
GigaScience

Workflow sharing with automated metadata validation and test execution to improve
the reusability of published workflows

--Manuscript Draft--

Manuscript Number: GIGA-D-22-00187R1

Full Title: Workflow sharing with automated metadata validation and test execution to improve
the reusability of published workflows

Article Type: Research

Funding Information: JSPS
(20J22439)

Not applicable

Japan Science and Technology Agency
(JP-MJCR17A1)

Not applicable

Abstract: Background: Many open-source workflow systems have made bioinformatics data
analysis procedures portable. Sharing these workflows provides researchers easy
access to high-quality analysis methods without the requirement of computational
expertise. However, published workflows are not always guaranteed to be reliably
reusable. Therefore, a system is needed to lower the cost of sharing workflows in a
reusable form. Results: We introduce Yevis, a system to build a workflow registry that
automatically validates and tests workflows to be published. The validation and test are
based on the requirements we defined for a workflow being reusable with confidence.
Yevis runs on GitHub and Zenodo and allows workflow hosting without the need of
dedicated computing resources. A Yevis registry accepts workflow registration via a
GitHub pull request, followed by an automatic validation and test process for the
submitted workflow. As a proof of concept, we built a registry using Yevis to host
workflows from a community to demonstrate how a workflow can be shared while
fulfilling the defined requirements. Conclusions: Yevis helps in the building of a
workflow registry to share reusable workflows without requiring extensive human
resources. By following Yevis's workflow-sharing procedure, one can operate a registry
while satisfying the reusable workflow criteria. This system is particularly useful to
individuals or communities that want to share workflows but lacks the specific technical
expertise to build and maintain a workflow registry from scratch.

Corresponding Author: Tazro Ohta

JAPAN

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Hirotaka Suetake

First Author Secondary Information:

Order of Authors: Hirotaka Suetake

Tsukasa Fukusato

Takeo Igarashi

Tazro Ohta

Order of Authors Secondary Information:

Response to Reviewers: # Point-by-point response to reviewers' comments

GIGA-D-22-00187
Workflow sharing with automated metadata validation and test execution to improve
the reusability of published workflows
Hirotaka Suetake; Tsukasa Fukusato; Takeo Igarashi; Tazro Ohta

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

GigaScience

We would like to thank reviewers for their thoughtful comments and constructive
feedbacks. We have added a summary figure and some additional paragraphs to make
things clear, and made changes in the figures from the previous version of the
manuscript.

Our responses and explanations to the issues pointed by each reviewer are follows.

Reviewer #1

> 1. Based on your survey of existing systems, could you possibly make a figure or
table that showcases the features supported/not supported by these different systems,
including yours?

Response: Thank you for the suggestion that can highlight the contribution of our
work. We added the Table 2 in the Result section to compare the characteristics of
WorkflowHub, Dockstore, nf-core, and a yevis-based registry. We compared them with
three aspects; diversity, reliability, and usability of registered workflow.

> 2. Thoughts on security/cost safeguards? Perhaps beyond the scope, but it does
seem like a governing group needs to define some limits to the testing resources and
be able to enforce them. If I am a bad actor and programmatically open up 1000 PRs
of expensive jobs, I'm not sure what would happen. Actions and artifact storage aren't
necessarily free after some limit.

Response: We first had security concerns with the functionality in GitHub. Then, to
solve problems of offensive actions by using malicious users via Pull Requests, we use
GitHub's first-time contributor restriction. In this system, users (who first contribute to
the repository) cannot perform a GitHub action without permission from the
administrator. That is, the owners can easily reject "Pull Requests" from suspicious
users, i.e., avoiding possible security issues.

As for the resource limitation of GitHub Actions, we solve the problem by using an
external WES. In addition to a lack of resources, GitHub Actions may not be sufficient
for testing workflows that only work on specific system configurations, such as GPUs or
job schedulers. In such cases, the registry owner can check the testing portability by
running the test on a remote WES instance. We added sentences to the Discussion
section about the limitations of GitHub resources, the incident possibilities, and
solutions to prevent them.

We added the following sentences to the Discussion section:

*Automatic testing with GitHub actions may also cause the issue of computational
resource shortage. To extend the capability of testing, Yevis has the option to specify
the location of an external WES endpoint to run the test, which also enables the testing
with a specific computational request such as GPUs or job schedulers.*

> 3. What is the flow for simply updating to a new version of an existing workflow?
(perhaps this could be in your docs, not necessarily this manuscript).

Response: We appreciate the comment about the version updates, which is one of
the critical features of our implementation. The system identifies a workflow by its
remote URL of the primary workflow in the metadata. Therefore, if the user modifies
the metadata without changing the URL and bumps up the version information, the
system recognizes that they are different versions of the same workflow. Users can
use different versions of the workflow by specifying the TRS endpoint with a path
including version information, such as "tools/0d2ae4c2-fe4c-48f7-811a-
ac277776533e/versions/1.0.0".

Users can upgrade the registered workflow by performing the following steps.

1. Edit the existing yevis-metadata.yml file.
2. Bump the workflow version in the metadata.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

3. Run tests using yevis-cli and send a PR to the repository.
4. Follow the same steps as adding a new workflow, and the new version will be
published.

We added the above instruction to the online documentation.

> 4. CWL is an example of a workflow language that developers can extend to create
custom "hints" or "requirements". For example, seven bridges does this in cavatica
where a user can define aws spot instance configs etc. WDL has properties to config
GCP images. It seems like in these cases, tests should only be defined to work when
running "locally" (not with some scheduler/specific cloud env). But the author's do
mention that tests will first run locally on the user's environment, so that does kind of
get around this.

Response: As we see the importance of the testing portability, we implemented the
system with a strict specification. Developers can push the workflows that passed the
local test to the registry, and the owners can merge those that passed the remote test.
However, as the reviewer points out, specific compute-dependent tests exist in actual
use cases and cannot be ignored. Allowing tests to be run outside the developer's own
environment can solve the testing portability problem, i.e. the testing on a computing
environment that anyone can access, even if not on GitHub. Therefore, the ability of
our GitHub action to request tests to external WES instances can solve the problem.
However, another problem is preparing a WES instance that can correctly run the tests
for that workflow. We believe it is the responsibility of developers who want to share
their workflows to prepare an environment where anyone can execute the tests
correctly. Perhaps the preparation of a testing environment is something that the
community should discuss.

> 5. For the "findable" part of FAIR, how possible is it to have "tags" of sort associated
with a wf record so things can be more findable? I imagine when there is a large
repository of many workflows, being able to easily narrow down to the specific domain
interest you have could be helpful.

Response: It is crucial to curate the metadata in the registry with tags or ontology
terms that increase findability. The findability issue is a downside of the de-centralized
registry model. Although it is possible to add tags as part of the TRS response
specification, tagging with uncontrolled vocabulary by each workflow developer will not
improve the findability. We believe that a centralized search index is in need to
distinguish workflows from other similar or similar but different workflows available
online. Therefore, a possible strategy is to register the metadata in a centralized
registry such as WorkflowHub, while the workflow body is hosted and test runs on
GitHub/Zenodo, as we proposed.

We have added this point as a weakness of the de-centralized model in the Discussion
as following:

*Another challenge for the proposed distributed registry model is the findability of
workflows. In the model where each developer is responsible for their content, the use
of appropriate terms for describing workflow metadata can be an issue. A possible
solution to improve the findability of workflows in distributed registries is to collect
metadata in a centralized registry to curate them and create the search index.
However, this will require a further challenge to distinguish the collected workflows
using only metadata.*

Reviewer #2

Main concern

> I have one major gripe though, blocking acceptance: The choice to only support
GitHub for hosting. There is a growing problem in the research world that more and
more research is being dependent on the single commercial actor GitHub, for
seemingly no other reason than convenience. Although GitHub to date can be said to
have been a somewhat trustworthy player, there is no guarantee for the future, and
ultimately this leaves a lot of research in an unhealthy dependenc on this single

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

platform. As a small note of a recent change, is the proposed removal of the promise to
not track its users (see https://github.com/github/site-policy/pull/582).
> A such a central infrastructure component for research as a workflow registry has an
enormous responsibility here, as it may greatly influence the choices of researchers in
the future to come, because of encouragement of what is "easier" or more convenient
to do with the tools and infrastructure available.
> With this in mind, I find it unacceptable for a workflow registry supporting open
science and open source work to only support one commercial provider.
> The authors mention that technically they are able to support any vendor, and also
on-premise setups, which sounds excellent. I ask the authors to kindly implement this
functionality. Especially the ability to run on-premises registries is key to encourage
research to stay free and independent from commercial concerns.

Response: We understand the reviewer's concern about the lock-in risk to a
commercial service well. It is not our desire to be locked into a specific service, and we
are aware of the risk that these services (and every other service run by a vendor) may
become unavailable to everyone. However, at the same time, it is impractical for us to
implement and provide the "perfect lock-free" version of the system with production-
level quality as well. We would like to explain the reasons below.

In this study, we aimed to achieve two major objectives: the independency from
computational resources maintained by individual developers, and the automation to
reduce the developers' tasks that make workflows reusable.

For the first objective, the academic communities know from their experience how
difficult it is to maintain one's server for decades, at least for most of the developers in
research. We think the main reason why many researchers rely on GitHub is simple,
they do not need to maintain their git servers. This is also why we chose to use
services run by vendors while realizing the risk of lock-in.

For the second objective, we had to retrieve the metadata of workflows automatically.
Therefore, we used the GitHub API as a core component, which is not straightforward
to replace with a plain on-premise git server.

Therefore, we have to give up these two strong benefits if we wanted to provide the
same functionalities with a possible on-premise Yevis implementation. We still can
think of the lock-free version of the registry, however, it will look like a completely
different one as follows:

1. Workflow developers manually create metadata.yml and run the tests by hand using
WES.
2. Developers submit the metadata to the registry administrator using a communication
channel such as a mailing list.
3. The administrator runs tests using WES based on the received metadata.yml and
reviews them.
4. Upload the reviewed workflow to any file server and publish it.

With these steps, partially supported by the current yevis-cli, one can have a workflow
registry completely vendor lock-free. However, it is not as far efficient as the system
using GitHub and Zenodo.

We believe our contribution is not the system itself but rather the distributed registry
model in which communities can have their platforms by automating the quality
assurance tasks. We hope that GitHub will not become evil, but if it does, we will re-
implement our system with other services.

