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ARTICLE

Fast, accurate local ancestry inference with FLARE

Sharon R. Browning,1,* Ryan K. Waples,1 and Brian L. Browning1,2,*
Summary
Local ancestry is the source ancestry at each point in the genome of an admixed individual. Inferred local ancestry is used for admixture

mapping and population genetic analyses. We present FLARE (fast local ancestry estimation), a method for local ancestry inference.

FLARE achieves high accuracy through the use of an extended Li and Stephens model, and it achieves exceptional computational per-

formance through incorporation of computational techniques developed for genotype imputation. Memory requirements are reduced

through on-the-fly compression of reference haplotypes and stored checkpoints. Computation time is reduced through the use of com-

posite reference haplotypes. These techniques allow FLARE to scale to datasets with hundreds of thousands of sequenced individuals and

to provide superior accuracy on large-scale data. FLARE is open source and available at https://github.com/browning-lab/flare.
Introduction

All humans are admixtures of various historical source

populations.1 This admixture has occurred across a range

of timescales, from the recent intercontinental admixture

in African Americans and Hispanics2–4 to the ancient

admixture with Neanderthals that occurred when modern

humans migrated out of Africa around 50,000 years ago.5,6

Local ancestry is the source ancestry of an individual’s

chromosomes at each point in the genome. Local ancestry

can be inferred on cross-continental admixtures for

recently admixed groups, such as admixed populations

in the Americas which have admixed ancestry deriving

from indigenous Americans, West Africans, and Western

Europeans. With sensitive methods and appropriate refer-

ence panels, local ancestry of recent within-continental

admixtures with less genetic divergence can also be in-

ferred.7 Indeed, some consumer genetics companies now

report sub-continental level ancestry.8

Inferred local ancestry is required for admixture map-

ping. Admixture mapping tests for association between

local ancestry and phenotype and provides a complemen-

tary approach to genome-wide association testing in ad-

mixed populations.9,10 Local ancestry can act as a proxy

for a genetic variant that is not well captured by the avail-

able SNP-array or sequencing data, such as a structural

variant that is difficult to genotype accurately.

Once a variant is found to be associated with a pheno-

type, local ancestry can be used to investigate the ancestral

origin of an allele. For example, an Amerindian-specific

variant of ACTN1 is associated with platelet count in US-

based Hispanics,11 and an Amerindian-specific variant of

BCL2L11 is associated with urine albumin-to-creatinine ra-

tio.12 In African Americans, two African-specific variants in

APOL1 are associated with kidney disease.13 Identification

of the ancestry of disease-associated variants is helpful for

understanding and addressing disparities in disease rates.14
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Local ancestry is also useful for population genetics ana-

lyses. Local ancestry segments are used to infer demo-

graphic history, including the timing of admixture,15 the

identity of source populations,15,16 and the effective size

of ancestral populations.17,18 Local ancestry can be used

for recombination rate inference19,20 because changes in

ancestry along an individual’s genome represent crossovers

that have occurred since admixture. Genomic regions with

local ancestry proportions that deviate from the genome-

wide average can signal post-admixture selection.21,22

Increasing amounts of high-coverage whole-genome

sequence data are available from diverse and admixed pop-

ulations.23–25 This presents opportunities, because sub-

stantially increasing the number of reference individuals

increases the accuracy of local ancestry inference, particu-

larly in resolving ancestries that are less genetically

diverged. However, larger reference panels also increase

the computational burden.

Given these opportunities and challenges, we developed

FLARE, which is based on the Li and Stephens model for

haplotype frequencies26 and follows in the footsteps of

the HAPMIX and MOSAIC local ancestry inference

methods.7,27 The Li and Stephens model has been widely

used for genotype phasing and imputation28–32 because

it provides high accuracy and it can be combined with

powerful computational optimizations.28–34 Its computa-

tion time is linear in the number of genetic markers, and

after optimization its computation time is approximately

linear in the number of individuals.29,32 Extending this

model to incorporate ancestry extends these advantages

to local ancestry inference.

HAPMIX pioneered the application of the Li and Ste-

phens model to local ancestry inference. However, we do

not compare FLARE with HAPMIX because HAPMIX is

limited to two ancestries. Instead, we compare FLARE

with MOSAIC, which is a recent method based on the Li

and Stephens model that allows for an arbitrary number
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of ancestries and unknown relationships between refer-

ence panels and ancestry. We show that FLARE has better

computational performance than MOSAIC and similar ac-

curacy in our simulation scenarios.

Other frameworks for inferring local ancestry are

possible. One of the most popular alternative methods

for local ancestry inference is RFMix. Rather than utilizing

a generative model of haplotype frequencies, RFMix is

discriminative and employs a conditional random field.35

We compare our method to RFMix and show that FLARE

has better computational performance than RFMix and

has superior accuracy in our simulation scenarios.

FLARE incorporates several computational techniques

which allow it to scale to enormous datasets while main-

taining high accuracy. FLARE performs on-the-fly compres-

sion of reference haplotypes and stores checkpoints when

calculating probabilities to reduce memory requirements.

FLARE constructs composite reference haplotypes to

reduce computation time. These techniques are described

in subjects and methods.

FLARE is designed to analyze both SNP-array and whole-

genome sequence data. Most existing local ancestry infer-

ence methods were designed only for SNP-array data. For

example, the MOSAIC method was tested using only

SNP-array data, and we found that modifications to the

program parameters were necessary when analyzing

sequence data. FLARE can perform local ancestry inference

on sequence data without the information loss that would

result from substantial marker thinning.
Subjects and methods

Hidden markov model
FLARE uses a hidden Markov model (HMM). The input data are

phased reference haplotypes and phased admixed haplotypes. We

use the reference haplotypes to infer local ancestry in one admixed

haplotype at a time. Each target admixed haplotype is modeled as

an imperfect mosaic of reference haplotypes.26,27 For a target haplo-

type, the unobserved state Sm¼ (i, h) atmarkerm is comprised of the

target haplotype’s ancestry, i, at that position and the donor refer-

ence haplotype, h, whose allele is being copied at that position.

We assume that there are A ancestries contributing to the ad-

mixed genomes and that these ancestries are represented by the

reference haplotypes. The reference data consist of J panels. In

our analyses each reference panel is associated with a single

ancestry and A ¼ J. Our algorithm for estimating model parame-

ters (see Method S3) assumes this one-to-one matching, but the

remainder of the methodology does not require a one-to-one

matching of reference panels and ancestries, and one could have

J < A, J ¼ A, or J > A. As an example of a case where J < A, one

might have two (or more) reference panels representing a single

ancestry, such as British and Italian reference panels for European

ancestry; keeping these reference panels separate rather than

combining them into one allows for different parameters for

each of them. The case of J < A could occur if there is no reference

panel available for one of the ancestries; in this case it may be

possible to choose parameters that would encourage the algorithm

to infer that missing ancestry in regions where there is no good
The America
match to any of the reference panels, although accuracy may

not be overly high in such a scenario.

