447 0.800 1
] and 𝑅2   

(𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. The empirical variance of 𝑅2   over 

10,000 replicates was estimated. The theoretical variance of 𝑅2  was obtained from eq. (6). A sample 

size of 30,000 was used. Each data point in the diagonal represents the variance of 𝑅2 with 𝑟𝑦,𝑥1
2  = 0.80, 

0.70, 0.10, 0.60, 0.50, 0.20, 0.40 and 0.30.  

 

 

 

 

 

 



 
 

 

Figure S12: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates when varying 𝑹𝟐 difference. 

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.447

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.447 0.800 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 =

𝑥2 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  

over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. 

(9). A sample size of 30,000 was used. Each data point in the diagonal represents the variance of 𝑟𝑦,𝑥1
2 −

𝑟𝑦,𝑥2
2  with 𝑟𝑦,𝑥1

2 − 𝑟𝑦,𝑥2
2  = 0.50, 0.40, 0, 0.30, 0.10 and 0.20.  

 

 

 

 

 



 
 

 

Figure S13: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates when varying 𝑹𝟐 

difference. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.447

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.447 0.800 1

], and  𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2   were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒  

and 𝑦 = 𝑥1 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 

𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was 

obtained from eq. (11). A sample size of 30,000 was used. Each data point in the diagonal represents 

the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  = 0.10, 0.20, 0, 0.30, 0.40 and 0.50.  

 

 

 



 
 

 

Figure S14. Nearly identical values between the theoretical and empirical variances of 
�̂�1

2

𝑅2 −  𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates when varying correlation structure. Simulations of y, 

𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = 

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.148

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.610
0.148 0.610 1

], and �̂�1
2 and 𝑅2 were obtained from a multiple regression model 𝑦 =

𝑥1 + 𝑥2 + 𝑒 to get the proportion of the coefficient of determination explained by 𝑥1 in each replicate. 

It was assumed that the expectation is known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). The empirical variance of 
�̂�1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 was obtained from 

eq. (16). A sample size of 30,000 was used. Each data point in the diagonal represents the variance of 
�̂�1

2

𝑅2 −  𝑃𝑒𝑥𝑝 with 𝑟𝑦,𝑥1
 = 0.10, 0.30, 0.25, 0.05, 0.15, 0.20 and 0.176 (resulting in 

�̂�1
2

𝑅2 −  𝑃𝑒𝑥𝑝 = -0.026, 

1.173, 0.994, 0.130, 0.286, 0.703 and 0.516).  

 



 
 

 

Figure S15: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚𝟏,𝒙𝟏
𝟐 − 𝒓𝒚𝟐,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates when using two sets of 

independent PGS (e.g., Male vs female PGS). Simulations of 𝑦1 and 𝑥1 were based on a correlation 

structure [
1 𝑟𝑦1,𝑥1

𝑟𝑦1,𝑥1
1

] = [
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1
], simulations of 𝑦2 and 𝑥2 were based on a correlation 

structure [
1 𝑟𝑦2,𝑥2

𝑟𝑦2,𝑥2
1

] = [
1 0.447

0.447 1
] and 𝑟𝑦1,𝑥1

2  and 𝑟𝑦2,𝑥2
2  were obtained from models 𝑦1 = 𝑥1 +

𝑒 and 𝑦2 = 𝑥2 + 𝑒, respectively, to get their difference in each replicate. The empirical variance of 

𝑟𝑦1,𝑥1

2 − 𝑟𝑦2,𝑥2

2  over 10,000 replicates was estimated. The theoretical variance of 𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2  was 

obtained from eq. (14). A sample size of 15,000 and 17,000 were used for 1st and 2nd PGS, respectively. 

Each data point in the diagonal represents the variance of 𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2  with 𝑟𝑦1,𝑥1
2 − 𝑟𝑦2,𝑥2

2  = 0, 0.02, 

0.04, 0.06, 0.08 and 0.10.  

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Figure S16: The predictive ability of (𝑹𝟐) for male and female, when predicting European male 

and female separately using UKBB and BBJ discovery samples. 

Panel A: The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals.  