To clarify the benefit and the risk of vendor lock-in, and to explain the form of the
system without those services, we added the sentences to the discussion section as
follows:

*Yet we currently provide only the implementation that depends on those two services
while it is technically possible to build a Yevis registry in an on-premise server. It is
because the vendor-free system can only achieve part of our objectives to provide the
effortless management of a registry. Here, we recognize a trade-off of building an

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

academic tool using services run by commercial vendors, which requires further
discussion in the communities.*

Minor concerns

> 1. I think the manuscript is a missing citation to this key workflow review, as a recen
overview of the bioinformatics workflows field, for example together with the current
citation [6] in the manuscript:
> Wratten, L., Wilm, A., & Göke, J. (2021). Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers. Nature methods, 18(10),
1161-1168.
> https://www.nature.com/articles/s41592-021-01254-9

Response: Thank you for pointing out the important citation. We added the citation
as suggested.

> 2. Although it might not have been the intention of the authors, the following
sentence sounds unneccessarily subjective and appraising, without data to back this
up (rather this would be something for the users to evaluate):
> The Yevis system is a great solution for research communities that aim to share their
workflows and wish to establish their own registry as described.
> I would rather expect wording similar to:
> "The Yevis system provides a [well-needed] solution for ..."
> ... which I think might have been closer to what the authors intended as well.

Response: We thank the precise suggestion to the statement. We edited the
sentence as suggested.

Reviewer #3

> One of my main concerns is that this works presents a technical implementation but
lacks an architecture diagram or a big picture that would clarify the contributions of this
work with respect to the features provided by the external platforms (GitHub, Zenodo).
This would also help the reader understand how the solution proposed can be reused
with possibly other services.

Response: We agree with the reviewer's concern that the system's overall
architecture is not clear to the readers. Although we expected that the Figure 1 in the
original submission shows the overall procedure with the components we used, it
focuses on the steps of the submission, not the environment where the system is
running. We added a new diagram as Figure 1 to indicate the components where each
process is running and how they are connected each other.

> It is also hard to understand the technical solutions when target users and their
typical needs have not been clearly stated beforehand. It seems to be very
complicated for non-developers to use or operate Yevis, especially when testing
workflows through the "GitHub actions" infrastructure. Is the Yevis platform only
targeting workflow developers ? It was not easy to understands the benefits offered to
research communities aimed at sharing/reusing workflows.

Response: Firstly, we would like to thank the reviewer for pointing out that it is not
clear about the system's target user is. We agree that it was implicit in the manuscript
that the technical level of the users expected to use the system. We expect workflow
developers as the target users of the Yevis system, i.e., developers and researchers
with the skills to design and implement arbitrary workflows using the workflow
language. However, the procedure for publishing workflows using the Yevis system
does not require any of the difficulties noted by the reviewer. The repository template
used in the Yevis setup procedure already has the GitHub action for workflow testing
that the system automatically executes when a pull request is received. Thus, the
users do not need to write any GitHub actions but prepare the test data for their
workflows and write their metadata. As indicated in the new system overview figure,
many procedures exist to publish. However, the system automates them except for the
writing of metadata and the administrator's review. We believe that this labor-saving
automation is the contribution of this research.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

To clarify the target users, we added a sentence to the Background section as follows:

*The system expects developers and researchers who design workflows using
workflow languages as users, although it does not require advanced computer skills to
operate the system.*

> Regarding the background section, GA4GH-TRS is not introduced while mentioned
as part of the results. It's hard for the reader to understand how the use of this
standard contributes to better workflow sharing (metadata ?) or better reuse (tests?).

Response: We added the sentence to the second paragraph of the System design
section as follows:

*The TRS defines the specification of computational tool/workflow metadata
representation, including workflow's URI, used language, version, etc. It ensures the
interoperabilities among different tool/workflow registries and enables workflow
engines to retrieve the information to execute a workflow maintained at a remote
server, which improves reusability of published workflows.*

> Other workflow registries such as WorkflowHub or NF-Core have been described in
the background section but a dedicated state-of-the-art section would have allowed the
authors to provide more details on the positioning of Yevis. Some related works should
also be part of the analysis such as BIAFLOWS also providing a benchmarking
environment, or OpenEBench.

Response: We added the Table 2 to compare the existing registries, including the
WorkflowHub, nf-core, and Dockstore, to compare their characteristics with a Yevis-
based registry. We reviewed the BIAFLOWS and OpenEBench and we recognized
their features of tool/workflow collections and evaluations. However, their objectives
are to provide a summary to compare different computational tools for better tool
selection, which is a slightly different scope from the aim of this study to publish
workflow with testing results for better trust. Therefore, we exclude them from the table,
but we thank the reviewer for pointing out the relevance of our system with those
excellent community resources.

> The live deployment URL of the Yevis system should be provided in the paper so
that readers can browse/reuse already registered workflow. The link provided in the
source code repository only shows 4 workflows and not the DAT2 workflow used in the
"proof of concept" section. Is the system limited to some workflow engines ? Would it
be possible to register and test Galaxy workflows for instance ?

Response: In the original manuscript, we mentioned the registry URL of the DAT2-
cwl registry in the reference section (37), but we recognized it was not clear to the
readers. We added the URL to the DAT2-cwl registry (https://github.com/pitagora-
network/yevis-DAT2-cwl) to the "sharing workflows using Yevis" section and the
repository of yevis-cli. The registry with four workflows is the DDBJ workflow registry,
which is different from the one we have shown as a demo in the manuscript. We also
have corrected the resources mentioned in the manuscript.

The yevis system itself does not have a limitation on workflow engines but requires a
WES endpoint to test the given workflow. Thus, if we had a WES instance that
consumes a Galaxy workflow the system can accept a Galaxy workflow. Currently, we
have a WES instance available for Common Workflow Language, Nextflow, Workflow
Description Language, and Snakemake.

> Regarding tests of workflows, the files associated to HiSAT2 on the Pitagora
workflow were not accessible (404 not found). I also had some difficulties when trying
to inspect the results of the automated tests in the GitHub actions. For this workflow,
[Add workflow: Pitagora CWL - Download SRA · ddbj/workflow-registry@89961a4 ·
GitHub](https://github.com/ddbj/workflow-registry/actions/runs/2256980244), the logs
were expired and thus no more accessible. This highlights the challenge of relying on
external computing services to run possibly long and costly executions, even with test
data.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response: We thank the reviewer for pointing out a ctirical issue of the current
implementation. We missed this end-of-life of the GitHub actions artifact during our
development phase. This GitHub action artifact is for two objectives, and we expect
this limitation does not affect the current Yevis procedure. First, the artifact is supposed
for the review by the registry administrator. If 90 days have passed since the automatic
execution and the test log is missing, the admin can re-run the action and review the
artifact again. Second, the artifact is also valuable as a workflow run provenance. For
this purpose, we have added a function in the WES instance to generate
ResearchObject-crate (RO-crate), a standard specification to record the research
artifact, to let the Yevis system store the test log in the Zenodo repository.

For long and costly workflow execution problem, the system has an option to run tests
with the external WES endpoint shown in the new summary figure. It brings the
availability issue of the testing instance but can solve the problem of the resource
limitation of the GitHub actions.

> Regarding the validation of metadata, very few informations are provided. Are all
metadata fields mandatory ? are some fields recommended ? Which kind of validation
is performed ? How the result of validation is returned to users ? Regarding the
metadata themselves, how do they comply with community emerging standards such
as Bioschemas or RO-crate ? At the time of the review, it was not possible to find any
semantic annotations in the Yevis web page, thus limiting the discoverability and the
interoperability of workflows descriptions.

Response: For each field in the metadata, the system performs a type check,
license check, URL validation, remote file existence, etc. We added the information on
these validation items to the CLI's GitHub repository. (https://github.com/sapporo-
wes/yevis-cli#validate) The CLI checks these metadata items written by the user, and if
it finds an invalid field, the CLI outputs an error message and prompts the user to
correct it. As the reviewer points out, our specification for workflow metadata overlaps
with some of the community-developed standards. Currently, for workflow test run logs,
we are working with the community to apply the workflow run crate under development
by the RO-crate community. However, as we prioritize the readability and editability of
Yevis metadata, the approach could be to adopt a proprietary format and then convert
it to a standard by the community.

Because of technical limitations in the current implementation, embedding tags in the
pages is not practical to improve findability. As we implemented the Yevis-web in the
JavaScript Single Page Application framework, it is not possible to embed different
annotation tags in the HTML source of each workflow page.

However, we believe workflow findability should not be left to individual workflow
developers but should be a centralized effort by a central registry. Therefore, we would
like to enhance the findability of workflows by having individual communities manage
their workflows with Yevis while a centralized registry such as WorkflowHub collects
these metadata.

> Finally, the discussion and future works sections could be enriched to address for
instance.
> - the scalability of the approach with possibly long or costly tasks when testing
workflows
> - the interoperability of this platform with other registries
> - the genericity of the approach (is it applicable in the context of other scientific
disciplines)
> - the use of this platform to compare or benchmark workflow executions based on
predefined test datasets

Response: We would like to thank the reviewer's suggestion to make the
Discussion section more constructive.
We added the following topics in the Discussion section to reflect the reviewers'
feedback.

- Using external WES endpoint to overcome the resource limitation of GitHub actions:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

also brings the concern of availability (3rd paragraph)
- The automation of quality control procedure using CI/CD of the public services: its
limitation and possibility (3rd paragraph)
- The interoperability of the Yevis registry and possibilities of coexistence with the other
centralized registries for findability (6th paragraph)

We excluded the topic of benchmarking because we think it can confuse the readers
as if the Yevis system can use for that purpose. We expect benchmarking feature
should be provided on a different layer than that of the registry.

Minor comments

> Figures 2 and 7 seems to be very similar. Only one should be kept.

Response: We agree with the reviewer's assessment. To avoid the confusion, we
removed the Figure 7 which showed the metadata file modified by the yevis system.
We remained Figure 2 and added the explanation that the metadata will be modified.

> How are test specified, is the specification generic enough? How does it support
multiple workflow engines?

Response: Yevis's specification of the test run conforms to the GA4GH WES
specification. In yevis-cli, the option --wes-location specifies the WES instance on
which the system runs the test. As WES implementations usually have a single
workflow engine, users need to use a WES capable of executing the workflow's
language. As an exception, Sapporo, one of the WES implementations we have
developed, provides users the option to specify a workflow engine from several
engines covering CWL, WDL, Nextflow, and Snakemake. The yevis-cli command uses
Sapporo via Docker if users have no WES preference.

We added sentences to emphasize the option to specify an external WES for testing
instance as follows:

*Automatic testing with GitHub Actions may also cause the issue of computational
resource shortage. To extend the capability of testing, Yevis has the option to specify
the location of an external WES endpoint to run the test, which also enables the testing
with a specific computational request such as GPUs or job schedulers.*

> The paragraph on decentralization in the discussion is confusing. All workflow
executions seem to be centralized on the GitHub infrastructure with no control on data
or computation placement. The same happens for data on the Zenodo infrastructure.