The number of haplotypes in the jth reference panel is denoted

nj. The total number of reference haplotypes isN ¼ P

j

nj. We write

pij for the probability that the donor haplotype is from reference

panel j when the target haplotype is from ancestry i.

State transitions between two adjacent marker positions can

occur due to crossover events. Crossover events that occur after

admixture can change both the ancestry state, i, and the reference

haplotype h. Crossover events that occur prior to admixture do

not change the ancestry state but can change the reference haplo-

type h. We model this second class of crossover events using an

ancestry-specific switch rate ri. Ancestry-specific switch rates allow

each ancestry to have a different effective population size and a

different number of reference haplotypes.

The parameter m is a vector of length A giving the overall

ancestry proportions of the admixed samples. The component mi

is the prior probability that an arbitrary position in the genome

is derived from ancestry i. Ancestry probabilities sum to one, i.e.
P

imi ¼ 1. It is assumed that all admixed samples included in

the same analysis have similar ancestry proportions. If there are

subgroups of admixed individuals with differing demographic his-

tories, each subgroup can be analyzed separately.

Given a target haplotype, the prior probability for the state at

any position is defined as follows. First the ancestry i is selected ac-

cording to the probabilities mi. Then the reference panel j is chosen

according to the probabilities pij. Finally, the donor haplotype is

chosen randomly from the reference haplotypes for panel j. If h

is from panel j, we write qih ¼ pij/nj for the probability that the

reference haplotype is h when the ancestry is i. Thus, the prior

probability that the state is (i,h) is pði;hÞ ¼ miqih.

The parameter T is the number of generations since admixture.

The distances between consecutive pairs of crossovers arising in

the last T generations are exponentially distributed with mean

1/T Morgans (100/T centiMorgans [cM]).

Any crossover in the past T generations may change the

ancestry state. Consider two markers indexed by m � 1 and m

and separated by an interval of dm Morgans. The probability of

at least one such crossover occurring in this interval is 1 �
e� dmT . When a crossover occurs, a new ancestry is chosen accord-

ing to the global ancestry probability vector m. The probability of a

transition from ancestry state i to ancestry state i0 is thus

mi0 ð1 � e� dmT Þ for isi0.
Changes in the donor reference haplotype h can occur regard-

less of whether there is a change in the ancestry. If there is no

change in ancestry between the two markers, selection of a new

donor reference haplotype occurs with probability 1 � e� dmri,

where ri is a population-specific switch rate and i is the ancestry

state at both markers. If there is a change to ancestry i0 between

the two positions, a new donor reference haplotype h is always

selected. In either case, the donor reference haplotype in the

new state (i0, h0) is selected according to the probabilities qi0h0 .

The resulting probability PðSm ¼ ði0;h0ÞjSm� 1 ¼ ði;hÞÞ of transi-
tioning from state (i, h) to state (i0, h0) is given in Method S1.

If the target haplotype’s ancestry is i and the donor haplotype is

from reference panel j, the emitted allele is the donor haplotype’s

allele with probability 1 � qij, and is a different allele otherwise.

The qij aremismatch rates whichmodel recentmutation, genotype

error, and gene conversion.

Let Im(h) ¼ 1 if the allele at marker m on haplotype h matches

the observed allele on the admixed haplotype, and let Im(h) ¼
n Journal of Human Genetics 110, 326–335, February 2, 2023 327
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Figure 1. Computation time for simulated sequence data with
three-way admixture
Wallclock computation time in hours is shown on the y axis.
Reference panel size for each of the three ancestries is shown on
the x axis. Each analysis includes 100 admixed individuals, and re-
sults are averaged over four replicate simulations. Error bars (52
standard errors) are shown as gray lines. Analyses of a simulated
chromosome modeled on human chromosome 20 were run
with 20 compute threads. MOSAIC could not analyze the data
with 1,000 or more individuals per reference panel within the
available 384 GB of computer memory. RFMix could not analyze
the data with 10,000 individuals per reference panel within 48 h.
0otherwise. The emissionprobability emði;hÞ (probability of thedata
given the HMM state) for the allele at marker m on the admixed

haplotype when the state is (i, h) and the reference haplotype h is

from reference panel j is

emði;hÞ ¼ q
1� ImðhÞ
ij

�
1 � qij

�ImðhÞ
:

Given the parameter values and genetic data, we calculate the

posterior probability of ancestry at each marker using hidden

Markov model methods, which are described in Method S2. The

assigned ancestry is the ancestry with the highest posterior

probability.

Estimating parameter values
A user can optionally specify parameter values. If not specified,

values for the reference panel probabilities pij and the within-

ancestry switch rate ri are estimated from the reference panels

and other parameters are assigned default values as described in

Method S3. If the expectationmaximization (EM) option is turned

on (the default), the values of m and T will be updated based on

several iterations of the estimation scheme described in Method

S3. In the analyses presented in this paper, we use the default

initial parameter values and perform EM updating.

If the user wishes to parallelize their analyses by chromosome,

we recommend that the user run one autosomal chromosome

first, and then use the output model file to specify the analysis pa-

rameters for other autosomes. This will reduce computing time

and ensures consistency across chromosomes.

Computational techniques
Many computational techniques have been developed that sub-

stantially reduce the computation time andmemory requirements
328 The American Journal of Human Genetics 110, 326–335, Februar
for genotype imputation. We incorporate several of these tech-

niques in our local ancestry inference method. These techniques

include a compressed representation for reference haplotypes in

memory,31,36 the use of a small custom panel of composite refer-

ence haplotypes for each admixed haplotype,30,32,33 and check-

pointing of HMM backward probabilities.37,38

The accuracy of local ancestry inference increases significantly

with reference panel size (Figure 1), but large reference panels

also increase the computational burden. In genotype imputation

the use of a small, custom subset of reference haplotypes for

each individual can reduce computation time by one or more or-

ders of magnitude with no loss in accuracy.33 We have developed

a fast method for generating a custom chromosome-length refer-

ence panel composed of composite reference haplotypes.33 Each

composite reference haplotype is a mosaic of reference haplotype

segments that incorporates long identity-by-descent segments be-

tween the reference haplotypes and a target haplotype.We create a

custom set of composite reference haplotypes for each target

haplotype, and we record the source reference panel for each refer-

ence haplotype segment so that the appropriate transition and

emission probabilities can be used.

We accommodate extremely large reference panels by compress-

ing and storing the phased input data in bref3 format during pro-

gram execution.33 This format compresses data for rare variants by

storing the indices of haplotypes that carry each rare variant, and

it compresses data for other variants by storing the distinct allele

sequences in a genomic interval together with an array that

maps each haplotype index to its allele sequence.33 The bref3

format enables an entire chromosome of reference and target hap-

lotypes to be stored inmemory and permits rapid lookup of haplo-

type alleles.

