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Figure S1: Accuracy when increasing reference panel size for simulated array data with three-way 
admixture. The y-axis shows squared correlation between true and inferred local ancestry dose 
averaged over ancestries and across four replicate simulations (details in Methods). Error bars (+/- 2 
standard errors) are shown as gray lines. Each of the three ancestries is represented by a reference 
panel of size shown on the x-axis. Each analysis includes 100 admixed individuals.   



 

Figure S2: Accuracy when reducing the size of one of three reference panels. The data are simulated 
sequence data for three-way admixture. Each reference panel has size 400, except for the reference 
panel that is denoted on the x-axis (AFR is West African, EUR is European, ASN is East Asian) which has 
size 20 (left plot) or 50 (right plot). The y-axis shows squared correlation between true and inferred local 
ancestry dose averaged over ancestries and across four replicate simulations (details in Methods). Error 
bars (+/- 2 standard errors) are shown as gray lines. Each analysis includes 100 admixed individuals.  

  



 

Figure S3: Accuracy by ancestry for the simulated array data with four-way admixture. The y-axis is the 
squared correlation between the true and inferred ancestry dose for a single ancestry averaged across 
four replicate simulations. Error bars (+/- 2 standard errors) are shown as gray lines. The ancestry is 
shown on the x-axis (AFR is simulated West African, EUR is simulated European, CHB is simulated Han 
Chinese, JPT is simulated Japanese). The simulated array data have 100 admixed individuals and 400 
individuals in each of the four reference panels.  

 

  



 

Figure S4: Calibration of estimated diploid ancestry dose on simulated three-way admixture data. 
Estimated diploid ancestry dose is binned into bins of width 0.02 along the x-axis. The y-axis is the 
average true diploid ancestry dose for each bin. Results for FLARE, MOSAIC, and RFMix are shown in the 
left, middle, and right panels respectively. Sequence and array data are combined in these plots and 
reference panel sizes are combined in three size groups to reduce noise. A) Reference panels of sizes 20, 
50, and 100. B) Reference panels of sizes 400 and 1000. C) Reference panels of size 10,000. 

  



Supplementary Methods 1: Transition probabilities 
The transition probabilities described in the main text can be expressed as: 

𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖′,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ)�

= �
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1− 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�𝑞𝑞𝑖𝑖′ℎ′ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖 𝑖𝑖 = 𝑖𝑖′,ℎ = ℎ′

�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1− 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�𝑞𝑞𝑖𝑖′ℎ′ 𝑖𝑖 = 𝑖𝑖′,ℎ ≠ ℎ′

�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′ 𝑖𝑖 ≠ 𝑖𝑖′
 

Supplementary Methods 2: Algorithm for posterior probabilities of 
ancestry 
We estimate the posterior ancestry probabilities using the hidden Markov model forward-backward 
algorithm.1 

Consider an admixed haplotype, 𝒀𝒀. Let 𝑌𝑌𝑚𝑚 be the allele at marker 𝑚𝑚, with markers indexed 1, … ,𝑀𝑀. The 
forward probabilities are 

 𝛼𝛼𝑚𝑚(𝑖𝑖,ℎ) = 𝑃𝑃(𝑌𝑌1, … ,𝑌𝑌𝑚𝑚, 𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)) (S1) 

 
where 𝑆𝑆𝑚𝑚 represents the (ancestry, haplotype) state at the 𝑚𝑚th marker. The backward probabilities are 

 𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ) = 𝑃𝑃�𝑌𝑌𝑚𝑚+1, … ,𝑌𝑌𝑀𝑀�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�. (S2) 

Forward probabilities at first marker: For each ancestry 𝑖𝑖 and haplotype ℎ,  
𝛼𝛼1(𝑖𝑖,ℎ) = 𝜋𝜋(𝑖𝑖,ℎ)𝑒𝑒1(𝑖𝑖,ℎ). 

where 𝜋𝜋(𝑖𝑖,ℎ) is the prior probability that the state is (𝑖𝑖,ℎ), and the emission probability 𝑒𝑒𝑚𝑚(𝑖𝑖,ℎ) is the 
probability of observing the allele 𝑌𝑌𝑚𝑚 at marker 𝑚𝑚 on the admixed haplotype when the hidden state at 
this marker is (𝑖𝑖,ℎ). 