Response: Thank you for your comments. We think there is a misunderstanding
about the term decentralization. In the submission stage, we described "Yevis can
promote the concept of a distributed workflow registry model that underlies the
specifications of the GA4GH Cloud Work Stream," so this paragraph claim is the idea
of decentralization of workflow registries, not computation placement. Since we
emphasize that the communities have an option to build their own registry, not relying
on a centralized registry such as WorkflowHub or nf-core, we added a sentence to
clarify the idea as follows:

*In the distributed workflow registry model, researchers have the option to build their
own workflow registry, rather than submitting to a centralized registry.*

As mentioned above, the computation also can be decentralized using the external
WES instances.

> DAT2-cwl is not registered in the live deployment of Yevis

Response: The original manuscript has referred external GitHub repositories and
the resources, which may confuse readers. We added the URL in the sentence along
with the citation to lead the readers to the appropriate resource.

Additional Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

DRAFT

Workflow sharing with automated metadata
validation and test execution to improve the

reusability of published workflows
Hirotaka Suetake1, Tsukasa Fukusato2, Takeo Igarashi1, and Tazro Ohta3,�

1Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
2Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

3Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Shizuoka, Japan

Background: Many open-source workflow systems have made
bioinformatics data analysis procedures portable. Sharing these
workflows provides researchers easy access to high-quality anal-
ysis methods without the requirement of computational exper-
tise. However, published workflows are not always guaranteed
to be reliably reusable. Therefore, a system is needed to lower
the cost of sharing workflows in a reusable form.

Results: We introduce Yevis, a system to build a workflow reg-
istry that automatically validates and tests workflows to be pub-
lished. The validation and test are based on the requirements
we defined for a workflow being reusable with confidence. Yevis
runs on GitHub and Zenodo and allows workflow hosting with-
out the need of dedicated computing resources. A Yevis reg-
istry accepts workflow registration via a GitHub pull request,
followed by an automatic validation and test process for the sub-
mitted workflow. As a proof of concept, we built a registry using
Yevis to host workflows from a community to demonstrate how
a workflow can be shared while fulfilling the defined require-
ments.

Conclusions: Yevis helps in the building of a workflow registry
to share reusable workflows without requiring extensive human
resources. By following Yevis’s workflow-sharing procedure,
one can operate a registry while satisfying the reusable work-
flow criteria. This system is particularly useful to individuals or
communities that want to share workflows but lacks the specific
technical expertise to build and maintain a workflow registry
from scratch.

Workflow | Workflow language | Continuous integration | Open science | Re-
producibility | Reusability
Correspondence: t.ohta@dbcls.rois.ac.jp

Background
Due to the low cost and high throughput of measurement
instruments that acquire digital data from biological sam-
ples, the volume of readily available data has become enor-
mous (1). To obtain scientific knowledge from large datasets,
a number of computational data analysis processes are re-
quired, for example, in DNA sequencing, sequence read trim-
ming, alignment with reference genomes, and annotation us-
ing public databases (2). Researchers have developed anal-
ysis tools for each process and often publish them as open-
source software (3). To avoid the need to execute these tools
manually, researchers usually write a script to combine them
into what is called a workflow (4).

To build and maintain a complex workflow that combines
many tools efficiently (5), many workflow systems have been
developed (6, 7). Some of these systems have large user
communities, such as Galaxy (8), the Common Workflow
Language (CWL) (9), the Workflow Description Language
(WDL) (10), Nextflow (11), and Snakemake (12). Although
each system has its unique characteristics, they have a com-
mon aim: to make computational methods portable, main-
tainable, reproducible, and shareable (4). Most systems have
a syntax for describing a workflow that is part of what is
called a workflow language. They also have an execution
system that works with computational frameworks, such as a
job scheduler and container virtualization (13).
With the popularization of workflow systems, many research
communities have worked on workflow sharing in the form
of a workflow language. Workflow registries, such as Work-
flowHub (14), Dockstore (15), and nf-core (16), have been
developed as public repositories for the sharing of work-
flows. Workflow execution systems also utilize these reg-
istries as their tool libraries. To improve the interoperabil-
ity of workflow registries, the Global Alliance for Genomics
Health (GA4GH) proposed the Tool Registry Service (TRS)
specification that provides a standard protocol for sharing
workflows (17, 18).
Sharing workflows not only increases the transparency of re-
search but also helps researchers by facilitating the reuse of
programs, thereby making data analysis procedures more ef-
ficient. However, workflows that are accessible on the in-
ternet are not always straightforward for others to use. If a
published workflow is not appropriately licensed, researchers
cannot use it because the permission for secondary use is un-
clear. A workflow may also not be executable because its
format is incorrect, or dependent files cannot be found. Even
if a workflow can be executed, the correctness of its operation
often cannot be verified because no tests have been provided.
Furthermore, the contact details of the person responsible for
the published workflow are not always attached to it.
It is noteworthy that these issues in reusing public workflows
are not often obvious to workflow developers. To clarify the
requirements for workflow sharing, Goble et al. have pro-
posed the concept of a FAIR (findable, accessible, interoper-
able, and reusable) workflow (19). This inheritance of the
FAIR principles (20) focuses on the structure, forms, ver-

Suetake et al. | bioRχiv | October 21, 2022 | 1–10

Manuscript Click here to
access/download;Manuscript;Suetake_manuscript.pdf

https://www.editorialmanager.com/giga/download.aspx?id=144680&guid=52a6f05a-dea8-40a0-b5bb-f1fd76fcb4d0&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=144680&guid=52a6f05a-dea8-40a0-b5bb-f1fd76fcb4d0&scheme=1

DRAFT

sioning, executability, and reuse of workflows. However, the
question remains as to who should guarantee to users that
published workflows can be reused following the FAIR work-
flow guidelines.
WorkflowHub asks submitters to take responsibility for
workflows: when a workflow is registered on WorkflowHub,
the license and author identity should be clearly stated, en-
couraging them to publish FAIR workflows. However, there
is no obligation as to the correctness of the workflow syntax,
its executability, or testing. Not placing too many responsi-
bilities on workflow submitters keeps obstacles to submission
low, which will likely increase the diversity of public work-
flows on WorkflowHub; however, it will also likely increase
the number of one-off submissions, which one can assume
are at higher risk for the workflow problems previously de-
scribed.
Unlike WorkflowHub, in nf-core, the community that op-
erates the registry holds more accountability for published
workflows. Workflow submitters are required to join the nf-
core community, develop workflows according to their guide-
lines, and prepare them for testing. These requirements en-
able nf-core to collect workflows with remarkable reliability.
However, the community’s effort tends to focus on maintain-
ing more generic workflows that have a large number of po-
tential users. Consequently, nf-core states that it does not
accept submissions of bespoke workflows. This is an under-
standable policy, as maintaining a workflow requires domain
knowledge of its content, and this is difficult to maintain in
the absence of the person who developed the workflow.
In order to improve research efficiency through workflow
sharing, research communities need the publication of di-
verse workflows in a reusable form. However, as shown
by existing workflow registries, there is a trade-off between
publishing a wide variety of workflows and maintaining the
reusability of the workflows that are published. Solving this
issue requires reducing the cost to developers in making and
keeping their workflows reusable, which currently relies on
manual effort. This is achievable by redefining the FAIR
workflow concept as a set of technical requirements and pro-
viding a system that automates their validation and testing.
We introduce Yevis, a system to share workflows with au-
tomated metadata validation and test execution. The system
expects developers and researchers who design workflows us-
ing workflow languages as users, although it does not require
advanced computer skills to operate the system. Through the
development of Yevis, we specified a set of technical require-
ments that define a reusable workflow, according to the FAIR
workflow concept. Yevis helps researchers and communi-
ties share workflows that satisfy the requirements by support-
ing a build of an independent workflow registry. To allow
workflow hosting without the need of additional dedicated
computing resources, Yevis works on two public web ser-
vices: GitHub, a source code sharing and software develop-
ment service, and Zenodo, a public research data repository.
In addition, a Yevis registry provides a web-based workflow
browser and the GA4GH TRS-compatible API ensures inter-
operability with other existing workflow registries. Yevis is

particularly powerful when individuals or communities want
to share workflows but are without the technical expertise to
build and maintain a web application. To demonstrate that
workflows can be shared that fulfill the defined requirements
using Yevis, we built a registry for workflows that an existing
community has managed.

Implementations
System design. Figure 1 shows the overall architecture of
the workflow registry built by Yevis. The repository admin-
istrator uses our GitHub repository template and follows the
guide to set up a yevis-based registry creating new reposi-
tories on GitHub and Zenodo. After creating the metadata
and passing the workflow test on a local computer, work-
flow developers submit the metadata as a pull request to the
GitHub repository. Once the repository receives the pull re-
quest, it automatically tests the workflow again on GitHub
Actions, GitHub’s continuous integration/continuous deliv-
ery (CI/CD) environment. The system has the option to use
an external WES instance for testing before accepting the
submission. The registry administrator will check the test
result and approve, that is, merge the pull request. Once the
submission is approved, the repository runs another GitHub
Actions automatically to upload the content to the Zenodo
repository and the GitHub pages.
To implement the system, we first defined a set of require-
ments that the Yevis system can automatically verify or test
(Table 1). By satisfying these requirements inspired by FAIR
workflow, we consider a workflow is “reusable with confi-
dence.” These criteria have three aspects: workflow avail-
ability, accessibility, and traceability. The TRS defines the
specification of computational tool/workflow metadata rep-
resentation, including workflow’s URI, used language, ver-
sion, etc. It ensures the interoperabilities among different
tool/workflow registries and enables workflow engines to re-
trieve the information to execute a workflow maintained at
a remote server, which improves the reusability of published
workflows. To help researchers share reusable workflows, we
took an approach to aid them in building their own workflow
registry that automatically ensures its reusability. We define
a workflow registry as a service that serves workflow infor-
mation via the GA4GH TRS protocol.
The information provided by the TRS API is various work-
flow metadata, such as author information, documentation,
language type and version, dependent materials, testing ma-
terials, etc. Large files, such as dependent materials and test-
ing materials, are not directly included in the TRS API re-
sponse but are described as remote locations, such as HTTP
protocol URLs. Therefore, the entities that a workflow reg-
istry collects are a set of workflow metadata described in the
form of the TRS API response. In this study, therefore, we
designed the system as an API server that delivers the TRS
API response.
In the Yevis registry, a workflow-sharing procedure is di-
vided into three processes: submission, review, and publica-
tion (Figure 2). To address the requirements listed in Table 1,
the Yevis system automatically performs processes, such as

2 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

DRAFT

Legend

Manual procedures

Automated by Yevis system

Generate metadata template

Run tests

Send pull request

Validate metadata

Receive Pull Request

Run tests

Review test results

Merge pull request

Publish relevant files with DOI

Serve TRS response

Run workflow

Yevis CLI

on Local PC

Fig. 1. The overall architecture of the yevis system. The registry administrator needs to set up a GitHub repository from our repository template and a Zenodo repository for
file persistence. Workflow developers test their workflows on a local computer using our Yevis-cli, then submit a pull request to the GitHub repository. The GitHub repository
has two GitHub Actions, testing on GitHub Actions or an external WES instance, and publishing workflow contents and metadata to the Zenodo repository and GitHub pages.