Checkpointing reduces thememory for HMMcalculations forM

markers from O(M) to Oð ffiffiffiffiffi
M

p Þ by storing forward probabilities atffiffiffiffiffi
M

p
checkpoints and re-calculating backward probabilities from

the nearest preceding checkpoint when required.37,38 Since there

can be more than a million markers on a chromosome, check-

pointing can produce a 1,000-fold reduction in the memory

required for HMM calculations, at the cost of a 2-fold increase in

computation time.
Marker filtering
FLARE removes the lowest frequency variants before applying the

methodology described below. FLARE applies a minimum minor

allele frequency (MAF) threshold of 0.005 across the reference in-

dividuals. We found that this filter reduces run time without loss

of accuracy, particularly for very large datasets. For sequence

data, FLARE also imposes aminimumminor allele count threshold

of 50, again calculated using the reference individuals. For ana-

lyses with small reference panels, this filter effectively reduces

the density of the markers, resulting in better model fit and

improved accuracy. The minor allele count threshold is not

applied to SNP array data because such data already have reduced

marker density relative to sequence data.
Simulated data
We simulated genetic data from human out-of-Africa demo-

graphic models for three-way and four-way admixture, using

modified versions of the AmericanAdmixture_4B11 and

OutOfAfrica_4J17 demographic models implemented in stdpop-

sim v.0.1.2.39 We also simulated two-way admixture for popula-

tions with various levels of divergence.
y 2, 2023



The three-way model18 extends a model of African, European,

and Asian demographic history40 to include admixture occurring

12 generations ago. The new admixed population has 1/6 African,

1/3 European, and 1/2 Asian ancestry, an initial size of 30,000, and

a growth rate of 5% per generation. We added population growth

in the 10 most recent generations to the unadmixed populations,

at rates of 19.3% (African population), 10.8% (European popula-

tion), and 7.8% (Asian population), so that each population grows

to approximately 100,000 individuals in order to permit sampling

of large reference panels from these populations. We sampled up

to 50,000 individuals from each of the three reference ancestries

and up to 10,000 admixed individuals (see below for details).

The four-way model extends the demographic history of Afri-

can, European, Han Chinese, and Japanese populations inferred

by Jouganous et al.41 As above, we added an admixed population

occurring 12 generations ago with 15% African, 15% European,

30% Chinese, and 40% Japanese ancestry, an initial size of

30,000, and a growth rate of 5% per generation. In the four-way

admixture analyses, we sampled 400 individuals from each of

the four reference ancestries and 100 admixed individuals.

The two-way admixture models have an ancestral population of

size 10,000 that split a specified number of generations ago (100,

200, 400, 800, 1,600, or 3,200) into two isolated populations of

10,000 each. These split durations lead to FST values in the approx-

imate range 0.005–0.15. An admixed population with 30:70

admixture was formed 12 generations ago. We sampled 200 indi-

viduals from each of the two reference ancestries and 100 admixed

individuals.

We used SLiM42 (v.3.7.1) for forward simulation of the most

recent 10 3 Ne generations, followed by simulation of earlier

generations with msprime43 (v.1.1.1) to ensure full coales-

cence.44 We used the HapMap II chromosome 20 recombination

map45 to simulate data with characteristics similar to human

chromosome 20, and we used this map for analysis as well as

for simulating the data. For the very largest dataset (three refer-

ence panels of 50,000 individuals each and 10,000 admixed in-

dividuals), we simulated only the first 40 cM (approx. 17 Mb) of

chromosome 20, due to the size of the simulation. We added

mutations at a rate of 1.44 3 10�8 per base pair per genera-

tion.41 During forward simulation, gene conversion was added

at a rate of twice the local recombination rate and with a

mean tract length of 300 bp.

We constructed multiple datasets with a varying number of

sampled individuals and different marker ascertainment schemes.

The genetic data for each analysis were generated in three steps: (1)

simulation of full demographic history and admixture, (2) site

ascertainment, and (3) analysis-specific sampling and site filtering.

In the first step, the genotype data were simulated as described

above. In the second step, two distinct ascertainment schemes

were applied to produce simulated sequence data and simulated

array data. For the array data, we removed all sites with mean

MAF less than 0.05 in the combined reference populations. For

the sequence data, we removed all singletons. In the third step,

the datasets were further reduced. After selecting individuals for

a specific analysis, variants that were now singletons were

removed. If array data had more than 20,000 sites, 20,000

randomly selected sites were retained. Next, we added genotype

error to variable sites at a rate of ε ¼ 0:0002, except at sites with

MAF < 2ε where the error rate was set to MAF/2 in order to ensure

that the error-added data still contain very low frequency variants.

Finally, all individuals (reference and admixed) were phased

together with BEAGLE 5.4.
The America
For each demographic history, we conducted four independent

simulations and applied array and sequence ascertainment to

each. This allowed four fully independent replicate analyses for

each scenario, with no overlapping individuals or sites.

We inferred local ancestry with FLARE (v.0.3.0), RFMix (v.2.03-

r0), and MOSAIC (v.1.3.9). All programs were supplied with the

same phased genotype data, genetic map, and reference panels.

Parameters affecting the statistical analyses of the programs were

kept at default values, except as noted. FLARE was run with poste-

rior probabilities turned on (probs ¼ true) since these were used to

assess accuracy and calibration, and analyses of the array data were

performed with array ¼ true. For RFMix, 5 EM iterations were re-

quested (-e). For MOSAIC, the number of grid points per cM

(-GpcM) was set to the product of 0.0012 and the number of sites

in the analysis.We found that this setting greatly improved the ac-

curacy of MOSAIC for sequence data. If a program didn’t report

local ancestry at a site, the local ancestry of the closest preceding

site was used.

The accuracy of each method was assessed with Pearson’s r2 by

comparing the inferred and true local ancestry dose. True local

ancestry was defined to be the population of residence of the

ancestral chromosome segment 20 generations prior to sampling

(8 generations prior to admixture). For each ancestry, we summed

the local ancestry posterior probabilities for the two haplotypes to

obtain an estimated diploid ancestry dose at each site, and we

counted the number of copies of the ancestry in the true local

ancestry (0, 1, or 2) to obtain the true diploid ancestry dose. We

calculated the squared Pearson correlation of the estimated and

true diploid ancestry dose across all individuals and sites. Separate

r2 values were calculated for each ancestry and overall reported

values are the unweighted mean r2 across all ancestries.

