
GigaScience

Workflow sharing with automated metadata validation and test execution to improve
the reusability of published workflows

--Manuscript Draft--

Manuscript Number: GIGA-D-22-00187R2

Full Title: Workflow sharing with automated metadata validation and test execution to improve
the reusability of published workflows

Article Type: Research

Funding Information: JSPS
(20J22439)

Not applicable

Japan Science and Technology Agency
(JP-MJCR17A1)

Not applicable

Abstract: Background: Many open-source workflow systems have made bioinformatics data
analysis procedures portable. Sharing these workflows provides researchers easy
access to high-quality analysis methods without the requirement of computational
expertise. However, published workflows are not always guaranteed to be reliably
reusable. Therefore, a system is needed to lower the cost of sharing workflows in a
reusable form. Results: We introduce Yevis, a system to build a workflow registry that
automatically validates and tests workflows to be published. The validation and test are
based on the requirements we defined for a workflow being reusable with confidence.
Yevis runs on GitHub and Zenodo and allows workflow hosting without the need of
dedicated computing resources. A Yevis registry accepts workflow registration via a
GitHub pull request, followed by an automatic validation and test process for the
submitted workflow. As a proof of concept, we built a registry using Yevis to host
workflows from a community to demonstrate how a workflow can be shared while
fulfilling the defined requirements. Conclusions: Yevis helps in the building of a
workflow registry to share reusable workflows without requiring extensive human
resources. By following Yevis's workflow-sharing procedure, one can operate a registry
while satisfying the reusable workflow criteria. This system is particularly useful to
individuals or communities that want to share workflows but lacks the specific technical
expertise to build and maintain a workflow registry from scratch.

Corresponding Author: Tazro Ohta

JAPAN

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Hirotaka Suetake

First Author Secondary Information:

Order of Authors: Hirotaka Suetake

Tsukasa Fukusato

Takeo Igarashi

Tazro Ohta

Order of Authors Secondary Information:

Response to Reviewers: GIGA-D-22-00187
Workflow sharing with automated metadata validation and test execution to improve
the reusability of published workflows
Hirotaka Suetake; Tsukasa Fukusato; Takeo Igarashi; Tazro Ohta
GigaScience

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

We would like to thank the reviewers again for their constructive feedback. The revised
manuscript highlighted the changes in red color. Our responses to the issues and
concerns pointed out by each reviewer are as follows.

> Reviewer #2:
> In line with my previous comment, I find it unacceptable for such a core component
for the research enterprise at large as a workflow registry, to promote reliance on a
single, closed source vendor (GitHub), without an open and free fallback solution,
especially for a publication that focuses so heavily on, and has gained a reputation for,
promoting open science practices.

Again, we agree with the reviewer's concern about the strong dependencies on
GitHub, a company's platform. To provide our proposed methods without such
dependencies, we prepared the scripts and protocol for building a Yevis repository with
no dependencies on any third-party web services. While the alternate version lacks
some original features such as the review interface or external resource validation, the
procedures are simple as follows:

1. Write workflow metadata [Submitter]
2. Run workflow test locally [Submitter]
3. Submit metadata to the registry admin [Submitter]
4. Run workflow test on the registry side [Admin]
5. Generate TRS response and edit [Admin]
6. Publish the generated TRS response [Admin]
7. (Optional) Deploy Yevis-web on an on-premise server [Admin]

The on-premise version documentation and the source code are hosted on our web
server (https://data.dbcls.jp/~inutano/yevis/yevis_on_premise.zip). We added the
description about the on-premise version in the third paragraph of Discussion.

> Reviewer #3:
> The proposed platform targets both workflow sharing and testing. It is explicitly stated
in the abstract: "the validation and test are based on the requirements we defined for a
workflow being reusable with confidence". It is clear in the paper that tests are realized
through the GitHub CI infrastructure, possibly delegated to a WES workflow execution
engine. Although I inspected Figure 3 as well as the wf_params.json and
wf_params.yml provided in the demo website. It doesn't seem to be enough to answer
questions such as: how are specified tests ? How can a user inspect what has been
done during the testing process ? What is evaluated by the system to assess that a
test is successful ?
> I tried to understand what was done during the testing process but the test logs are
not available anymore ([Add workflow: human-reseq: fastqSE2bam · ddbj/workflow-
registry@19b7516 · GitHub](https://github.com/ddbj/workflow-
registry/actions/runs/2257134260))

We recognize the complexity when one wants to follow the testing details after a
workflow was registered. The answers to the reviewer's questions are as follows:

> how are specified tests ?