Table 1. The requirements for a workflow to be considered reusable with confidence. We classify these requirements from the perspectives of the availability, validity, and
traceability of the workflows. We propose that these requirements should be assured and provided to users by the workflow registries.

Perspective Requirement Description

Availability

Main workflow description The main workflow description file is available and accessible without restric-
tion.

Dependent materials The dependencies of the main workflow are available, e.g., definitions of de-
pendent workflows and tools.

Testing materials The job configuration files for testing are available, e.g., parameter and input
files.

Open-source license The workflow and the related materials are published under an appropriate
open-source license.

Validity
Language type The language used to describe the workflow is specified, e.g., CWL, WDL, or

Nextflow.
Language version The version of the workflow language used is specified.
Language syntax The language syntax of the workflow is valid.

Traceability

Authors and maintainers The contact information of the authors and the maintainers is identified.
Documentation The documentation of the workflow is available.
Workflow ID The unique identifier to specify the workflow is assigned, ideally by a URI.
Workflow metadata version The version number of the workflow metadata is specified.

metadata validation, workflow testing, test provenance gener-
ation, persisting associated files, DOI assignment, and TRS
response deployment. To generate the TRS API response
and publish it while addressing the requirements listed in Ta-
ble 1, we implemented a command-line application called
Yevis-cli. This application contains various utilities to sup-
port the workflow registration procedure including valida-
tion and testing. As a service and infrastructure to perform
these steps, we designed Yevis to use the services of GitHub
and Zenodo. Using these web services makes it possible for
communities to build a workflow registry without the need of

maintaining their own computer servers.

Workflow registration with automated validation and
testing. To set up a Yevis registry, registry maintainers need
to do an initial configuration of GitHub and Zenodo; this in-
volves, for example, creating a GitHub repository, changing
repository settings, and setting up security credentials. The
online documentation “Yevis: Getting Started” shows the
step-by-step procedures to deploy a workflow registry and
test it (21).
We defined the Yevis metadata file, a JSON or YAML format

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 3

DRAFT

Submitter's PC

Generate metadata template

Run tests

Create pull request

Edit metadata

Validate metadata

GitHub Pull Request

Validate metadata

Run tests

Review test results

Merge pull request

1. Submission

Workflow

2. Review 3. Publication

Submitter Maintainer

Legend

GitHub Actions

Manual

Automatic

GitHub Pages

GitHub Actions

Upload files to Zenodo

Obtain DOI

Generate TRS response

Deploy to GitHub Pages

Fig. 2. The flowchart of the workflow registration to a Yevis repository. The workflow registration procedure is divided into three processes: the submission, review, and
publication process. Each process is performed in different locations: in the submitter’s local environment, as part of the GitHub pull request, or as the GitHub Actions. The
generated TRS API response is deployed to GitHub Pages. The steps indicated by yellow boxes, such as validating metadata, are performed automatically using Yevis-cli.

file that contains structured workflow metadata (Figure 3).
Yevis-cli uses this file as its input and output in the submis-
sion process. The Yevis metadata file will be published on the
registry along with the TRS response to provide metadata that
is not included in the TRS protocol, such as an open-source
license.

Submission process. Figure 4 shows the submission process
using Yevis-cli. During this submission process, the work-
flow submitter describes the workflow metadata in their lo-
cal environment and submits it through a GitHub pull request
(i.e., a review request to the registry maintainer). First, Yevis-
cli generates a template for the Yevis metadata file, which
requires the URL of the main workflow description file as
an argument. In many workflow systems, the main work-
flow description file is the entry point for workflow execu-
tion. Yevis-cli generates a template supplemented with work-
flow metadata automatically collected by using the GitHub
REST API and inspecting the workflow’s contents. Next, the
submitter needs to edit the Yevis metadata file template and
add workflow tests. Yevis-cli executes a test using a GA4GH
Workflow Execution Service (WES) instance, a type of web
service also described as workflow as a service (18, 22);
therefore, the testing materials must be written along with
the specification of the WES run request. Yevis-cli performs
these tests to check if the workflow execution completes suc-
cessfully. After preparing the Yevis metadata file, Yevis-cli
validates the workflow metadata syntax and runs tests us-
ing WES in the submitter’s local environment. If no WES
endpoint is specified, the tests are run using Sapporo (23), a
production-ready implementation of WES, and Docker (24),
a container virtualization environment. Using these portable
WES environments also ensures the portability of testing in
Yevis. Finally, Yevis-cli submits the workflow as a GitHub
pull request, once it confirms the required actions: the meta-
data validation and the test passing. This restriction reduces
the burden on the registry maintainer because many of the
requirements listed in Table 1 can be ensured during the sub-
mission process rather than the review process.

Review process. Figure 5 shows the workflow review process
using Yevis-cli. During the review process, registry maintain-
ers examine each workflow submitted as a Yevis metadata
file on the GitHub pull request UI. Because the submission
method is restricted to Yevis-cli, the submitted workflow is
guaranteed to pass validation and testing. To ensure the re-
producibility of test results on a local computer, Yevis auto-
matically validates and tests it on GitHub Actions (25). After
automated validation and testing, the maintainers review the
test results and log files to consider whether to approve the
pull request. Rather than using a chat tool or a mailing list,
the review process through the GitHub pull request improves
the transparency and traceability of workflow publication.

Publication process. Figure 6 shows the workflow submis-
sion process using Yevis-cli. During the publication process,
the system automatically persists all files associated with the
workflow. It generates the TRS response from the Yevis
metadata file. The approval of the pull request automati-
cally triggers the publication process on GitHub Actions. In
the GitHub Actions script, Yevis-cli uses the Zenodo API to
create a new Zenodo upload and persists all files related to
the workflow (26). It obtains the DOI and persistent URLs
of workflows from Zenodo, and appends them to the Yevis
metadata file. Following the Zenodo upload, the Yevis-cli in
the GitHub Actions generates a TRS response JSON file and
is deployed to GitHub Pages, GitHub’s static web page host-
ing service. Accordingly, the Yevis metadata file is merged to
the default branch of the GitHub repository and deployed to
GitHub Pages. With these two files, the TRS response JSON
file and the Yevis metadata file, a Yevis registry covers the
information that fulfills the requirements of a reusable work-
flow.

Workflow browsing interface. To make it easier for reg-
istry maintainers and users to browse workflows, we imple-
mented Yevis-web, a workflow browsing interface (Figure 7).
As the interface is a browser-based application implemented
in JavaScript, registry maintainers can deploy the browser on

4 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

DRAFTFig. 3. Example of the Yevis metadata file. The main workflow description, dependent materials, etc. are described as remote locations; the file contains all the information
that the Yevis-cli requires to automate the whole process. This is the actual metadata file for the workflow described in the Section “Sharing workflows using Yevis.” This file is
automatically updated through the processes within Yevis; for example, the file URL field is replaced by the Zenodo record URL that persists in the associated workflow files.

GitHub Pages. Yevis-web accesses the TRS API served via
GitHub Pages and the GitHub REST API to retrieve work-
flow information. To help organize the submissions to the
registry, the browser shows workflows of both statuses, those
already published and those still under the review process.

Results
Feature comparison with existing registries. To clarify
the advantages of a workflow registry built by Yevis, we com-
pared the characteristics of a Yevis-based registry with Work-
flowHub (14), Dockstore (15), and nf-core (16). As compar-
ison views, we focused on three aspects; diversity, reliability,
and usability of workflows available in a registry.
In the diversity of registered workflow, as “Acceptable work-
flows” in Table 2, WorkflowHub and Dockstore have an ad-
vantage because they have no restrictions on workflows in
terms of their purposes or languages. As mentioned in the
Introduction section, nf-core has the policy to collect only
best-practice workflows written in Nextflow. In contrast, a
Yevis-based registry can accept any workflows written in any
language as long as the registry administrator approves the
submission. The only limitation in a Yevis-based registry is
the testing environment because the submission to the reg-
istry requires a suitable testing environment for the given
workflow. By default, Yevis uses Sapporo WES for its test
execution, a WES implementation with multi-engine support

which enables developers to extend its execution capability.
With the reliability of available workflows, we prioritize the
features such as general quality control of submissions and
testing preparation. As shown in Table 2, in WorkflowHub
and Dockstore, each developer is responsible for quality con-
trol and testing for the submission. As a result, they may have
workflows that are not reusable, such as those lack dependen-
cies, documentation, or the appropriate open-source license.
The platforms do not have a strict testing policy, although it
helps lower the barrier to submission. On the other hand, nf-
core does quality control and testing of its workflows by its
community to provide reliable workflows. In a Yevis-based
registry, the registry itself provides automated functions to
manage the quality of workflows based on the proposed re-
quirements and test workflows in the submitter’s environment
and the remote CI/CD environment.
For usability, we focused on two standardized forms to iden-
tify the workflow: DOI and TRS 2. A Yevis-based registry
is only one of the four that provides DOI for each regis-
tered workflow. Assigning DOI for workflow files prevents
the problem of altering resource URLs. For TRS compati-
bility, currently, nf-core is the only one not providing TRS
responses. It may be because of the design of Nextflow lan-
guage, which boosts developers’ productivity on a specific di-
rectory structure rather than using distributed relevant work-
flow files. However, three out of four has TRS compatibility,
which helps data scientist write a tool to reuse the available

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 5

DRAFT

Yevis metadata fileEdit metadata

Prepare workflow

Create pull request

yevis make-template

yevis validate

yevis test

yevis pull-request

Submission Timeline Submitter's Actions Processes

Generate

metadata template

Validate metadata

WES (Sapporo)
Execute on WES

Workflow URL

GitHub Pull Request

Run tests

Fig. 4. The timeline of the workflow submission process using Yevis-cli. The submitter executes four subcommands of Yevis-cli: “make-template,” “validate,” “test,” and
“pull-request” in its local environment. The submitter needs to edit a template of the Yevis metadata file using any text editor. The workflow and its metadata need to pass
validation and testing before their submission, which helps to reduce the burden on the registry maintainer.