Eachmethod reports posterior probabilities, whichmay bemore

or less well calibrated. For example, ideally, 90% of sites assigned

90% posterior probability of having ancestry 1 should actually

be ancestry 1 and 10% should be another ancestry. Since the simu-

lated data are statistically phased before inferring local ancestry,

we cannot check calibration at the haplotype level, but must

instead work at the diplotype level. Ideally, the average true

ancestry dose for sites with an estimated diploid ancestry dose of

1.8 should be 1.8. To assess the calibration, we divide the range

of possible estimated diploid ancestry doses into bins and obtain

the average true dose for each bin.

All analyses were run on a 24 core 2.2 GHz server with 384 GB

memory and all local ancestry analyses weremulti-threaded across

20 threads. We provide a repository containing all code for the

generation and analysis of the simulated data presented here

(see web resources).
1000 Genomes and Human Genome Diversity Project

data
We downloaded high-coverage sequence data for chromosome 1

from the Human Genome Diversity Project (HGDP) and from

the 1000 Genomes Project (see web resources).24,46 We merged

the two datasets and excluded variants that were not bi-allelic

SNPs with <1% missingness and at least 5 copies of the minor

allele in the combined data. After filtering, 2,021,066 SNPs remain

on chromosome 1. We phased the data using Beagle 5.2 with the

HapMap GRCh38 map (see web resources).32

We used the HGDP data for reference panels, assigning panels us-

ing the regional labels provided by the HGDP but omitting Oceania

due to its smaller size and lack of relevance for the 1000 Genomes
n Journal of Human Genetics 110, 326–335, February 2, 2023 329
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Figure 2. Accuracy when increasing reference panel size for
simulated sequence data with three-way admixture
The y axis shows squared correlation between true and inferred
local ancestry dose averaged over ancestries and across four repli-
cate simulations (details in subjects and methods). Error bars
(52 standard errors) are shown as gray lines. Each of the three an-
cestries is represented by a reference panel of size shown on the
x axis, and each analysis includes 100 admixed individuals.
MOSAIC could not analyze the data with 1,000 or more individ-
uals per reference panel within the available 384 GB of computer
memory. RFMix could not analyze the data with 10,000 individ-
uals per reference panel within the allotted two days.
data. The panels range in size from 61 (America) to 223 (East Asia).

We used FLAREwith default settings to infer local ancestry in the 26

populations of the 1000 Genomes project, using a separate analysis

for each of these populations. Ancestry proportions were obtained

by averaging ancestry calls across sites and individuals.
Results

Simulated data

FLARE has much faster computation times than MOSAIC

or RFMix (Figure 1). Compute times for FLARE are rela-

tively insensitive to the reference panel size due to its use

of composite reference haplotypes (see subjects and

methods). FLARE’s analyses of 100 admixed individuals

in the three-way admixture setting with sequence data

take less than 2 min on average for reference panel sizes

of up to 1,000 per ancestry and an average of 13 min for

10,000 individuals in each of the three reference panels.

FLARE’s analysis of 40 cM of data from 10,000 admixed in-

dividuals with 50,000 individuals in each of the three refer-

ence panels took an average of 35 min.

For the four-way admixture with sequence data, 100 ad-

mixed individuals, and 400 individuals in each of the four

reference panels, FLARE took an average of 4 min, while

RFMix took an average of 273 min. Compute times are ex-

pected to scale approximately linearly in the number of ad-

mixed individuals for each of the three methods.

Figure 2 shows accuracy results for the three-ancestry

simulation with sequence data. With large reference panel
330 The American Journal of Human Genetics 110, 326–335, Februar
sizes, FLARE is the most accurate method (r2 ¼ 0.993 with

10,000 individuals per reference panel). For small reference

panel sizes (up to 100 individuals per ancestry), MOSAIC is

the most accurate method. For FLARE and RFMix, we

see an increase in accuracy with increasing reference panel

size.

With simulated array data instead of sequence data, r2

accuracy generally decreases slightly (Figure S1). With the

array data as for the sequence data, FLARE has higher r2 ac-

curacy than the other two methods for larger reference

panel sizes, while MOSAIC has the highest accuracy

among the three methods for the smallest reference panel

sizes.

Simulation studies typically employ reference panels of

equal size for each ancestry, whereas in real analyses

some ancestries typically have fewer reference individuals.

We thus investigated the accuracy when reference panels

have unequal sizes. We found that all three methods per-

formed well, with MOSAIC and FLARE having the highest

accuracy performance (Figure S2).

We used the four-ancestry model to assess the ability of

the methods to infer local ancestry in situations with less

genetic divergence. For the sequence data, we find that

FLARE has good resolution to distinguish all four ancestries

(r2 ¼ 0.888), whereas RFMix’s accuracy is severely reduced

(r2 ¼ 0.666), with most of this reduction being driven by

lower r2 for the two Asian ancestries (Figure 3). MOSAIC

was excluded from this comparison because it could not

analyze the simulated four-ancestry sequence data within

the available 384 GB of computer memory. For the array

data, FLARE still performs the best (r2 ¼ 0.866), with

MOSAIC (r2 ¼ 0.820) and RFMix (r2 ¼ 0.779) being slightly

less accurate (Figure S3).

The two-population models include a range of diver-

gence between ancestral populations, with split times

ranging from 100 generations ago to 3,200 generations

ago. For comparison with human populations, the split

time between African and out-of-Africa populations was

approximately 4,000 generations ago, while the split

time between the Japanese from Tokyo and Han Chinese

from Beijing populations was approximately 300 genera-

tions ago.41 All methods have high accuracy for the most

diverged ancestral populations (Figure 4). At lower levels

of divergence (split times of 200–800 generations ago),

FLARE and MOSAIC are most accurate. All methods have

difficulty distinguishing the most closely related popula-

tions (split time of 100 generations ago).

We found that MOSAIC is well calibrated in terms of its

reported posterior ancestry probabilities (Figure S4). In

contrast, RFMix’s output probabilities are not well cali-

brated. FLARE’s calibration performance is intermediate

and improves with increasing reference panel sizes.