The current workflow testing performed by the Yevis system is a simple test run with
example input data. As shown in Fig 3, metadata.yml has a "testing" field that contains
a list of input files for the registering workflow. Yevis runs the workflow by using these
files as its input, then checks the final execution status.

We added the sentences to explain the testing method as follows:

*As a workflow testing, Yevis runs a workflow with specified input data files and check
the final execution status. If the run is completed successfully, Yevis considers the
workflow passed the test.*

> How can a user inspect what has been done during the testing process ?

As the reviewer indicated, the log file of the GitHub action will be expired after 90 days

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

of its execution. To keep the log file, the repository owner needs to register to a GitHub
Pro account (payment required). Initially, we expected that only the registry admin
checks the log file for the purpose of submission screening. In that case, the admin can
run the action again to generate the log file after the expiration date. However, as the
reviewer did, we recognize the needs that the workflow users may want to check the
workflow testing log files. For this use case, we have a future plan to implement a
feature to store the RO-crate, a community standard for scientific provenance, as a
provenance of workflow testing. By generating an RO-crate from the test run and
storing it on GitHub, users can inspect the testing.

We added the sentence to show the future plan as below:

*The registry maintainer can check the testing log as an artifact file on GitHub action.
However, the file will expire 90 days after execution. To keep the provenance of the
test log, we aim to improve the system to have a function to record the test procedure
in a standard format, such as RO-crate.*

> What is evaluated by the system to assess that a test is successful ?

As explained above, the current testing is a simple workflow run with the specified input
data. An automatic evaluation of a workflow run is challenging. We defined another
problem here, and we are working on a solution called Tonkaz.

We edited the sentence in the Discussion to show the ongoing project to evaluate the
testing result as below:

*One of the challenges is how workflow developers write the workflow testing.
Currently, Yevis tests the workflows by running them with the specified input files and
evaluates the execution status. However, the execution status only shows the
successful completion of the computing process, which does not ensure the workflow
produced the outputs as expected. Therefore, the test can pass even if the input files
are not the ones that reflect the real use cases. The evaluation of the outputs is not as
simple as checking the output file identities, because some workflows can produce
outputs with subtle differences which do not change the biological interpretation. For
example, the correct outputs of the same workflow may not be identical because of the
tools using heuristic algorithms or regularly updated databases. We are challenging
this problem in a separate project and aim to incorporate the results into our system in
the future*
https://www.biorxiv.org/content/10.1101/2022.10.11.511695v2

> Regarding the findability of the workflows, in line with FAIR principles, the discussion
mentions a possible solution which would consists in hosting and curating metadata in
another database. To tackle workflow discoverability between multiple systems,
accessible on the web, we could expect that the Yevis registry exposes semantic
annotations, leveraging Schema.org (or any other controlled vocabulary) for instance.
This would also make sense since EDAM ontology classes are referred to in the Yevis
metadata file (https://ddbj.github.io/workflow-registry-browser/#/workflows/65bc3bd4-
81d1-4f2a-8886-1fbe19011d81/versions/1.0.0).

Although we understand the reviewer's intent, it is not feasible in the current
implementation to add semantic annotations to improve the discoverability of a Yevis-
based registry. The main body of Yevis registries is the raw JSON files that are served
as TRS responses via GitHub pages. These files are data and require an external
index for internet search. The Yevis web browsing interface, on the other hand, is a
lightweight JavaScript (JS) application. Since the application has no data of its own and
dynamically consumes JSON files from the TRS API, the page cannot embed the
annotation in advance. This is a tradeoff in the implementation method: we chose to
build the app as a JS application because it can be easily hosted on GitHub pages,
which reduces deployment costs. Therefore, we think the best way to improve the
discoverability of the workflows hosted on a Yevis Workflow is to keep the main
workflow files on GitHub, but submit the metadata to a central registry like the
WorkflowHub. We are working on this idea with the WorkflowHub folks so that it can be
implemented in the future.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

DRAFT

Workflow sharing with automated metadata
validation and test execution to improve the

reusability of published workflows
Hirotaka Suetake1, Tsukasa Fukusato2, Takeo Igarashi1, and Tazro Ohta3,�

1Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
2Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

3Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Shizuoka, Japan

Background: Many open-source workflow systems have made
bioinformatics data analysis procedures portable. Sharing these
workflows provides researchers easy access to high-quality anal-
ysis methods without the requirement of computational exper-
tise. However, published workflows are not always guaranteed
to be reliably reusable. Therefore, a system is needed to lower
the cost of sharing workflows in a reusable form.