GitHub Actions

Yevis metadata file

Merge pull request

yevis validate

yevis test

Review Timeline Maintainer's Actions Processes

GitHub Repository

Review test results Test results

Fig. 5. The timeline of the workflow review process using Yevis-cli. The workflow and its metadata are again validated and tested automatically on GitHub Actions. The test
results and logs can then be reviewed by the registry maintainers with the GitHub pull request UI.

6 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

DRAFT

GitHub Actions

Yevis metadata file

yevis publish

Publication Timeline Processes

GitHub PagesTRS API response

Zenodo

Obtain DOI

Upload files

Updated
Yevis metadata file

Deploy

Fig. 6. The timeline of the workflow publication process using Yevis-cli. All steps are performed automatically on GitHub Actions. All files related to the workflow are persisted
by uploading them to Zenodo. The DOI is generated by Zenodo, and the Yevis metadata file is updated to append the DOI information and the persisted file URL. The GitHub
Actions generates a TRS response from the Yevis metadata; it then deploys both of them to GitHub Pages.

Fig. 7. Screenshot of Yevis-web. Yevis-web is a browser-based application used via a web browser, which is deployed by workflow registry maintainers and communicates
with the TRS API and GitHub REST API to retrieve workflow information. The browser shows both published and under-review workflows to help maintainers in organizing
the registry. Upon selecting a workflow of interest, Yevis-web displays more detailed information, such as test results and the contents of the files related to the workflow.

workflows with the unified API response.

Sharing workflows using Yevis. To demonstrate that a re-
search community can publish the workflows using Yevis
while addressing the requirements listed in Table 1, we built
a workflow registry that publishes “DAT2-cwl” workflows
with the Yevis system (27)1. These workflows written in
CWL are the appendix of the book Next Generation Se-
quencer DRY Analysis Manual, 2nd Edition (28) and are
maintained by the book’s authors and communities. These
workflows have been maintained by a community of bioin-
formatics experts; however, they fulfill only a part of the re-
quirements that we defined. For example, the workflows have
test data but would require continuous testing. They also lack
workflow metadata in a standard format.
Among the DAT2-cwl workflows, we selected a bacterial

1https://github.com/pitagora-network/
yevis-DAT2-cwl

genome analysis workflow in building a new registry with
Yevis (29). This workflow combines the following command
line tools: SeqKit (30), FastQC (31), fastp (32), and Platanus-
b (33). Each tool used in the workflow is packaged in a
Docker container. First, we described a Yevis metadata file
(Figure 3) for this workflow using Yevis-cli and appended
a test of the workflow in the form of a WES run request.
We then performed the workflow registration procedure de-
scribed in the Section “Workflow registration with automated
validation and testing” using Yevis-cli that enable the au-
tomation of many of the steps in the validation, testing, re-
viewing, and publishing.

Through the publication procedure of the bacteria genome
analysis workflow, we evaluated how the Yevis system ad-
dressed the requirements listed in Table 1. Requirements
classified as “Availability” were addressed by being uploaded
to Zenodo under an appropriate open source license (34). The
Yevis metadata file (Figure 3) (35) and TRS API response

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 7

https://github.com/pitagora-network/yevis-DAT2-cwl
https://github.com/pitagora-network/yevis-DAT2-cwl

DRAFT

Table 2. Feature comparison with existing registries and Yevis-based registry. We focused on five characteristics of registries: acceptable workflows on each registry, workflow
quality control responsibility, workflow testing responsibility, DOI assignment, and TRS compatibility.

Registry URL Acceptable workflows Quality control by Testing by DOI TRS

WorkflowHub workflowhub.eu No restrictions Each developer Each developer No Yes
Dockstore dockstore.org No restrictions Each developer Each developer No Yes
nf-core nf-co.re Generic workflows only nf-core community nf-core community No No
Built by Yevis (a GitHub repo.) Depend on administrator Automated by Yevis Forced by Yevis Yes Yes

(Figure 8) were updated through Yevis’s publication process
to use URLs persisted by Zenodo. Requirements classified
as “Validity” were addressed by running tests on GitHub Ac-
tions. The contents in the Yevis metadata file and the TRS
response satisfy the validity requirements, such as workflow
type, workflow language version, and the URL of the test
results. Requirements classified as “Traceability” were ad-
dressed by describing, reviewing, and publishing them in the
Yevis metadata file and TRS API response. From the above,
we confirmed that Yevis successfully published the bacteria
genome analysis workflow while addressing the defined re-
quirements.

Discussion
Through our survey of existing workflow registries, such
as Dockstore, WorkflowHub, and nf-core, it was revealed
that they are maintained based on numerous contributions by
various communities and the use of sufficient computer re-
sources. While these established workflow registries accept
submissions and are available for use by researchers, there
are still cases in which there is a need to create a new work-
flow publication platform. For example, in the case of the
Bioinformation and DDBJ center, the institute (hereafter re-
ferred to simply as DDBJ) needed to have a collection of
workflows that would be allowed to run on the WES on their
computing platform. Therefore, we designed Yevis as a tool
to help workflow developers create a registry to share their
workflows. DDBJ used Yevis to create and then to maintain
a workflow registry dedicated to workflows for use on the
DDBJ WES (36).
Yevis can promote the concept of a distributed workflow reg-
istry model that underlies the specifications of the GA4GH
Cloud Work Stream (18). In the distributed workflow reg-
istry model, researchers have the option to build their own
workflow registry, rather than submitting to a centralized reg-
istry. The API standard for workflow registry specified by
GA4GH enables a decentralized model, which promotes di-
versity in workflow development and in the research of analy-
sis methods. Resource sharing, particularly of analysis meth-
ods, has a bigger impact on a community studying a minor
target with limited human resources.
The Yevis system strongly relies on web services, such as
GitHub and Zenodo. This is because we aimed to pro-
vide support to individuals or communities without sufficient
computing resources, but this may result in a lock-in to these
web services. Although we believe these services are reliable

enough to host valuable workflows, we designed the system
to only use substitutable operations of those services, such
as version management, file hosting, and continuous script
execution. Yet we currently provide only the implementation
that depends on those two services while it is technically pos-
sible to build a Yevis registry in an on-premise server. It is
because the vendor-free system can only achieve part of our
objectives to provide the effortless management of a registry.
Here, we recognize a trade-off of building an academic tool
using services run by commercial vendors, which requires
further discussion in the communities. Automatic testing
with GitHub Actions may also cause the issue of computa-
tional resource shortage. To extend the capability of testing,
Yevis has the option to specify the location of an external
WES endpoint to run the test, which also enables the testing
with a specific computational request such as GPUs or job
schedulers.
Compared to existing workflow registries that have a web
form for workflow registration, the Yevis system provides
only a command-line interface, Yevis-cli, as a method to sub-
mit a workflow. This is because we prefer to test workflows
locally in advance of submission, while the existing registries
test as part of a review process. By using the same test suite
on both the submitter’s environment (local) and as part of the
registry’s automatic process (remote), Yevis-cli ensures bet-
ter reliability of the test results. This also helps to reduce the
cost to a registry maintainer by ensuring a workflow is at least
runnable on the submitter’s local environment.
The Yevis system provides a well-needed solution for re-
search communities that aim to share their workflows and
wish to establish their own registry as described. However,
we recognize it still has some limitations. One of the chal-
lenges is the description of workflow testing. Writing tests
for a workflow is difficult because the outputs may be heuris-
tic values, may differ among tool versions, and the total
amount of input and output data can be enormous. There is a
need for a testing framework that packages test cases and re-
sults and generates assertions that allow for slight differences
in the output. Debugging a workflow is also difficult because
a typical workflow uses many tools that use various program-
ming runtimes. Therefore, a framework is required to capture
metrics of the test execution environment with these various
runtimes.
Another challenge for the proposed distributed registry
model is the findability of workflows. In the model where
each developer is responsible for their content, the use of ap-

8 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

DRAFT

$ curl -fsSL https://pitagora-network.org/yevis-DAT2-cwl/tools/d03458d8-837c-4173-afa3-
55ebe538b0b2/versions/1.0.0 | jq .
{
 "author": [
 "suecharo"
],
 "name": "DAT2-cwl - bacteria genome workflow",
 "url": "https://pitagora-network.github.io/yevis-DAT2-cwl/tools/d03458d8-837c-4173-afa3-
55ebe538b0b2/versions/1.0.0",
 "id": "1.0.0",
 "descriptor_type": [
 "CWL"
],
 "verified": true,
 "verified_source": [
 "https://github.com/pitagora-network/yevis-DAT2-cwl/actions/runs/2317749577"
]
}

Fig. 8. TRS API response of the DAT2-cwl/bacteria-genome workflow. This JSON response is deployed on GitHub Pages by Yevis and is accessible via the HTTP protocol.
The main workflow metadata in the TRS protocol is served at the path “/tools/{id}/versions/{version_id}”. Two other possible paths for the associated files and the tests are
“/tools/{id}/versions/{version_id}/files” and “/tools/{id}/versions/{version_id}/tests”.

propriate terms for describing workflow metadata can be an
issue. A possible solution to improve the findability of work-
flows in distributed registries is to collect metadata in a cen-
tralized registry to curate them and create the search index.
However, this will require a further challenge to distinguish
the collected workflows using only metadata.
Many researchers agree that resource sharing is a key factor
in the era of data science. As workflow systems and their
communities grow, researchers have worked to share their
data analysis procedures along with their data. Despite the
fact that workflow systems are developed for automation, it
sounds strange that maintaining workflow registries still re-
lies on manual efforts. Through the development of Yevis,
we found there are many possibilities for further automation
in the process of resource sharing. Through the defined re-
quirements for reusable workflows and a system that ensures
them automatically, we believe that our work can contribute
to moving open science forward.

Availability of source code and requirements
• Project name: Yevis-cli

• Project home page: https://github.com/
ddbj/yevis-cli

• DOI: 10.5281/zenodo.6541109

• biotoolsID: yevis-cli

• Operating system(s): Platform independent

• Programming language: Rust

• Other requirements: Docker recommended

• License: Apache License, Version 2.0

• Project name: Yevis-web

• Project home page: https://github.com/
ddbj/yevis-web

• DOI: 10.5281/zenodo.6541031

• biotoolsID: yevis-web

• Operating system(s): Platform independent

• Programming language: TypeScript

• License: Apache License, Version 2.0

Availability of supporting data and materials
Data and materials related to the DAT2-cwl workflows de-
scribed in the Section “Sharing workflows using Yevis” are
available on GitHub and Zenodo as follows:

• GitHub repository for DAT2-cwl workflows (27)

• Workflow registry yevis-DAT2-cwl (37)

• Workflow browser for yevis-DAT2-cwl (38)

Declarations
List of abbreviations. API: Application Programming In-
terface; CI/CD: Continuous Integration/Continuous Deliv-
ery; CWL: Common Workflow Language; DDBJ: Bioinfor-
mation and DDBJ Center; DNA: Deoxyribonucleic Acid;
DOI: Digital Object Identifier; FAIR: Findable, Accessible,
Interoperable, and Reusable; GA4GH: Global Alliance for
Genomics and Health; HTTP: Hypertext Transfer Protocol;
ID: Identifier; REST: Representational State Transfer; TRS:
Tool Registry Service; UI: User Interface; URI: Uniform Re-
source Identifier; URL: Uniform Resource Locator; WDL:
Workflow Description Language; WES: Workflow Execution
Service;

Ethical Approval. Not applicable for this study.