1000 Genomes local ancestry analysis

We inferred local ancestry for each of the 26 populations

of the 1000 Genomes Project using six regional reference

panels from the HGDP. Estimated ancestry proportions
y 2, 2023



Figure 3. Accuracy by ancestry for simulated sequence data
with four-way admixture
The y axis is the squared correlation between the true and inferred
ancestry dose for a single ancestry, averaged across four replicate
simulations. Error bars (52 standard errors) are shown as gray
lines. The ancestry is shown on the x axis (AFR is simulated
West African, EUR is simulated European, CHB is simulated Han
Chinese, JPT is simulated Japanese). The simulated sequence
data have 100 admixed individuals and 400 individuals in each
of the four reference panels. Results are averaged over four repli-
cate simulations. MOSAIC could not analyze these data within
the available 384 GB of computer memory

Figure 4. Accuracy for simulated sequence data with two-way
admixture
The y axis shows squared correlation between true and inferred
local ancestry dose averaged over ancestries and across four repli-
cate simulations (details in subjects and methods). Error bars
(52 standard errors) are shown as gray lines. The x axis shows
the split time for the two ancestral populations. Each of the three
ancestries is represented by a reference panel of size 200, and each
analysis includes 100 admixed individuals.
from this analysis are shown in Table 1. Results generally

match expectation. For example, the unadmixed African

populations are inferred to have 98%–100% African

ancestry. Native American ancestry originally derives

from Siberia,47 which may partially explain the inferred

East Asian ancestry in the admixed American popula-

tions, although post-colonial migration from Asia may

also play a role.48 Finns (FIN) are inferred to have 2%

East Asian ancestry, which is concordant with previous

studies that have found evidence of an Asian contribution

to the gene pool in Finns.49,50 Spaniards (IBS) are inferred

to have 2% African ancestry, which matches previous re-

ports of gene flow into southern Europe from North

Africa.51

Our initial analyses of chromosome 1 with parameter

estimation took 16.6 h (38 min per population on

average). Analyses of other chromosomes that use the pa-

rameters estimated from the chromosome 1 data would

use much less time. For example, when we repeated the

chromosome 1 analysis using the parameters estimated

in the first analysis, the second analysis took only 2.4 h

(6 min per population on average). The first and second

analysis produced identical estimated ancestry probabili-

ties, which is expected because the only randomization

that occurs within FLARE is in the parameter estimation.
The America
Parameter estimation is needed only for one autosomal

chromosome, with analyses of the other autosomal chro-

mosomes using the same parameters.
Discussion

We have presented FLARE, a method for local ancestry

inference. We showed that FLARE has superior accuracy,

computing efficiency, and scalability compared to RFMix

and MOSAIC. FLARE was able to analyze a 40 cM simu-

lated chromosome with 10,000 admixed individuals and

three 50,000-member reference panels in 35 min on a

computer with 24 CPU cores. FLARE’s analysis of simu-

lated chromosome 20 data with 100 admixed individuals

and three 10,000-member reference panels took 13 min,

while RFMix was unable to complete analysis of these

data within two days on the same computer. MOSAIC

was even more limited in the data that it could analyze

due to memory constraints and was significantly slower

than RFMix. Overall, FLARE and MOSAIC had similar

accuracy, while RFMix’s accuracy was lower. RFMix uti-

lizes called ancestry from the admixed individuals to

augment the reference panels, so it is likely that RFMix’s

accuracy would increase with larger numbers of admixed

individuals.

A notable feature of the results of the simulation studies

is that FLARE can better distinguish ancestries with lower

levels of genetic divergence, such as distinguishing be-

tween Japanese and Chinese ancestry. In contrast, RFMix

had difficulty distinguishing these ancestries. This sug-

gests the potential to accurately infer local ancestry in
n Journal of Human Genetics 110, 326–335, February 2, 2023 331



Table 1. Inferred ancestry proportions in 1000 Genomes Project chromosome 1 data for six ancestries using HGDP reference panels

Region Population African East Asian European Central/South Asian American Middle Eastern

Africa ACBa 0.89* 0.00 0.10 0.01 0.00 0.00

ASWa 0.76* 0.01 0.20* 0.00 0.03 0.00

ESN 1.00* 0.00 0.00 0.00 0.00 0.00

GWD 0.99* 0.00 0.01 0.00 0.00 0.00

LWK 0.98* 0.00 0.00 0.00 0.00 0.02

MSL 1.00* 0.00 0.00 0.00 0.00 0.00

YRI 1.00* 0.00 0.00 0.00 0.00 0.00

America CLMa 0.09 0.01 0.63* 0.00 0.26* 0.01

MXLa 0.06 0.03 0.47* 0.01 0.44* 0.00

PELa 0.04 0.04 0.21* 0.01 0.69* 0.00

PURa 0.16* 0.01 0.69* 0.00 0.14* 0.01

East Asia CDX 0.00 1.00* 0.00 0.00 0.00 0.00

CHB 0.00 1.00* 0.00 0.00 0.00 0.00

CHS 0.00 1.00* 0.00 0.00 0.00 0.00

JPT 0.00 1.00* 0.00 0.00 0.00 0.00

KHV 0.00 1.00* 0.00 0.00 0.00 0.00

Europe CEU 0.00 0.00 1.00* 0.00 0.00 0.00

FIN 0.00 0.02 0.98* 0.00 0.00 0.00

GBR 0.00 0.00 1.00* 0.00 0.00 0.00

IBS 0.02 0.00 0.98* 0.00 0.00 0.00

TSI 0.00 0.00 1.00* 0.00 0.00 0.00

South Asia BEB 0.00 0.00 0.00 1.00* 0.00 0.00

GIH 0.00 0.00 0.00 1.00* 0.00 0.00

ITU 0.00 0.00 0.00 1.00* 0.00 0.00

PJL 0.00 0.00 0.00 1.00* 0.00 0.00

STU 0.00 0.00 0.00 1.00* 0.00 0.00

Ancestry proportions >10% are indicated with an asterisk (*). Descriptions of the populations can be found in Supplementary Information Table 1 of the 1000
Genomes Project’s phase 3 paper.52
aRecently admixed populations from the Americas.
admixtures that are subtler than the continental-level

admixtures that have previously been the focus of

attention.

Our model and algorithm borrow heavily from

HAPMIX.27 However, there are several significant differ-

ences between FLARE and HAPMIX. The twomost obvious

differences are that FLARE handles multiple ancestries,

while HAPMIX is restricted to two, and that FLARE imple-

ments a range of computation techniques that are not

included in HAPMIX and that allow FLARE to scale to

large-scale whole-genome sequence data. In addition,

FLARE has a procedure for estimating the matrix of

copying probabilities (the pij) and the switch rates (the ri)

directly from the reference panel data, while HAPMIX pro-

vides an option to estimate all parameters iteratively with

an EM approach. Also, HAPMIX allows only for bi-allelic

SNPs while FLARE can analyze multi-allelic markers.
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FLARE is a user-friendly java program with a com-

mand-line interface similar to Beagle.32 When there is a

one-to-one matching of ancestries and reference panels,

the only input data required by FLARE are phased refer-

ence and target VCF files,53 a genetic map file, and a

file specifying the reference panel assignment for each

reference individual. FLARE outputs a VCF file contain-

ing the input genotypes and phased local ancestry calls.

As an option, the posterior local ancestry probabilities

can also be included in the output VCF file. FLARE also

outputs a model file giving the estimated parameters.

The model can be used in future analyses of the same

study to reduce computing time and ensure consistency

between analyses.