Panel B: Dot points represent the differences of 𝑅2 values between male and female PGS models, 

and error bars indicate 95% confidence intervals of the difference. 

95% confidence interval for the differences of 𝑅2 between two independent sets of PGS (male and 

female) was estimated from eq. (15).   

 

 

 



 
 

 

Figure S17: The predictive ability (𝑹𝟐) of PGS estimated based on SNPs below the 𝒑𝑻when 

predicting BMI in 28,880 European samples using UKBB discovery samples (GWAS summary 

statistics). 

A) The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals. The values 

above 95% CIs are p values indicating that 𝑅2 values are not different from zero.  

B) The main bars represent the difference of 𝑅2 values between the corresponding threshold and the 

best-performing threshold and error bars indicate 95% confidence intervals. The values above 95% CIs 

are p values indicating the significance of the difference between the pairs of 𝑅2 values.  

 

 

 



 
 

 

Figure S18: The predictive ability (𝑹𝟐) of PGS estimated based on SNPs below the 𝒑𝑻 when 

predicting cholesterol in 28,880 European samples using UKBB discovery samples (GWAS 

summary statistics). 

A) The main bars represent 𝑅2 values and error bars correspond 95% confidence intervals. The values 

above 95% CIs are p values indicating that 𝑅2 values are not different from zero.  

B) The main bars represent the difference of 𝑅2 values between the corresponding threshold and the 

best-performing threshold and error bars indicate 95% confidence intervals. The values above 95% CIs 

are p values indicating the significance of the difference between the pairs of 𝑅2 values.  

 

 

 

 



 
 

 

Figure S19: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying sample size.  Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 +

𝑒 in each replicate. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical 

variance of 𝑅2 was obtained from eq. (6). Each data point in the diagonal represents the variance of 𝑅2 

with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S20: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates of binary responses assuming 

5% disease prevalence when varying sample size. Simulations of y, 𝑥1 and 𝑥2 were based on a 

correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were 

obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒, respectively, to get their difference in each replicate. 

The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  over 10,000 replicates was estimated. The theoretical variance 

of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. (9). Each data point in the diagonal represents the variance of 

𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 



 
 

 

Figure S21: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates of binary responses 

assuming 5% disease prevalence when varying sample size. Simulations of y, 𝑥1 and 𝑥2 were based 

on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.246 0.139
0.246 1 0.315
0.139 0.315 1

], and 𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2  

were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒 and 𝑦 = 𝑥1 + 𝑒, respectively, to get their difference in 

each replicate. The empirical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  over 10,000 replicates was estimated. The 

theoretical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was obtained from eq. (11). Each data point in the diagonal 

represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with a sample size of 50000, 40000, 30000, 20000 and 

10000.  

 

 

 

 

 

 

 



 
 

 

Figure 22:  Nearly identical values between the theoretical and empirical variances of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying sample size. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.176 0.148
0.176 1 0.610
0.148 0.610 1

], and �̂�1
2 and 𝑅2 were obtained from a multiple 

regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the coefficient of determination explained 

by 𝑥1 in each replicate. It was assumed that the expectation is known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). The 

empirical variance of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 
�̂�1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 was obtained from eq. (16). Each data point in the diagonal represents the variance of 
�̂�1

2

𝑅2 −

 𝑃𝑒𝑥𝑝with a sample size of 50000, 40000, 30000, 20000 and 10000.  

 

 

 

 

 

 

 



 
 

 

Figure S23: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying 𝑹𝟐 value. Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
] and 𝑅2(𝑟𝑦,𝑥1

2 ) was obtained from a model 𝑦 =

𝑥1 + 𝑒 in each replicate. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The 

theoretical variance of 𝑅2 was obtained from eq. (6). A sample size of 30,000 was used. Each data point 

in the diagonal represents the variance of 𝑅2 with 𝑟𝑦,𝑥1
2  = 0.02, 0.04, 0.06, 0.08, and 0.10.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S24: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates of binary responses assuming 

5% disease prevalence when varying 𝑹𝟐 difference. Simulations of y, 𝑥1 and 𝑥2 were based on a 

correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
], and 𝑟𝑦,𝑥1

2  and 𝑟𝑦,𝑥2
2  were 

obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 = 𝑥2 + 𝑒, respectively, to get their difference in each replicate. 