Consent for publication. Not applicable for this study.

Competing Interests. The authors declare that they have no
competing interests.

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 9

https://github.com/ddbj/yevis-cli
https://github.com/ddbj/yevis-cli
https://github.com/ddbj/yevis-web
https://github.com/ddbj/yevis-web

DRAFT

Funding. This study was supported by JSPS KAKENHI
Grant Number 20J22439, the Life Science Database Integra-
tion Project, and the National Bioscience Database Center
(NBDC) of the Japan Science and Technology Agency (JST).
This study was also supported by the CREST program of the
Japan Science and Technology Agency (Grant Number JP-
MJCR17A1).

Author’s Contributions. H.S. and T.O. conceived and de-
veloped the methodology and software and conducted the in-
vestigation. H.S., T.F., and T.O. wrote the manuscript. T.F.,
T.I., and T.O. supervised the project. All authors read and
approved the final version of the manuscript.

Acknowledgements
We acknowledge and thank the following scientific com-
munities and their collaborative events where several of the
authors engaged in irreplaceable discussions and develop-
ment throughout the project: the Pitagora Meetup, Work-
flow Meetup Japan, NBDC/DBCLS BioHackathon Series,
and Elixir’s BioHackathon Europe Series. We also would
like to thank Ascade Inc. for their support with the software
development.

References
1. Sara Goodwin, John D. McPherson, and Richard W. McCombie. Coming of age: Ten years

of next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351,
2016. doi: 10.1038/nrg.2016.49.

2. Lincoln D. Stein. The case for cloud computing in genome informatics. Genome Biology,
11(5):207, 2010. doi: 10.1186/gb-2010-11-5-207.

3. Pjotr Prins, Joep de Ligt, Artem Tarasov, Ritsert C. Jansen, Edwin Cuppen, and Philip E.
Bourne. Toward effective software solutions for big biology. Nature Biotechnology, 33(7):
686–687, 2015. doi: 10.1038/nbt.3240.

4. Jeffrey M. Perkel. Workflow systems turn raw data into scientific knowledge. Nature, 573
(7772):149–150, 2019. doi: 10.1038/d41586-019-02619-z.

5. Felipe da Veiga Leprevost, Valmir C. Barbosa, Eduardo L. Francisco, Yasset Perez-Riverol,
and Paulo C. Carvalho. On best practices in the development of bioinformatics software.
Frontiers in Genetics, 5, 2014. doi: 10.3389/fgene.2014.00199.

6. Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojša Tijanić, and
Samuel Lampa. Existing workflow systems, 2021. https://s.apache.org/

existing-workflow-systems.
7. Laura Wratten, Andreas Wilm, and Jonathan Göke. Reproducible, scalable, and shareable

analysis pipelines with bioinformatics workflow managers. Nature Methods, 18(10):1161–
1168, 2021. doi: 10.1038/s41592-021-01254-9.

8. Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin
Čech, John Chilton, et al. The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids Research, 46:W537–W544, 2018. doi:
10.1093/nar/gky379.

9. Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, Nebojša
Tijanić, Hervé Ménager, et al. Methods included: Standardizing computational reuse and
portability with the common workflow language. arXiv, 2021. doi: 10.48550/arXiv.2105.
07028.

10. Kate Voss, Jeff Gentry, and Geraldine Van Der Auwera. Full-stack genomics pipelining
with GATK4 + WDL + Cromwell. F1000Research, 2017. doi: 10.7490/F1000RESEARCH.
1114631.1.

15. Brian D. O’Connor, Denis Yuen, Vincent Chung, Andrew G. Duncan, Xiang Kun Liu, Jan-
ice Patricia, Benedict Paten, et al. The Dockstore: Enabling modular, community-focused
sharing of Docker-based genomics tools and workflows. F1000Research, 6:52, 2017. doi:
10.12688/f1000research.10137.1.

11. Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo Prieto Barja, Emilio Palumbo,
and Cedric Notredame. Nextflow enables reproducible computational workflows. Nature
Biotechnology, 35(4):316–319, 2017. doi: 10.1038/nbt.3820.

12. J. Koster and S. Rahmann. Snakemake—a scalable bioinformatics workflow engine. Bioin-
formatics, 28(19):2520–2522, 2012. doi: 10.1093/bioinformatics/bts480.

13. Felipe da Veiga Leprevost, Björn A. Grüning, Saulo Alves Aflitos, Hannes L. Röst, Ju-
lian Uszkoreit, Harald Barsnes, Marc Vaudel, et al. BioContainers: An open-source and
community-driven framework for software standardization. Bioinformatics, 33(16):2580–
2582, 2017. doi: 10.1093/bioinformatics/btx192.

14. Carole Goble, Stian Soiland-Reyes, Finn Bacall, Stuart Owen, Alan Williams, Ignacio
Eguinoa, Bert Droesbeke, et al. Implementing FAIR Digital Objects in the EOSC-Life Work-
flow Collaboratory. Zenodo, 2021. doi: 10.5281/zenodo.4605654.

16. Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, An-
dreas Wilm, Maxime Ulysse Garcia, et al. The nf-core framework for community-curated
bioinformatics pipelines. Nature Biotechnology, 38(3):276–278, 2020. doi: 10.1038/
s41587-020-0439-x.

17. Global Alliance for Genomics and Health. ga4gh/tool-registry-service-schemas, 2016.
https://github.com/ga4gh/tool-registry-service-schemas.

18. Heidi L. Rehm, Angela J. H. Page, Lindsay Smith, Jeremy B. Adams, Gil Alterovitz,
Lawrence J. Babb, Maxmillian P. Barkley, et al. GA4GH: International policies and standards
for data sharing across genomic research and healthcare. Cell Genomics, 1(2):100029,
2021. doi: 10.1016/j.xgen.2021.100029.

19. Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes, Daniel Garijo, Yolanda Gil,
Michael R. Crusoe, Kristian Peters, and Daniel Schober. FAIR computational workflows.
Data Intelligence, 2(1-2):108–121, 2020. doi: 10.1162/dint_a_00033.

20. Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles
Axton, Arie Baak, Niklas Blomberg, et al. The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data, 3(1):160018, 2016. doi: 10.1038/sdata.2016.
18.

21. Hirotaka Suetake and Tazro Ohta. Yevis: Getting Started, 2022. https://

sapporo-wes.github.io/yevis-cli/getting_started. doi: 10.5281/zenodo.
6793218.

22. Global Alliance for Genomics and Health. ga4gh/workflow-
execution-service-schemas, 2017. https://github.com/ga4gh/

workflow-execution-service-schemas.
23. Hirotaka Suetake, Tomoya Tanjo, Manabu Ishii, Bruno P. Kinoshita, Takeshi Fujino, Tsuyoshi

Hachiya, et al. Sapporo: A workflow execution service that encourages the reuse of
workflows in various languages in bioinformatics. F1000Research, 11:889, 2022. doi:
10.12688/f1000research.122924.1.

24. Dirk Merkel. Docker: Lightweight Linux containers for consistent development and deploy-
ment. Linux Journal, 2014:2, 2014.

25. Hirotaka Suetake and Tazro Ohta. ddbj/yevis-cli: 0.5.1 - actions_example/yevis-test-
pr.yml, 2022. https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_

example/yevis-test-pr.yml. doi: 10.5281/zenodo.6793218.
26. Hirotaka Suetake and Tazro Ohta. ddbj/yevis-cli: 0.5.1 - actions_example/yevis-publish-

pr.yml, 2022. https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_

example/yevis-publish-pr.yml. doi: 10.5281/zenodo.6793218.
27. Pitagora Network members. pitagora-network/DAT2-cwl: 1.1.1, May 2022. doi: 10.5281/

zenodo.6565977.
28. Bono Hidemasa and Atsushi Shimizu. Next Generation Sequencer DRY Analysis Manual

2nd Edition. Gakken Medical Shujunsha, 2019.
29. Pitagora Network members. GitHub - pitagora-network/DAT2-cwl: 1.1.1 - workflow/bacteria-

genome, May 2022. doi: 10.5281/zenodo.6565977.
30. Wei Shen, Shuai Le, Yan Li, and Fuquan Hu. SeqKit: A cross-platform and ultrafast toolkit

for FASTA/Q file manipulation. PLOS One, 11(10):e0163962, 2016. doi: 10.1371/journal.
pone.0163962.

31. Simon Andrews. FastQC: A quality control tool for high throughput sequence data, 2010.
32. Shifu Chen, Yanqing Zhou, Yaru Chen, and Jia Gu. fastp: An ultra-fast all-in-one FASTQ

preprocessor. Bioinformatics, 34(17):i884–i890, 2018. doi: 10.1093/bioinformatics/bty560.
33. Rei Kajitani, Kouta Toshimoto, Hideki Noguchi, Atsushi Toyoda, Yoshitoshi Ogura, Miki

Okuno, Mitsuru Yabana, et al. Efficient de novo assembly of highly heterozygous genomes
from whole-genome shotgun short reads. Genome Research, 24(8):1384–1395, 2014. doi:
10.1101/gr.170720.113.

34. Hirotaka Suetake. DAT2-cwl/bacteria-genome workflow files uploaded to Zenodo by Yevis,
May 2022. doi: 10.5281/zenodo.6545122.

35. Hirotaka Suetake. Yevis metadata file for the DAT2-cwl/bacteria-genome workflow, May
2022. doi: 10.5281/zenodo.6572565.