FLARE’s user-friendly and robust software implementa-

tion, its computational speed and ability to scale to

extremely large datasets, and its high accuracy make it a
y 2, 2023



useful tool for local ancestry inference in the increasingly

large and diverse genetic data that are being generated.
Data and code availability

The FLARE software is available from https://github.com/

browning-lab/flare. The simulation and analysis pipeline used in

this study is available from https://github.com/rwaples/lai-sim.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.12.010.
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1000 Genomes Project high-coverage sequence data,

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/

1000G_2504_high_coverage/working/20190425_NYGC_

GATK/

Beagle, http://faculty.washington.edu/browning/beagle/

beagle.html.

HapMap GRCh38 map, http://bochet.gcc.biostat.

washington.edu/beagle/genetic_maps/plink.GRCh38.map.

zip

Human Genome Diversity Project high-coverage

sequence data, ftp://ngs.sanger.ac.uk/production/hgdp/

hgdp_wgs.20190516/

msprime, https://github.com/tskit-dev/msprime.

MOSAIC, https://maths.ucd.ie/�mst/MOSAIC/

Stdpopsim, https://github.com/popsim-consortium/

stdpopsim

RFMIX, https://github.com/slowkoni/rfmix.
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Figure S1: Accuracy when increasing reference panel size for simulated array data with three-way 
admixture. The y-axis shows squared correlation between true and inferred local ancestry dose 
averaged over ancestries and across four replicate simulations (details in Methods). Error bars (+/- 2 
standard errors) are shown as gray lines. Each of the three ancestries is represented by a reference 
panel of size shown on the x-axis. Each analysis includes 100 admixed individuals.   



 

Figure S2: Accuracy when reducing the size of one of three reference panels. The data are simulated 
sequence data for three-way admixture. Each reference panel has size 400, except for the reference 
panel that is denoted on the x-axis (AFR is West African, EUR is European, ASN is East Asian) which has 
size 20 (left plot) or 50 (right plot). The y-axis shows squared correlation between true and inferred local 
ancestry dose averaged over ancestries and across four replicate simulations (details in Methods). Error 
bars (+/- 2 standard errors) are shown as gray lines. Each analysis includes 100 admixed individuals.  

  



 

Figure S3: Accuracy by ancestry for the simulated array data with four-way admixture. The y-axis is the 
squared correlation between the true and inferred ancestry dose for a single ancestry averaged across 
four replicate simulations. Error bars (+/- 2 standard errors) are shown as gray lines. The ancestry is 
shown on the x-axis (AFR is simulated West African, EUR is simulated European, CHB is simulated Han 
Chinese, JPT is simulated Japanese). The simulated array data have 100 admixed individuals and 400 
individuals in each of the four reference panels.  

 

  



 

Figure S4: Calibration of estimated diploid ancestry dose on simulated three-way admixture data. 
Estimated diploid ancestry dose is binned into bins of width 0.02 along the x-axis. The y-axis is the 
average true diploid ancestry dose for each bin. Results for FLARE, MOSAIC, and RFMix are shown in the 
left, middle, and right panels respectively. Sequence and array data are combined in these plots and 
reference panel sizes are combined in three size groups to reduce noise. A) Reference panels of sizes 20, 
50, and 100. B) Reference panels of sizes 400 and 1000. C) Reference panels of size 10,000. 

  



Supplementary Methods 1: Transition probabilities 
The transition probabilities described in the main text can be expressed as: 

𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖′,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ)�

= �
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1− 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�𝑞𝑞𝑖𝑖′ℎ′ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖 𝑖𝑖 = 𝑖𝑖′,ℎ = ℎ′

�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1− 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�𝑞𝑞𝑖𝑖′ℎ′ 𝑖𝑖 = 𝑖𝑖′,ℎ ≠ ℎ′

�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′ 𝑖𝑖 ≠ 𝑖𝑖′
 

Supplementary Methods 2: Algorithm for posterior probabilities of 
ancestry 
We estimate the posterior ancestry probabilities using the hidden Markov model forward-backward 
algorithm.1 

Consider an admixed haplotype, 𝒀𝒀. Let 𝑌𝑌𝑚𝑚 be the allele at marker 𝑚𝑚, with markers indexed 1, … ,𝑀𝑀. The 
forward probabilities are 

 𝛼𝛼𝑚𝑚(𝑖𝑖,ℎ) = 𝑃𝑃(𝑌𝑌1, … ,𝑌𝑌𝑚𝑚, 𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)) (S1) 

 
where 𝑆𝑆𝑚𝑚 represents the (ancestry, haplotype) state at the 𝑚𝑚th marker. The backward probabilities are 

 𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ) = 𝑃𝑃�𝑌𝑌𝑚𝑚+1, … ,𝑌𝑌𝑀𝑀�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�. (S2) 

Forward probabilities at first marker: For each ancestry 𝑖𝑖 and haplotype ℎ,  
𝛼𝛼1(𝑖𝑖,ℎ) = 𝜋𝜋(𝑖𝑖,ℎ)𝑒𝑒1(𝑖𝑖,ℎ). 

where 𝜋𝜋(𝑖𝑖,ℎ) is the prior probability that the state is (𝑖𝑖,ℎ), and the emission probability 𝑒𝑒𝑚𝑚(𝑖𝑖,ℎ) is the 
probability of observing the allele 𝑌𝑌𝑚𝑚 at marker 𝑚𝑚 on the admixed haplotype when the hidden state at 
this marker is (𝑖𝑖,ℎ). 

Forward probabilities: Suppose we have already calculated 𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ) for all (𝑖𝑖,ℎ), and we want to 
calculate 𝛼𝛼𝑚𝑚(𝑖𝑖′,ℎ′). Let 𝑑𝑑𝑚𝑚 be the distance in Morgans between markers 𝑚𝑚 − 1 and 𝑚𝑚. Pre-calculate 

𝑓𝑓𝑖𝑖 = �𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)
ℎ

 

for each 𝑖𝑖, and 

𝑠𝑠𝑓𝑓 = �𝑓𝑓𝑖𝑖
𝑖𝑖 

. 

The values 𝑓𝑓𝑖𝑖 and 𝑠𝑠𝑓𝑓 are temporary variables that are over-written for each successive marker. Their 
purpose is to avoid duplicate calculation.  

Then for each 𝑖𝑖′ and ℎ′ calculate (using equation S1) 



𝛼𝛼𝑚𝑚(𝑖𝑖′,ℎ′) = 𝑒𝑒𝑚𝑚(𝑖𝑖′,ℎ′)�𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖′,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)
𝑖𝑖,ℎ

= 𝑒𝑒𝑚𝑚(𝑖𝑖′,ℎ′)��1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖′𝑞𝑞𝑖𝑖′ℎ′𝑠𝑠𝑓𝑓 + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖′�𝑞𝑞𝑖𝑖′ℎ′𝑓𝑓𝑖𝑖′
+ 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖′𝛼𝛼𝑚𝑚−1(𝑖𝑖′,ℎ′)�. 