The empirical variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  over 10,000 replicates was estimated. The theoretical variance 

of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  was obtained from eq. (9). A sample size of 30,000 was used. Each data point in the 

diagonal represents the variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  = 0, 0.02, 0.04, 0.0.06, and 0.08.  

 

 

 



 
 

 

Figure S25: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates of binary responses 

assuming 5% disease prevalence when varying 𝑹𝟐 difference. Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
], and  

𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2   were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒  and 𝑦 = 𝑥1 + 𝑒, respectively, to get 

their difference in each replicate. The empirical variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  over 10,000 replicates was 

estimated. The theoretical variance of𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  was obtained from eq. (11). A sample size of 

30,000 was used. Each data point in the diagonal represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with 

𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  = 0.02, 0.00, 0.04, 0.0.06, and 0.08.  

 

 

 

 

 

 

 

 

 



 
 

 

Figure S26: Nearly identical values between the theoretical and empirical variances of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates of binary responses assuming 5% disease prevalence 

when varying correlation structure.  Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.148
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.610

0.148 0.610 1
], and �̂�1

2  and 𝑅2 were obtained from a multiple 

regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the coefficient of determination explained 

by 𝑥1 in each replicate. It was assumed that the expectation is known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). The 

empirical variance of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 
�̂�1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 was obtained from eq. (16). A sample size of 30,000 was used. Each data point in the diagonal 

represents the variance 
�̂�1

2

𝑅2 −  𝑃𝑒𝑥𝑝 with 𝑟𝑦,𝑥1
 = 0.10, 0.30, 0.25, 0.05, 0.15, 0.20 and 0.176 (resulting in 

�̂�1
2

𝑅2 −  𝑃𝑒𝑥𝑝 = -0.017, 1.171, 0.993, 0.137, 0.294, 0.702, 0.517 and 0.605). 

 

 

  

 



 
 

 

Figure S27: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 (𝒓𝒚,𝒙𝟏
𝟐 ) 

estimated from 10,000 simulated replicates of ascertained case-control (10000 cases and 10000 

controls) assuming 5% disease prevalence and 20000 individuals.   Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
] and 𝑅2 (𝑟𝑦,𝑥1

2 ) 

was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and disease 

prevalence, we simulated 200,000 dependent and explanatory variables and randomly selected 10000 

cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The 

theoretical variance of 𝑅2 was obtained from eq. (6). Each data point in the diagonal represents the 

variance of 𝑅2 with 𝑟𝑦,𝑥1
2  = 0.02, 0.04, 0.06, 0.08, and 0.10. 

 

 

 

 



 
 

 

Figure S28: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,𝒙𝟏
𝟐 − 𝒓𝒚,𝒙𝟐

𝟐 ) estimated from 10,000 simulated replicates of ascertained case-control 

(10000 cases and 10000 controls) assuming 5% disease prevalence and 20000 individuals.   

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] =

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.141 0.8 1

] and  𝑟𝑦,𝑥1
2  and 𝑟𝑦,𝑥2

2  were obtained from models 𝑦 = 𝑥1 + 𝑒 and 𝑦 =

𝑥2 + 𝑒, respectively, to get their difference in each replicate. . Following the correlation structure and 

disease prevalence, we simulated 200,000 dependent and explanatory variables and randomly selected 

10000 cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was estimated. 

The theoretical variance of 𝑅2 was obtained from eq. (9). Each data point in the diagonal represents the 

variance of 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  with 𝑟𝑦,𝑥1
2 − 𝑟𝑦,𝑥2

2  = 0, 0.02, 0.04, 0.06, and 0.08. 

 

 



 
 

 

Figure S29: Nearly identical values between the theoretical and empirical variances of 𝑹𝟐 

difference (𝒓𝒚,(𝒙𝟏,𝒙𝟐)
𝟐 − 𝒓𝒚,𝒙𝟏

𝟐 ) estimated from 10,000 simulated replicates of ascertained case-

control (10000 cases and 10000 controls) assuming 5% disease prevalence and 20000 individuals.   

Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] =

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.141 0.8 1

] and  𝑟𝑦,(𝑥1,𝑥2)
2  and 𝑟𝑦,𝑥1

2  were obtained from models 𝑦 = 𝑥1 + 𝑥2 + 𝑒 and 

𝑦 = 𝑥1 + 𝑒, respectively, to get their difference in each replicate. Following the correlation structure 

and disease prevalence, we simulated 200,000 dependent and explanatory variables and randomly 

selected 10000 cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was 

estimated. The theoretical variance of 𝑅2 was obtained from eq. (11). Each data point in the diagonal 

represents the variance of 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  with 𝑟𝑦,(𝑥1,𝑥2)
2 − 𝑟𝑦,𝑥1

2  = 0, 0.04, 0.08, 0.12, and 0.16. 

 

 



 
 

 

Figure S30:  Nearly identical values between the theoretical and empirical variances of 
�̂�1

2

𝑅2 − 𝑃𝑒𝑥𝑝 

estimated from 10,000 simulated replicates of ascertained case-control (10000 cases and 10000 

controls) assuming 5% disease prevalence and 20000 individuals. Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.148
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.610

0.148 0.610 1
], and �̂�1

2 and 𝑅2 

were obtained from a multiple regression model 𝑦 = 𝑥1 + 𝑥2 + 𝑒 to get the proportion of the 

coefficient of determination explained by 𝑥1 in each replicate. It was assumed that the expectation is 

known (𝑝
𝑒𝑥𝑝

 = 0.04 was used). Following the correlation structure and disease prevalence, we simulated 

200,000 dependent and explanatory variables and randomly selected 10000 cases and 10000 controls. 

The empirical variance of 
�̂�1

2

𝑅2 −  𝑃𝑒𝑥𝑝 over 10,000 replicates was estimated. The theoretical variance of 

�̂�1
2

𝑅2 −  𝑃𝑒𝑥𝑝 was obtained from eq. (17). Each data point in the diagonal represents the variance of  
�̂�1

2

𝑅2 −

 𝑃𝑒𝑥𝑝 with 𝑟𝑦,𝑥1
 = 0.10, 0.30, 0.25, 0.05, 0.15, 0.20 and 0.176 (resulting in 

�̂�1
2

𝑅2 − 𝑃𝑒𝑥𝑝 = -0.026, 1.172, 

0.995, 0.127, 0.0.288, 0.703 and 0.514). 

 

 

 

 

 



 
 

 

Figure S31: The empirical and theoretical variances diverge when 𝑹𝟐  values are more than 0.1 for binary responses, noting that 𝑹𝟐 > 0.1 is not 

frequently observed (see Supplemental Table 2). Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] =

[
1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141

𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800
0.141 0.8 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and disease 

prevalence, we simulated 30,000 dependent and explanatory variables. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical 

variance of 𝑅2 was obtained from eq. (6). Each data point represents the variance of 𝑅2 ranged from 0.02 to 0.2. 



 
 

 

Figure S32: The empirical and theoretical variances become disagreed when 𝑹𝟐  values are more than 0.1 for ascertained case-control samples in the 

reference dataset (10000 cases and 10000 controls), noting that 𝑹𝟐  > 0.1 is not frequently observed (see Supplemental Table 2). Simulations of y, 𝑥1 and 

𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 0.141
𝑣𝑎𝑟𝑖𝑜𝑢𝑠 1 0.800

0.141 0.8 1
] and 𝑅2 (𝑟𝑦,𝑥1

2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each 

replicate. Following the correlation structure and disease prevalence, we simulated 200,000 dependent and explanatory variables and randomly selected 10000 

cases and 10000 controls. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each 

data point represents the variance of 𝑅2 ranged from 0.02 to 0.2. 



 
 

 

Figure S33: The empirical and theoretical variances agree even with sample size 2000 for quantitative phenotypes. Simulations of y, 𝑥1 and 𝑥2 were 

based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.44 0.31
0.44 1 0.800
0.31 0.8 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. 