Results: We introduce Yevis, a system to build a workflow reg-
istry that automatically validates and tests workflows to be pub-
lished. The validation and test are based on the requirements
we defined for a workflow being reusable with confidence. Yevis
runs on GitHub and Zenodo and allows workflow hosting with-
out the need of dedicated computing resources. A Yevis reg-
istry accepts workflow registration via a GitHub pull request,
followed by an automatic validation and test process for the sub-
mitted workflow. As a proof of concept, we built a registry using
Yevis to host workflows from a community to demonstrate how
a workflow can be shared while fulfilling the defined require-
ments.

Conclusions: Yevis helps in the building of a workflow registry
to share reusable workflows without requiring extensive human
resources. By following Yevis’s workflow-sharing procedure,
one can operate a registry while satisfying the reusable work-
flow criteria. This system is particularly useful to individuals or
communities that want to share workflows but lacks the specific
technical expertise to build and maintain a workflow registry
from scratch.

Workflow | Workflow language | Continuous integration | Open science | Re-
producibility | Reusability
Correspondence: t.ohta@dbcls.rois.ac.jp

Background
Due to the low cost and high throughput of measurement
instruments that acquire digital data from biological sam-
ples, the volume of readily available data has become enor-
mous (1). To obtain scientific knowledge from large datasets,
a number of computational data analysis processes are re-
quired, for example, in DNA sequencing, sequence read trim-
ming, alignment with reference genomes, and annotation us-
ing public databases (2). Researchers have developed anal-
ysis tools for each process and often publish them as open-
source software (3). To avoid the need to execute these tools
manually, researchers usually write a script to combine them
into what is called a workflow (4).

To build and maintain a complex workflow that combines
many tools efficiently (5), many workflow systems have been
developed (6, 7). Some of these systems have large user
communities, such as Galaxy (8), the Common Workflow
Language (CWL) (9), the Workflow Description Language
(WDL) (10), Nextflow (11), and Snakemake (12). Although
each system has its unique characteristics, they have a com-
mon aim: to make computational methods portable, main-
tainable, reproducible, and shareable (4). Most systems have
a syntax for describing a workflow that is part of what is
called a workflow language. They also have an execution
system that works with computational frameworks, such as a
job scheduler and container virtualization (13).
With the popularization of workflow systems, many research
communities have worked on workflow sharing in the form
of a workflow language. Workflow registries, such as Work-
flowHub (14), Dockstore (15), and nf-core (16), have been
developed as public repositories for the sharing of work-
flows. Workflow execution systems also utilize these reg-
istries as their tool libraries. To improve the interoperabil-
ity of workflow registries, the Global Alliance for Genomics
Health (GA4GH) proposed the Tool Registry Service (TRS)
specification that provides a standard protocol for sharing
workflows (17, 18).
Sharing workflows not only increases the transparency of re-
search but also helps researchers by facilitating the reuse of
programs, thereby making data analysis procedures more ef-
ficient. However, workflows that are accessible on the in-
ternet are not always straightforward for others to use. If a
published workflow is not appropriately licensed, researchers
cannot use it because the permission for secondary use is un-
clear. A workflow may also not be executable because its
format is incorrect, or dependent files cannot be found. Even
if a workflow can be executed, the correctness of its operation
often cannot be verified because no tests have been provided.
Furthermore, the contact details of the person responsible for
the published workflow are not always attached to it.
It is noteworthy that these issues in reusing public workflows
are not often obvious to workflow developers. To clarify the
requirements for workflow sharing, Goble et al. have pro-
posed the concept of a FAIR (findable, accessible, interoper-
able, and reusable) workflow (19). This inheritance of the
FAIR principles (20) focuses on the structure, forms, ver-