 
In the computation, we normalize the 𝛼𝛼𝑚𝑚(𝑖𝑖′,ℎ′) to sum to one and store the normalization factors in 
order to avoid numerical underflow. 

Backwards probabilities: Let 𝛽𝛽𝑀𝑀(𝑖𝑖,ℎ) = 1 for all ancestries 𝑖𝑖 and reference haplotypes ℎ.  

Suppose the 𝛽𝛽𝑚𝑚+1(𝑖𝑖,ℎ) values have been calculated for all ancestries 𝑖𝑖 and reference haplotypes ℎ. Let 
𝑑𝑑𝑚𝑚+1 be the distance in Morgans between markers 𝑚𝑚 and 𝑚𝑚 + 1. Pre-calculate 

𝑏𝑏𝑖𝑖 = �𝛽𝛽𝑚𝑚+1(𝑖𝑖,ℎ)𝑞𝑞𝑖𝑖ℎ
ℎ

𝑒𝑒𝑚𝑚+1(𝑖𝑖,ℎ)  

for each 𝑖𝑖, and 𝑠𝑠𝑏𝑏 = ∑ 𝑏𝑏𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖  

The values 𝑏𝑏𝑖𝑖 and 𝑠𝑠𝑏𝑏 are temporary variables that are over-written for each successive marker. Their 
purpose is to avoid duplicate calculation.  

Then for each 𝑖𝑖 and ℎ, calculate (using equation S2) 

𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ) = �𝑒𝑒𝑚𝑚+1(𝑖𝑖′,ℎ′)𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖′,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�𝛽𝛽𝑚𝑚+1(𝑖𝑖′,ℎ′)
𝑖𝑖′,ℎ′

= �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝑇𝑇�𝑠𝑠𝑏𝑏 + 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝑇𝑇�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝜌𝜌𝑖𝑖�𝑏𝑏𝑖𝑖 + 𝑒𝑒−𝑑𝑑𝑚𝑚+1𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚+1𝜌𝜌𝑖𝑖𝛽𝛽𝑚𝑚+1(𝑖𝑖, ℎ)𝑒𝑒𝑚𝑚+1(𝑖𝑖,ℎ) 
 

In the computation, we normalize the values of 𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ) to sum to one and store the normalization 
factors to avoid numerical underflow. 

Posterior probability of ancestry:  

Let  

𝑣𝑣𝑚𝑚(𝑖𝑖) = �𝛼𝛼𝑚𝑚(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ)
ℎ

 

The posterior probability of ancestry 𝑖𝑖 at marker 𝑚𝑚 is 𝑤𝑤𝑚𝑚(𝑖𝑖) = 𝑣𝑣𝑚𝑚(𝑖𝑖)/∑ 𝑣𝑣𝑚𝑚(𝑖𝑖′)𝑖𝑖′ . 

Supplementary Methods 3: Initialization and updating parameter values  
The initial values of the parameters are set as described below, or as specified by the user. If the EM 
updating option is turned on (which it is by default), we update parameters using a variant of the Baum-
Welch algorithm.1Each EM iteration estimates local ancestry for 100 randomly selected admixed 
haplotypes (using a separate random selection for each EM iteration) and the ancestry proportions and 
admixture time are updated as described below. Twenty EM iterations are performed unless the EM 



updating converges sooner. Convergence is defined as a relative change less than 5% in each ancestry 
proportion 𝜇𝜇𝑖𝑖  from the value in the preceding iteration, excluding those ancestries for which 𝜇𝜇𝑖𝑖 <
0.001. A 5% relative change in a 𝜇𝜇𝑖𝑖  taking value of 0.1 in the previous iteration would be 0.005. 

Mismatch probabilities 𝜽𝜽𝒊𝒊,𝒋𝒋: 

The default mismatch probabilities are the same for each ancestry and panel, and are defined as: 𝜃𝜃𝑖𝑖,𝑗𝑗 =
𝜆𝜆 (2𝜆𝜆 + 2𝑁𝑁)⁄  where 𝜆𝜆 = 1 (log𝑁𝑁 + 0.5)⁄  and 𝑁𝑁 is the total number of reference haplotypes.2 We do 
not update this parameter. 

Panel probabilities 𝒑𝒑𝒊𝒊𝒋𝒋 and switch rates 𝝆𝝆𝒊𝒊:  

The panel probabilities are obtained via a single iteration of training on the reference panel. Considering 
ancestry 𝑖𝑖∗, which is represented by one reference panel, we take one haplotype at a time out of that 
reference panel and run the forwards-backwards algorithm using all other reference haplotypes. For this 
analysis we set 𝜇𝜇𝑖𝑖∗ = 1, 𝜇𝜇𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑖𝑖∗, 𝑇𝑇 = 0, and 𝑝𝑝𝑖𝑖∗𝑗𝑗 = 𝑛𝑛𝑗𝑗/𝑁𝑁 where 𝑛𝑛𝑗𝑗 is the number of reference 
haplotypes in panel 𝑗𝑗. We use the default mismatch probabilities 𝜃𝜃𝑖𝑖𝑗𝑗 defined in the preceding section, and 
we set 𝜌𝜌𝑖𝑖 = 4𝑁𝑁𝑒𝑒/𝑁𝑁 where 𝑁𝑁𝑒𝑒 = 50,000.2; 3 We perform the analysis for 100 haplotypes selected at 
random from the reference panel. 

The updated panel probability is the average posterior probability that the copied haplotype is from panel 
𝑗𝑗, given that the ancestry is 𝑖𝑖. The posterior probability for state (𝑖𝑖,ℎ) at marker 𝑚𝑚 for selected reference 
haplotype 𝑘𝑘 is proportional to 𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ).  That is, the posterior probability for state (𝑖𝑖,ℎ) is 

� 𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ in panel 𝑗𝑗

�𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ

�  

and we average this over markers 𝑚𝑚 and selected reference haplotypes indexed by 𝑘𝑘 to obtain the 
estimated panel probability 

𝑝̂𝑝𝑖𝑖𝑗𝑗 = �� � 𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ in panel 𝑗𝑗

�𝛼𝛼𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚,𝑘𝑘(𝑖𝑖,ℎ)
ℎ

� �
𝑚𝑚,𝑘𝑘

�1
𝑚𝑚,𝑘𝑘

�  

 

The updated switch rate 𝜌𝜌𝑖𝑖 is determined from the posterior probabilities of a change of haplotype state, 
as follows: 

The probability of transitioning to the same state is: 

𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)� = �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖  
= �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�1− 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖�(1− 𝑞𝑞𝑖𝑖ℎ) 

Solving for �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖� gives: 

 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖 =
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1 − 𝑞𝑞𝑖𝑖ℎ)  (S3) 



We write 𝜏𝜏𝑚𝑚,𝑖𝑖 = 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖. We estimate 𝜏𝜏𝑚𝑚,𝑖𝑖 using the observed transition probabilities in place of the 
prior transition probabilities 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�: 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) =
𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ),𝒀𝒀)
 

We average over haplotype state ℎ, weighting by the observed state probabilities conditional on 
ancestry 𝑖𝑖, 

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)
∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′)|𝒀𝒀)ℎ′

=
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′
, 

in the right-hand side of equation S3 to obtain: 

𝜏̂𝜏𝑚𝑚,𝑖𝑖 = �
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1 − 𝑞𝑞𝑖𝑖ℎ)

𝐻𝐻

ℎ=1

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)
∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′

= �
�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 − 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1− 𝑞𝑞𝑖𝑖ℎ)∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′

𝐻𝐻

ℎ=1

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ),𝒀𝒀)

= �
��1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖𝑞𝑞𝑖𝑖ℎ + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) − 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇(1 − 𝑞𝑞𝑖𝑖ℎ)∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)ℎ′

𝐻𝐻

ℎ=1

. 