36. Hirotaka Suetake and Tazro Ohta. ddbj/workflow-registry: 1.0.2, 2022. doi: 10.5281/zenodo.
6719845.

37. Hirotaka Suetake. pitagora-network/yevis-DAT2-cwl: 1.0.0, 2022. doi: 10.5281/zenodo.
6572565.

38. Hirotaka Suetake. pitagora-network/yevis-DAT2-cwl-browser: 1.0.0, 2022. doi: 10.5281/
zenodo.6575089.

10 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://github.com/ga4gh/tool-registry-service-schemas
https://sapporo-wes.github.io/yevis-cli/getting_started
https://sapporo-wes.github.io/yevis-cli/getting_started
https://github.com/ga4gh/workflow-execution-service-schemas
https://github.com/ga4gh/workflow-execution-service-schemas
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-test-pr.yml
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-test-pr.yml
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-publish-pr.yml
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-publish-pr.yml

yevis_revise_comments.md 2022/10/21

1 / 8

Point-by-point response to reviewers' comments

GIGA-D-22-00187 Workflow sharing with automated metadata validation and test execution to improve the

reusability of published workflows Hirotaka Suetake; Tsukasa Fukusato; Takeo Igarashi; Tazro Ohta

GigaScience

We would like to thank reviewers for their thoughtful comments and constructive feedbacks. We have

added a summary figure and some additional paragraphs to make things clear, and made changes in the

figures from the previous version of the manuscript.

Our responses and explanations to the issues pointed by each reviewer are follows.

Reviewer #1

�. Based on your survey of existing systems, could you possibly make a figure or table that

showcases the features supported/not supported by these different systems, including yours?

Response: Thank you for the suggestion that can highlight the contribution of our work. We added the

Table 2 in the Result section to compare the characteristics of WorkflowHub, Dockstore, nf-core, and a

yevis-based registry. We compared them with three aspects; diversity, reliability, and usability of registered

workflow.

�. Thoughts on security/cost safeguards? Perhaps beyond the scope, but it does seem like a

governing group needs to define some limits to the testing resources and be able to enforce

them. If I am a bad actor and programmatically open up 1000 PRs of expensive jobs, I'm not

sure what would happen. Actions and artifact storage aren't necessarily free after some limit.

Response: We first had security concerns with the functionality in GitHub. Then, to solve problems of

offensive actions by using malicious users via Pull Requests, we use GitHub's first-time contributor

restriction. In this system, users (who first contribute to the repository) cannot perform a GitHub action

without permission from the administrator. That is, the owners can easily reject "Pull Requests" from

suspicious users, i.e., avoiding possible security issues.

As for the resource limitation of GitHub Actions, we solve the problem by using an external WES. In addition

to a lack of resources, GitHub Actions may not be sufficient for testing workflows that only work on specific

system configurations, such as GPUs or job schedulers. In such cases, the registry owner can check the

testing portability by running the test on a remote WES instance. We added sentences to the Discussion

section about the limitations of GitHub resources, the incident possibilities, and solutions to prevent them.

We added the following sentences to the Discussion section:

Automatic testing with GitHub actions may also cause the issue of computational resource shortage. To

extend the capability of testing, Yevis has the option to specify the location of an external WES endpoint to

run the test, which also enables the testing with a specific computational request such as GPUs or job

schedulers.

�. What is the flow for simply updating to a new version of an existing workflow? (perhaps this

could be in your docs, not necessarily this manuscript).

Response to reviewers Click here to access/download;Personal
Cover;Suetake_response_to_reviewers.pdf

https://www.editorialmanager.com/giga/download.aspx?id=144694&guid=95c1e544-a52f-4908-ac71-dcde7e5b6299&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=144694&guid=95c1e544-a52f-4908-ac71-dcde7e5b6299&scheme=1

yevis_revise_comments.md 2022/10/21

2 / 8

Response: We appreciate the comment about the version updates, which is one of the critical features of

our implementation. The system identifies a workflow by its remote URL of the primary workflow in the

metadata. Therefore, if the user modifies the metadata without changing the URL and bumps up the version

information, the system recognizes that they are different versions of the same workflow. Users can use

different versions of the workflow by specifying the TRS endpoint with a path including version information,

such as "tools/0d2ae4c2-fe4c-48f7-811a-ac277776533e/versions/1.0.0".

Users can upgrade the registered workflow by performing the following steps.

�. Edit the existing yevis-metadata.yml file.

�. Bump the workflow version in the metadata.

�. Run tests using yevis-cli and send a PR to the repository.

�. Follow the same steps as adding a new workflow, and the new version will be published.

We added the above instruction to the online documentation.

�. CWL is an example of a workflow language that developers can extend to create custom

"hints" or "requirements". For example, seven bridges does this in cavatica where a user can

define aws spot instance configs etc. WDL has properties to config GCP images. It seems like

in these cases, tests should only be defined to work when running "locally" (not with some

scheduler/specific cloud env). But the author's do mention that tests will first run locally on the

user's environment, so that does kind of get around this.

Response: As we see the importance of the testing portability, we implemented the system with a strict

specification. Developers can push the workflows that passed the local test to the registry, and the owners

can merge those that passed the remote test. However, as the reviewer points out, specific compute-

dependent tests exist in actual use cases and cannot be ignored. Allowing tests to be run outside the

developer's own environment can solve the testing portability problem, i.e. the testing on a computing

environment that anyone can access, even if not on GitHub. Therefore, the ability of our GitHub action to

request tests to external WES instances can solve the problem. However, another problem is preparing a

WES instance that can correctly run the tests for that workflow. We believe it is the responsibility of

developers who want to share their workflows to prepare an environment where anyone can execute the

tests correctly. Perhaps the preparation of a testing environment is something that the community should

discuss.

�. For the "findable" part of FAIR, how possible is it to have "tags" of sort associated with a wf

record so things can be more findable? I imagine when there is a large repository of many

workflows, being able to easily narrow down to the specific domain interest you have could be

helpful.

Response: It is crucial to curate the metadata in the registry with tags or ontology terms that increase

findability. The findability issue is a downside of the de-centralized registry model. Although it is possible to

add tags as part of the TRS response specification, tagging with uncontrolled vocabulary by each workflow

developer will not improve the findability. We believe that a centralized search index is in need to distinguish

workflows from other similar or similar but different workflows available online. Therefore, a possible

strategy is to register the metadata in a centralized registry such as WorkflowHub, while the workflow body

is hosted and test runs on GitHub/Zenodo, as we proposed.

We have added this point as a weakness of the de-centralized model in the Discussion as following:

yevis_revise_comments.md 2022/10/21

3 / 8

Another challenge for the proposed distributed registry model is the findability of workflows. In the model

where each developer is responsible for their content, the use of appropriate terms for describing workflow

metadata can be an issue. A possible solution to improve the findability of workflows in distributed

registries is to collect metadata in a centralized registry to curate them and create the search index.

However, this will require a further challenge to distinguish the collected workflows using only metadata.

Reviewer #2

Main concern

I have one major gripe though, blocking acceptance: The choice to only support GitHub for hosting.

There is a growing problem in the research world that more and more research is being dependent

on the single commercial actor GitHub, for seemingly no other reason than convenience. Although

GitHub to date can be said to have been a somewhat trustworthy player, there is no guarantee for the

future, and ultimately this leaves a lot of research in an unhealthy dependenc on this single platform.

As a small note of a recent change, is the proposed removal of the promise to not track its users (see

https://github.com/github/site-policy/pull/582). A such a central infrastructure component for

research as a workflow registry has an enormous responsibility here, as it may greatly influence the

choices of researchers in the future to come, because of encouragement of what is "easier" or more

convenient to do with the tools and infrastructure available. With this in mind, I find it unacceptable

for a workflow registry supporting open science and open source work to only support one

commercial provider. The authors mention that technically they are able to support any vendor, and

also on-premise setups, which sounds excellent. I ask the authors to kindly implement this

functionality. Especially the ability to run on-premises registries is key to encourage research to stay

free and independent from commercial concerns.

Response: We understand the reviewer's concern about the lock-in risk to a commercial service well. It is

not our desire to be locked into a specific service, and we are aware of the risk that these services (and

every other service run by a vendor) may become unavailable to everyone. However, at the same time, it is

impractical for us to implement and provide the "perfect lock-free" version of the system with production-

level quality as well. We would like to explain the reasons below.

In this study, we aimed to achieve two major objectives: the independency from computational resources

maintained by individual developers, and the automation to reduce the developers' tasks that make

workflows reusable.

For the first objective, the academic communities know from their experience how difficult it is to maintain

one's server for decades, at least for most of the developers in research. We think the main reason why

many researchers rely on GitHub is simple, they do not need to maintain their git servers. This is also why

we chose to use services run by vendors while realizing the risk of lock-in.

For the second objective, we had to retrieve the metadata of workflows automatically. Therefore, we used

the GitHub API as a core component, which is not straightforward to replace with a plain on-premise git

server.

Therefore, we have to give up these two strong benefits if we wanted to provide the same functionalities

with a possible on-premise Yevis implementation. We still can think of the lock-free version of the registry,

however, it will look like a completely different one as follows:

yevis_revise_comments.md 2022/10/21

4 / 8

�. Workflow developers manually create metadata.yml and run the tests by hand using WES.

�. Developers submit the metadata to the registry administrator using a communication channel such as

a mailing list.

�. The administrator runs tests using WES based on the received metadata.yml and reviews them.

�. Upload the reviewed workflow to any file server and publish it.

With these steps, partially supported by the current yevis-cli, one can have a workflow registry completely

vendor lock-free. However, it is not as far efficient as the system using GitHub and Zenodo.

We believe our contribution is not the system itself but rather the distributed registry model in which

communities can have their platforms by automating the quality assurance tasks. We hope that GitHub will

not become evil, but if it does, we will re-implement our system with other services.

To clarify the benefit and the risk of vendor lock-in, and to explain the form of the system without those

services, we added the sentences to the discussion section as follows:

Yet we currently provide only the implementation that depends on those two services while it is technically

possible to build a Yevis registry in an on-premise server. It is because the vendor-free system can only

achieve part of our objectives to provide the effortless management of a registry. Here, we recognize a

trade-off of building an academic tool using services run by commercial vendors, which requires further

discussion in the communities.

Minor concerns

�. I think the manuscript is a missing citation to this key workflow review, as a recen overview of

the bioinformatics workflows field, for example together with the current citation [6] in the

manuscript: Wratten, L., Wilm, A., & Göke, J. (2021). Reproducible, scalable, and shareable

analysis pipelines with bioinformatics workflow managers. Nature methods, 18(10), 1161-1168.

https://www.nature.com/articles/s41592-021-01254-9

Response: Thank you for pointing out the important citation. We added the citation as suggested.

�. Although it might not have been the intention of the authors, the following sentence sounds

unneccessarily subjective and appraising, without data to back this up (rather this would be

something for the users to evaluate): The Yevis system is a great solution for research

communities that aim to share their workflows and wish to establish their own registry as

described. I would rather expect wording similar to: "The Yevis system provides a [well-

needed] solution for ..." ... which I think might have been closer to what the authors intended

as well.