Forward probabilities: Suppose we have already calculated 𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ) for all (𝑖𝑖,ℎ), and we want to 
calculate 𝛼𝛼𝑚𝑚(𝑖𝑖′,ℎ′). Let 𝑑𝑑𝑚𝑚 be the distance in Morgans between markers 𝑚𝑚 − 1 and 𝑚𝑚. Pre-calculate 

𝑓𝑓𝑖𝑖 = �𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)
ℎ

 

for each 𝑖𝑖, and 

𝑠𝑠𝑓𝑓 = �𝑓𝑓𝑖𝑖
𝑖𝑖 

. 

The values 𝑓𝑓𝑖𝑖 and 𝑠𝑠𝑓𝑓 are temporary variables that are over-written for each successive marker. Their 
purpose is to avoid duplicate calculation.  

Then for each 𝑖𝑖′ and ℎ′ calculate (using equation S1) 



𝛼𝛼𝑚𝑚(𝑖𝑖′,ℎ′) = 𝑒𝑒𝑚𝑚(𝑖𝑖′,ℎ′)�𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖′,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)
𝑖𝑖,ℎ

= 𝑒𝑒𝑚𝑚(𝑖𝑖′,ℎ′)��1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′𝑠𝑠𝑓𝑓 + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖′�𝑞𝑞𝑖𝑖′ℎ′𝑓𝑓𝑖𝑖′
+ 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖′𝛼𝛼𝑚𝑚−1(𝑖𝑖′,ℎ′)�. 

 
In the computation, we normalize the 𝛼𝛼𝑚𝑚(𝑖𝑖′,ℎ′) to sum to one and store the normalization factors in 
order to avoid numerical underflow. 

Backwards probabilities: Let 𝛽𝛽𝑀𝑀(𝑖𝑖,ℎ) = 1 for all ancestries 𝑖𝑖 and reference haplotypes ℎ.  

Suppose the 𝛽𝛽𝑚𝑚+1(𝑖𝑖,ℎ) values have been calculated for all ancestries 𝑖𝑖 and reference haplotypes ℎ. Let 
𝑑𝑑𝑚𝑚+1 be the distance in Morgans between markers 𝑚𝑚 and 𝑚𝑚 + 1. Pre-calculate 

𝑏𝑏𝑖𝑖 = �𝛽𝛽𝑚𝑚+1(𝑖𝑖,ℎ)𝑞𝑞𝑖𝑖ℎ
ℎ

𝑒𝑒𝑚𝑚+1(𝑖𝑖,ℎ)  

for each 𝑖𝑖, and 𝑠𝑠𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖  

The values 𝑏𝑏𝑖𝑖 and 𝑠𝑠𝑏𝑏 are temporary variables that are over-written for each successive marker. Their 
purpose is to avoid duplicate calculation.  

Then for each 𝑖𝑖 and ℎ, calculate (using equation S2) 

𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ) = �𝑒𝑒𝑚𝑚+1(𝑖𝑖′,ℎ′)𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖′,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�𝛽𝛽𝑚𝑚+1(𝑖𝑖′,ℎ′)
𝑖𝑖′,ℎ′

= �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝑇𝑇�𝑠𝑠𝑏𝑏 + 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝑇𝑇�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝜌𝜌𝑖𝑖�𝑏𝑏𝑖𝑖 + 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚+1𝜌𝜌𝑖𝑖𝛽𝛽𝑚𝑚+1(𝑖𝑖, ℎ)𝑒𝑒𝑚𝑚+1(𝑖𝑖,ℎ) 
 

In the computation, we normalize the values of 𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ) to sum to one and store the normalization 
factors to avoid numerical underflow. 

Posterior probability of ancestry:  

Let  

𝑣𝑣𝑚𝑚(𝑖𝑖) = �𝛼𝛼𝑚𝑚(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ)
ℎ

 

The posterior probability of ancestry 𝑖𝑖 at marker 𝑚𝑚 is 𝑤𝑤𝑚𝑚(𝑖𝑖) = 𝑣𝑣𝑚𝑚(𝑖𝑖)/∑ 𝑣𝑣𝑚𝑚(𝑖𝑖′)𝑖𝑖′ . 

Supplementary Methods 3: Initialization and updating parameter values  
The initial values of the parameters are set as described below, or as specified by the user. If the EM 
updating option is turned on (which it is by default), we update parameters using a variant of the Baum-
Welch algorithm.1Each EM iteration estimates local ancestry for 100 randomly selected admixed 
haplotypes (using a separate random selection for each EM iteration) and the ancestry proportions and 
admixture time are updated as described below. Twenty EM iterations are performed unless the EM 



updating converges sooner. Convergence is defined as a relative change less than 5% in each ancestry 
proportion 𝜇𝜇𝑖𝑖  from the value in the preceding iteration, excluding those ancestries for which 𝜇𝜇𝑖𝑖 <
0.001. A 5% relative change in a 𝜇𝜇𝑖𝑖  taking value of 0.1 in the previous iteration would be 0.005. 