At each marker 𝑚𝑚 > 1, 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ), 𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) = 𝛽𝛽𝑚𝑚(𝑖𝑖, ℎ)𝑒𝑒𝑚𝑚(𝑖𝑖,ℎ)𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ) 
 

 

and 

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) = 𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖,ℎ) 
 

 

We use the linear approximation 𝜏𝜏𝑚𝑚,𝑖𝑖 = 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝜌𝜌𝑖𝑖 ≈ 𝜌𝜌𝑖𝑖𝑑𝑑𝑚𝑚 to estimate 𝜌𝜌𝑖𝑖. After we have estimated 
the 𝜏̂𝜏𝑚𝑚,𝑖𝑖,𝑘𝑘 for each marker 𝑚𝑚 and each target haplotype 𝑘𝑘, we estimate 𝜌𝜌𝑖𝑖 with a slope estimator 
weighted by the conditional probability of ancestry 𝑖𝑖 given the data, ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)ℎ : 

𝜌𝜌�𝑖𝑖 =
∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)ℎ 𝜏̂𝜏𝑚𝑚,𝑖𝑖,𝑘𝑘𝑚𝑚,𝑘𝑘
∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)ℎ 𝑑𝑑𝑚𝑚𝑚𝑚,𝑘𝑘

 

Note that 

�𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)
ℎ

=
∑ 𝛼𝛼𝑚𝑚−1(𝑖𝑖, ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖,ℎ)ℎ

∑ ∑ 𝛼𝛼𝑚𝑚−1(𝑖𝑖′,ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖′,ℎ)ℎ𝑖𝑖′
 

After initializing the 𝑝𝑝𝑖𝑖𝑗𝑗  and 𝜌𝜌𝑖𝑖, these parameters are fixed for the remainder of the analysis. 

Ancestry proportions, 𝝁𝝁𝒊𝒊: The default initial value is 1/𝐴𝐴, where 𝐴𝐴 is the number of ancestries. The 
updated value following each EM iteration is a weighted average of the posterior probability 𝑤𝑤𝑚𝑚(𝑖𝑖) for 
ancestry 𝑖𝑖. We include only positions for which the posterior probability of the ancestry is at least 0.9 in 
order to speed convergence.  The selected haplotypes are indexed by 𝑘𝑘. 



𝜇̂𝜇𝑖𝑖 =
∑ 𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖)1{𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖) ≥ 0.9}𝑚𝑚,𝑘𝑘

∑ ∑ 𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖′)1{𝑤𝑤𝑚𝑚,𝑘𝑘(𝑖𝑖′) ≥ 0.9}𝑚𝑚,𝑘𝑘𝑖𝑖′
 

Admixture time 𝑻𝑻: 

The default initial value of 𝑇𝑇 is 10 generations. 

The updated admixture time is determined from the posterior probabilities of a change of ancestry state, 
as follows: 

The probability of transitioning to the same ancestry state is 

�𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�
ℎ′

= �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇�𝜇𝜇𝑖𝑖 + 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇 

Solving for �1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇� we obtain 

�1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇� =
1 − ∑ 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�ℎ′

1 − 𝜇𝜇𝑖𝑖
 

We write 𝛾𝛾𝑚𝑚 = 1 − 𝑒𝑒−𝑑𝑑𝑚𝑚𝑇𝑇. We estimate 𝛾𝛾𝑚𝑚 using the observed transition probabilities in place of the 
prior transition probabilities 𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)�: 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) =
𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ′),𝒀𝒀)
 

We average over haplotype state ℎ and ancestry 𝑖𝑖 at marker 𝑚𝑚 − 1, weighting by the observed state 
probabilities: 

𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ)|𝒀𝒀)
∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗)|𝒀𝒀)ℎ∗𝑖𝑖∗

=
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗
 

to obtain 

𝛾𝛾�𝑚𝑚 = ��
1 − ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)|𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)ℎ′

1 − 𝜇𝜇𝑖𝑖
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗ℎ𝑖𝑖

= ��
1 − ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖, ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)/𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)ℎ′

1 − 𝜇𝜇𝑖𝑖
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)

∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗ℎ𝑖𝑖

= ��
𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) −∑ 𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)ℎ′

(1 − 𝜇𝜇𝑖𝑖)∑ ∑ 𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖∗,ℎ∗),𝒀𝒀)ℎ∗𝑖𝑖∗ℎ𝑖𝑖

. 

 
At each marker 𝑚𝑚 > 1, 

𝑃𝑃(𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′),𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀)
= 𝛽𝛽𝑚𝑚(𝑖𝑖,ℎ′)𝑒𝑒𝑚𝑚(𝑖𝑖,ℎ′)𝑃𝑃�𝑆𝑆𝑚𝑚 = (𝑖𝑖,ℎ′)�𝑆𝑆𝑚𝑚−1 = (𝑖𝑖, ℎ)�𝛼𝛼𝑚𝑚−1(𝑖𝑖, ℎ) 

 

 

and 



𝑃𝑃(𝑆𝑆𝑚𝑚−1 = (𝑖𝑖,ℎ),𝒀𝒀) = 𝛼𝛼𝑚𝑚−1(𝑖𝑖,ℎ)𝛽𝛽𝑚𝑚−1(𝑖𝑖,ℎ) 
 

 

After we have estimated the 𝛾𝛾�𝑚𝑚,𝑘𝑘 for each marker 𝑚𝑚 and each target haplotype 𝑘𝑘, we estimate the 
constant of proportionality 𝑇𝑇 in the relationship 𝛾𝛾�𝑚𝑚,𝑘𝑘  ≈  𝑇𝑇𝑑𝑑𝑚𝑚 as: 

𝑇𝑇� =
∑ 𝛾𝛾�𝑚𝑚,𝑘𝑘𝑚𝑚,𝑘𝑘
∑ 𝑑𝑑𝑚𝑚𝑚𝑚,𝑘𝑘
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