Following the correlation structure and disease prevalence, we simulated dependent and explanatory variables. The empirical variance of 𝑅2   over 10,000 

replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point represents the variance of 𝑅2 for different sample size. 

 

 



 
 

 

Figure S34: The empirical and theoretical variances become disagreed when sample size is < 5000 for binary responses under scenario of different 

prevalence rate (k). Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure [

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.44 0.31
0.44 1 0.800
0.31 0.8 1

] and 𝑅2 (𝑟𝑦,𝑥1
2 ) was 

obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and disease prevalence, we simulated dependent and explanatory 

variables. The empirical variance of 𝑅2   over 10,000 replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point 

represents the variance of 𝑅2 for different sample size. 



 
 

 

 

Figure S35: The empirical and theoretical variances become disagreed when sample size is < 5000 for ascertained case-control samples in the reference 

dataset (50% cases and 50% controls) under scenario of different prevalence rate (k). Simulations of y, 𝑥1 and 𝑥2 were based on a correlation structure 

[

1 𝑟𝑦,𝑥1
𝑟𝑦,𝑥2

𝑟𝑦,𝑥1
1 𝑟𝑥1,𝑥2

𝑟𝑦,𝑥2
𝑟𝑥1,𝑥2

1
] = [

1 0.44 0.31
0.44 1 0.800
0.31 0.8 1

]  and 𝑅2 (𝑟𝑦,𝑥1
2 ) was obtained from a model 𝑦 = 𝑥1 + 𝑒 in each replicate. Following the correlation structure and 

disease prevalence, we simulated 100,000 dependent and explanatory variables and randomly selected cases and controls. The empirical variance of 𝑅2 over 

10,000 replicates was estimated. The theoretical variance of 𝑅2 was obtained from eq. (6). Each data point represents the variance of 𝑅2 for different sample 

size. 



 
 

Supplemental tables 

 

 

P value 

Threshold 

BMI Cholesterol 

No of SNPs (UKBB) No of SNPs (BBJ) No of SNPs (UKBB) No of SNPs (BBJ) 

1 4113630 4113630 4113630 4113630 

0.5 2539432 2365077 2254467 2143406 

0.4 2199702 1996741 1864917 1746560 

0.3 1841948 1610857 1468402 1346257 

0.2 1442727 1201525 1059630 936383 

0.1 976865 746948 618466 508651 

5e-02 675502 475337 376346 280526 

1e-02 318902 128704 140757 76284 

1e-03 134943 57272 54829 19216 

1e-04 67528 24320 30741 8636 

Table S1: Number of SNPs across different p value thresholds for BMI and cholesterol for UKBB and BBJ 

 

 

 

 

 

 

 

 

 

 



 
 

 

Disease Prevalence in discovery GWAS (n) 

 

Prevalence in validation dataset AUC (95% CI) in 

validation dataset  

Predictive ability 

(𝑹𝟐)  

Coronary Artery disease 

(CAD) 

60,801 cases and 123,504 controls 

(32.9%)3  

3,963 cases and 116,317 controls 

(3.4%) 

0.81 (0.80–0.81) 0.040 

Atrial fibrillation 17,931 cases and 115,142 controls 

(13.4%)4   

2,024 cases and 118,256 controls 

(1.7%) 

0.77 (0.76–0.78) 0.016 

Type 2 diabetes 6,676 cases and  132,532 controls 

(16.7%)5 

2,785 cases and 117,495 controls 

(2.4%) 

0.72 (0.72–0.73) 0.012 

Inflammatory bowel 

disease 

2,882 cases and 21,770 controls 

(37.2)6 

1,360 cases and 118,920 controls 

(1.1%) 

0.63 (0.62–0.65) 0.003 

Breast cancer 122,977 cases and 105,974 controls 

(53.7)7 

2,576 cases and 60,771 controls 

(4.1%) 

0.68 (0.67–0.69) 0.017 

Table S2: The AUC values (reported in Khera et al.2 ) and 𝑹𝟐 values converted from the AUC given the sample size, prevalence in discovery and 

testing datasets. 𝑅2 values were converted from the AUC using the well-established theory8; 9. 
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