Mismatch probabilities 𝜽𝜽𝒊𝒊,𝒋𝒋: 

The default mismatch probabilities are the same for each ancestry and panel, and are defined as: 𝜃𝜃𝑖𝑖,𝑗𝑗 =
𝜆𝜆 (2𝜆𝜆 + 2𝑁𝑁)⁄  where 𝜆𝜆 = 1 (log𝑁𝑁 + 0.5)⁄  and 𝑁𝑁 is the total number of reference haplotypes.2 We do 
not update this parameter. 

Panel probabilities 𝒑𝒑𝒊𝒊𝒋𝒋 and switch rates 𝝆𝝆𝒊𝒊:  

The panel probabilities are obtained via a single iteration of training on the reference panel. Considering 
ancestry 𝑖𝑖∗, which is represented by one reference panel, we take one haplotype at a time out of that 
reference panel and run the forwards-backwards algorithm using all other reference haplotypes. For this 
analysis we set 𝜇𝜇𝑖𝑖∗ = 1, 𝜇𝜇𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑖𝑖∗, 𝑇𝑇 = 0, and 𝑝𝑝𝑖𝑖∗𝑗𝑗 = 𝑛𝑛𝑗𝑗/𝑁𝑁 where 𝑛𝑛𝑗𝑗 is the number of reference 
haplotypes in panel 𝑗𝑗. We use the default mismatch probabilities 𝜃𝜃𝑖𝑖𝑗𝑗 defined in the preceding section, and 
we set 𝜌𝜌𝑖𝑖 = 4𝑁𝑁𝑒𝑒/𝑁𝑁 where 𝑁𝑁𝑒𝑒 = 50,000.2; 3 We perform the analysis for 100 haplotypes selected at 
random from the reference panel. 

The updated panel probability is the average posterior probability that the copied haplotype is from panel 
𝑗𝑗, given that the ancestry is 𝑖𝑖. The posterior probability for state (𝑖𝑖,ℎ) at marker 𝑚𝑚 for selected reference 
haplotype 𝑘𝑘 is proportional to 𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ).  That is, the posterior probability for state (𝑖𝑖,ℎ) is 

� 𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ in panel 𝑗𝑗

�𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ

�  

and we average this over markers 𝑚𝑚 and selected reference haplotypes indexed by 𝑘𝑘 to obtain the 
estimated panel probability 

�̂�𝑝𝑖𝑖𝑗𝑗 = �� � 𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ in panel 𝑗𝑗

�𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ

� �
𝑚𝑚,𝑘𝑘

�1
𝑚𝑚,𝑘𝑘

�  

 

The updated switch rate 𝜌𝜌𝑖𝑖 is determined from the posterior probabilities of a change of haplotype state, 
as follows: 

The probability of transitioning to the same state is: 

𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)� = �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖  
= �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1− 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�(1− 𝑞𝑞𝑖𝑖ℎ) 

Solving for �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖� gives: 

 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖 =
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1 − 𝑞𝑞𝑖𝑖ℎ)  (S3) 



We write 𝜏𝜏𝑚𝑚,𝑖𝑖 = 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖. We estimate 𝜏𝜏𝑚𝑚,𝑖𝑖 using the observed transition probabilities in place of the 
prior transition probabilities 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�: 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) =
𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ),𝒀𝒀)
 

We average over haplotype state ℎ, weighting by the observed state probabilities conditional on 
ancestry 𝑖𝑖, 

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)
∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′)|𝒀𝒀)ℎ′

=
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′
, 

in the right-hand side of equation S3 to obtain: 

�̂�𝜏𝑚𝑚,𝑖𝑖 = �
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1 − 𝑞𝑞𝑖𝑖ℎ)

𝐻𝐻

ℎ=1

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)
∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′

= �
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1− 𝑞𝑞𝑖𝑖ℎ)∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′

𝐻𝐻

ℎ=1

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ),𝒀𝒀)

= �
��1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) − 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1 − 𝑞𝑞𝑖𝑖ℎ)∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′

𝐻𝐻

ℎ=1

. 