Response: We thank the precise suggestion to the statement. We edited the sentence as suggested.

Reviewer #3

One of my main concerns is that this works presents a technical implementation but lacks an

architecture diagram or a big picture that would clarify the contributions of this work with respect to

the features provided by the external platforms (GitHub, Zenodo). This would also help the reader

understand how the solution proposed can be reused with possibly other services.

yevis_revise_comments.md 2022/10/21

5 / 8

Response: We agree with the reviewer's concern that the system's overall architecture is not clear to the

readers. Although we expected that the Figure 1 in the original submission shows the overall procedure with

the components we used, it focuses on the steps of the submission, not the environment where the system

is running. We added a new diagram as Figure 1 to indicate the components where each process is running

and how they are connected each other.

It is also hard to understand the technical solutions when target users and their typical needs have

not been clearly stated beforehand. It seems to be very complicated for non-developers to use or

operate Yevis, especially when testing workflows through the "GitHub actions" infrastructure. Is the

Yevis platform only targeting workflow developers ? It was not easy to understands the benefits

offered to research communities aimed at sharing/reusing workflows.

Response: Firstly, we would like to thank the reviewer for pointing out that it is not clear about the system's

target user is. We agree that it was implicit in the manuscript that the technical level of the users expected

to use the system. We expect workflow developers as the target users of the Yevis system, i.e., developers

and researchers with the skills to design and implement arbitrary workflows using the workflow language.

However, the procedure for publishing workflows using the Yevis system does not require any of the

difficulties noted by the reviewer. The repository template used in the Yevis setup procedure already has

the GitHub action for workflow testing that the system automatically executes when a pull request is

received. Thus, the users do not need to write any GitHub actions but prepare the test data for their

workflows and write their metadata. As indicated in the new system overview figure, many procedures exist

to publish. However, the system automates them except for the writing of metadata and the administrator's

review. We believe that this labor-saving automation is the contribution of this research.

To clarify the target users, we added a sentence to the Background section as follows:

The system expects developers and researchers who design workflows using workflow languages as users,

although it does not require advanced computer skills to operate the system.

Regarding the background section, GA4GH-TRS is not introduced while mentioned as part of the

results. It's hard for the reader to understand how the use of this standard contributes to better

workflow sharing (metadata ?) or better reuse (tests?).

Response: We added the sentence to the second paragraph of the System design section as follows:

The TRS defines the specification of computational tool/workflow metadata representation, including

workflow's URI, used language, version, etc. It ensures the interoperabilities among different tool/workflow

registries and enables workflow engines to retrieve the information to execute a workflow maintained at a

remote server, which improves reusability of published workflows.

Other workflow registries such as WorkflowHub or NF-Core have been described in the background

section but a dedicated state-of-the-art section would have allowed the authors to provide more

details on the positioning of Yevis. Some related works should also be part of the analysis such as

BIAFLOWS also providing a benchmarking environment, or OpenEBench.

Response: We added the Table 2 to compare the existing registries, including the WorkflowHub, nf-core,

and Dockstore, to compare their characteristics with a Yevis-based registry. We reviewed the BIAFLOWS

and OpenEBench and we recognized their features of tool/workflow collections and evaluations. However,

their objectives are to provide a summary to compare different computational tools for better tool selection,

which is a slightly different scope from the aim of this study to publish workflow with testing results for

yevis_revise_comments.md 2022/10/21

6 / 8

better trust. Therefore, we exclude them from the table, but we thank the reviewer for pointing out the

relevance of our system with those excellent community resources.

The live deployment URL of the Yevis system should be provided in the paper so that readers can

browse/reuse already registered workflow. The link provided in the source code repository only

shows 4 workflows and not the DAT2 workflow used in the "proof of concept" section. Is the system

limited to some workflow engines ? Would it be possible to register and test Galaxy workflows for

instance ?

Response: In the original manuscript, we mentioned the registry URL of the DAT2-cwl registry in the

reference section (37), but we recognized it was not clear to the readers. We added the URL to the DAT2-

cwl registry (https://github.com/pitagora-network/yevis-DAT2-cwl) to the "sharing workflows using Yevis"

section and the repository of yevis-cli. The registry with four workflows is the DDBJ workflow registry,

which is different from the one we have shown as a demo in the manuscript. We also have corrected the

resources mentioned in the manuscript.

The yevis system itself does not have a limitation on workflow engines but requires a WES endpoint to test

the given workflow. Thus, if we had a WES instance that consumes a Galaxy workflow the system can

accept a Galaxy workflow. Currently, we have a WES instance available for Common Workflow Language,

Nextflow, Workflow Description Language, and Snakemake.

Regarding tests of workflows, the files associated to HiSAT2 on the Pitagora workflow were not

accessible (404 not found). I also had some difficulties when trying to inspect the results of the

automated tests in the GitHub actions. For this workflow, Add workflow: Pitagora CWL - Download

SRA · ddbj/workflow-registry@89961a4 · GitHub, the logs were expired and thus no more accessible.

This highlights the challenge of relying on external computing services to run possibly long and

costly executions, even with test data.

Response: We thank the reviewer for pointing out a ctirical issue of the current implementation. We missed

this end-of-life of the GitHub actions artifact during our development phase. This GitHub action artifact is

for two objectives, and we expect this limitation does not affect the current Yevis procedure. First, the

artifact is supposed for the review by the registry administrator. If 90 days have passed since the automatic

execution and the test log is missing, the admin can re-run the action and review the artifact again. Second,

the artifact is also valuable as a workflow run provenance. For this purpose, we have added a function in the

WES instance to generate ResearchObject-crate (RO-crate), a standard specification to record the research

artifact, to let the Yevis system store the test log in the Zenodo repository.

For long and costly workflow execution problem, the system has an option to run tests with the external

WES endpoint shown in the new summary figure. It brings the availability issue of the testing instance but

can solve the problem of the resource limitation of the GitHub actions.

Regarding the validation of metadata, very few informations are provided. Are all metadata fields

mandatory ? are some fields recommended ? Which kind of validation is performed ? How the result

of validation is returned to users ? Regarding the metadata themselves, how do they comply with

community emerging standards such as Bioschemas or RO-crate ? At the time of the review, it was

not possible to find any semantic annotations in the Yevis web page, thus limiting the discoverability

and the interoperability of workflows descriptions.

https://github.com/ddbj/workflow-registry/actions/runs/2256980244

yevis_revise_comments.md 2022/10/21

7 / 8

Response: For each field in the metadata, the system performs a type check, license check, URL

validation, remote file existence, etc. We added the information on these validation items to the CLI's

GitHub repository. (https://github.com/sapporo-wes/yevis-cli#validate) The CLI checks these metadata

items written by the user, and if it finds an invalid field, the CLI outputs an error message and prompts the

user to correct it. As the reviewer points out, our specification for workflow metadata overlaps with some of

the community-developed standards. Currently, for workflow test run logs, we are working with the

community to apply the workflow run crate under development by the RO-crate community. However, as we

prioritize the readability and editability of Yevis metadata, the approach could be to adopt a proprietary

format and then convert it to a standard by the community.

Because of technical limitations in the current implementation, embedding tags in the pages is not practical

to improve findability. As we implemented the Yevis-web in the JavaScript Single Page Application

framework, it is not possible to embed different annotation tags in the HTML source of each workflow page.

However, we believe workflow findability should not be left to individual workflow developers but should be

a centralized effort by a central registry. Therefore, we would like to enhance the findability of workflows by

having individual communities manage their workflows with Yevis while a centralized registry such as

WorkflowHub collects these metadata.

Finally, the discussion and future works sections could be enriched to address for instance.

the scalability of the approach with possibly long or costly tasks when testing workflows

the interoperability of this platform with other registries

the genericity of the approach (is it applicable in the context of other scientific disciplines)

the use of this platform to compare or benchmark workflow executions based on predefined

test datasets

Response: We would like to thank the reviewer's suggestion to make the Discussion section more

constructive. We added the following topics in the Discussion section to reflect the reviewers' feedback.

Using external WES endpoint to overcome the resource limitation of GitHub actions: also brings the

concern of availability (3rd paragraph)

The automation of quality control procedure using CI/CD of the public services: its limitation and

possibility (3rd paragraph)

The interoperability of the Yevis registry and possibilities of coexistence with the other centralized

registries for findability (6th paragraph)

We excluded the topic of benchmarking because we think it can confuse the readers as if the Yevis system

can use for that purpose. We expect benchmarking feature should be provided on a different layer than that

of the registry.

Minor comments

Figures 2 and 7 seems to be very similar. Only one should be kept.

Response: We agree with the reviewer's assessment. To avoid the confusion, we removed the Figure 7

which showed the metadata file modified by the yevis system. We remained Figure 2 and added the

explanation that the metadata will be modified.

yevis_revise_comments.md 2022/10/21

8 / 8

How are test specified, is the specification generic enough? How does it support multiple workflow

engines?

Response: Yevis's specification of the test run conforms to the GA4GH WES specification. In yevis-cli, the

option --wes-location specifies the WES instance on which the system runs the test. As WES

implementations usually have a single workflow engine, users need to use a WES capable of executing the

workflow's language. As an exception, Sapporo, one of the WES implementations we have developed,

provides users the option to specify a workflow engine from several engines covering CWL, WDL, Nextflow,

and Snakemake. The yevis-cli command uses Sapporo via Docker if users have no WES preference.

We added sentences to emphasize the option to specify an external WES for testing instance as follows:

Automatic testing with GitHub Actions may also cause the issue of computational resource shortage. To

extend the capability of testing, Yevis has the option to specify the location of an external WES endpoint to

run the test, which also enables the testing with a specific computational request such as GPUs or job

schedulers.

The paragraph on decentralization in the discussion is confusing. All workflow executions seem to be

centralized on the GitHub infrastructure with no control on data or computation placement. The

same happens for data on the Zenodo infrastructure.

Response: Thank you for your comments. We think there is a misunderstanding about the term

decentralization. In the submission stage, we described "Yevis can promote the concept of a distributed

workflow registry model that underlies the specifications of the GA4GH Cloud Work Stream," so this

paragraph claim is the idea of decentralization of workflow registries, not computation placement. Since we

emphasize that the communities have an option to build their own registry, not relying on a centralized

registry such as WorkflowHub or nf-core, we added a sentence to clarify the idea as follows:

In the distributed workflow registry model, researchers have the option to build their own workflow registry,

rather than submitting to a centralized registry.

As mentioned above, the computation also can be decentralized using the external WES instances.

DAT2-cwl is not registered in the live deployment of Yevis

Response: The original manuscript has referred external GitHub repositories and the resources, which may

confuse readers. We added the URL in the sentence along with the citation to lead the readers to the

appropriate resource.