At each marker 𝑚𝑚 > 1, 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ), 𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) = 𝛽𝛽𝑚𝑚(𝑖𝑖, ℎ)𝑒𝑒𝑚𝑚(𝑖𝑖,ℎ)𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ) 
 

 

and 

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) = 𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖,ℎ) 
 

 

We use the linear approximation 𝜏𝜏𝑚𝑚,𝑖𝑖 = 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖 ≈ 𝜌𝜌𝑖𝑖𝑑𝑑𝑚𝑚 to estimate 𝜌𝜌𝑖𝑖. After we have estimated 
the �̂�𝜏𝑚𝑚,𝑖𝑖,𝑘𝑘 for each marker 𝑚𝑚 and each target haplotype 𝑘𝑘, we estimate 𝜌𝜌𝑖𝑖 with a slope estimator 
weighted by the conditional probability of ancestry 𝑖𝑖 given the data, ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)ℎ : 

𝜌𝜌�𝑖𝑖 =
∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)ℎ �̂�𝜏𝑚𝑚,𝑖𝑖,𝑘𝑘𝑚𝑚,𝑘𝑘
∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)ℎ 𝑑𝑑𝑚𝑚𝑚𝑚,𝑘𝑘

 

Note that 

�𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)
ℎ

=
∑ 𝛼𝛼𝑚𝑚−1(𝑖𝑖, ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖,ℎ)ℎ

∑ ∑ 𝛼𝛼𝑚𝑚−1(𝑖𝑖′,ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖′,ℎ)ℎ𝑖𝑖′
 

After initializing the 𝑝𝑝𝑖𝑖𝑗𝑗  and 𝜌𝜌𝑖𝑖, these parameters are fixed for the remainder of the analysis. 

Ancestry proportions, 𝝁𝝁𝒊𝒊: The default initial value is 1/𝐴𝐴, where 𝐴𝐴 is the number of ancestries. The 
updated value following each EM iteration is a weighted average of the posterior probability 𝑤𝑤𝑚𝑚(𝑖𝑖) for 
ancestry 𝑖𝑖. We include only positions for which the posterior probability of the ancestry is at least 0.9 in 
order to speed convergence.  The selected haplotypes are indexed by 𝑘𝑘. 



�̂�𝜇𝑖𝑖 =
∑ 𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖)1{𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖) ≥ 0.9}𝑚𝑚,𝑘𝑘

∑ ∑ 𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖′)1{𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖′) ≥ 0.9}𝑚𝑚,𝑘𝑘𝑖𝑖′
 

Admixture time 𝑻𝑻: 

The default initial value of 𝑇𝑇 is 10 generations. 

The updated admixture time is determined from the posterior probabilities of a change of ancestry state, 
as follows: 

The probability of transitioning to the same ancestry state is 

�𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�
ℎ′

= �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖 + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 

Solving for �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇� we obtain 

�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇� =
1 − ∑ 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�ℎ′

1 − 𝜇𝜇𝑖𝑖
 

We write 𝛾𝛾𝑚𝑚 = 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇. We estimate 𝛾𝛾𝑚𝑚 using the observed transition probabilities in place of the 
prior transition probabilities 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�: 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) =
𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)
 

We average over haplotype state ℎ and ancestry 𝑖𝑖 at marker 𝑚𝑚 − 1, weighting by the observed state 
probabilities: 

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)
∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗)|𝒀𝒀)ℎ∗𝑖𝑖∗

=
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗
 

to obtain 

𝛾𝛾�𝑚𝑚 = ��
1 − ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)ℎ′

1 − 𝜇𝜇𝑖𝑖
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗ℎ𝑖𝑖

= ��
1 − ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)/𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)ℎ′

1 − 𝜇𝜇𝑖𝑖
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗ℎ𝑖𝑖

= ��
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) −∑ 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)ℎ′

(1 − 𝜇𝜇𝑖𝑖)∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗ℎ𝑖𝑖

. 

 
At each marker 𝑚𝑚 > 1, 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)
= 𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ′)𝑒𝑒𝑚𝑚(𝑖𝑖,ℎ′)𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ)�𝛼𝛼𝑚𝑚−1(𝑖𝑖, ℎ) 

 

 

and 



𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) = 𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖,ℎ) 
 

 

After we have estimated the 𝛾𝛾�𝑚𝑚,𝑘𝑘 for each marker 𝑚𝑚 and each target haplotype 𝑘𝑘, we estimate the 
constant of proportionality 𝑇𝑇 in the relationship 𝛾𝛾�𝑚𝑚,𝑘𝑘  ≈  𝑇𝑇𝑑𝑑𝑚𝑚 as: 

𝑇𝑇� =
∑ 𝛾𝛾�𝑚𝑚,𝑘𝑘𝑚𝑚,𝑘𝑘
∑ 𝑑𝑑𝑚𝑚𝑚𝑚,𝑘𝑘
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