Suetake et al. | bioRχiv | January 19, 2023 | 1–10

Manuscript Click here to
access/download;Manuscript;Suetake_GigaScience_revise_202

https://www.editorialmanager.com/giga/download.aspx?id=148130&guid=45945d84-7cf7-4b0e-8ca9-958fcedd7999&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=148130&guid=45945d84-7cf7-4b0e-8ca9-958fcedd7999&scheme=1

DRAFT

sioning, executability, and reuse of workflows. However, the
question remains as to who should guarantee to users that
published workflows can be reused following the FAIR work-
flow guidelines.
WorkflowHub asks submitters to take responsibility for
workflows: when a workflow is registered on WorkflowHub,
the license and author identity should be clearly stated, en-
couraging them to publish FAIR workflows. However, there
is no obligation as to the correctness of the workflow syntax,
its executability, or testing. Not placing too many responsi-
bilities on workflow submitters keeps obstacles to submission
low, which will likely increase the diversity of public work-
flows on WorkflowHub; however, it will also likely increase
the number of one-off submissions, which one can assume
are at higher risk for the workflow problems previously de-
scribed.
Unlike WorkflowHub, in nf-core, the community that op-
erates the registry holds more accountability for published
workflows. Workflow submitters are required to join the nf-
core community, develop workflows according to their guide-
lines, and prepare them for testing. These requirements en-
able nf-core to collect workflows with remarkable reliability.
However, the community’s effort tends to focus on maintain-
ing more generic workflows that have a large number of po-
tential users. Consequently, nf-core states that it does not
accept submissions of bespoke workflows. This is an under-
standable policy, as maintaining a workflow requires domain
knowledge of its content, and this is difficult to maintain in
the absence of the person who developed the workflow.
In order to improve research efficiency through workflow
sharing, research communities need the publication of di-
verse workflows in a reusable form. However, as shown
by existing workflow registries, there is a trade-off between
publishing a wide variety of workflows and maintaining the
reusability of the workflows that are published. Solving this
issue requires reducing the cost to developers in making and
keeping their workflows reusable, which currently relies on
manual effort. This is achievable by redefining the FAIR
workflow concept as a set of technical requirements and pro-
viding a system that automates their validation and testing.
We introduce Yevis, a system to share workflows with au-
tomated metadata validation and test execution. The system
expects developers and researchers who design workflows us-
ing workflow languages as users, although it does not require
advanced computer skills to operate the system. Through the
development of Yevis, we specified a set of technical require-
ments that define a reusable workflow, according to the FAIR
workflow concept. Yevis helps researchers and communi-
ties share workflows that satisfy the requirements by support-
ing a build of an independent workflow registry. To allow
workflow hosting without the need of additional dedicated
computing resources, Yevis works on two public web ser-
vices: GitHub, a source code sharing and software develop-
ment service, and Zenodo, a public research data repository.
In addition, a Yevis registry provides a web-based workflow
browser and the GA4GH TRS-compatible API ensures inter-
operability with other existing workflow registries. Yevis is

particularly powerful when individuals or communities want
to share workflows but are without the technical expertise to
build and maintain a web application. To demonstrate that
workflows can be shared that fulfill the defined requirements
using Yevis, we built a registry for workflows that an existing
community has managed.

Implementations
System design. Figure 1 shows the overall architecture of
the workflow registry built by Yevis. The repository admin-
istrator uses our GitHub repository template and follows the
guide to set up a yevis-based registry creating new reposi-
tories on GitHub and Zenodo. After creating the metadata
and passing the workflow test on a local computer, work-
flow developers submit the metadata as a pull request to the
GitHub repository. Once the repository receives the pull re-
quest, it automatically tests the workflow again on GitHub
Actions, GitHub’s continuous integration/continuous deliv-
ery (CI/CD) environment. The system has the option to use
an external WES instance for testing before accepting the
submission. The registry administrator will check the test
result and approve, that is, merge the pull request. Once the
submission is approved, the repository runs another GitHub
Actions automatically to upload the content to the Zenodo
repository and the GitHub pages.
To implement the system, we first defined a set of require-
ments that the Yevis system can automatically verify or test
(Table 1). By satisfying these requirements inspired by FAIR
workflow, we consider a workflow is “reusable with confi-
dence.” These criteria have three aspects: workflow avail-
ability, accessibility, and traceability. The TRS defines the
specification of computational tool/workflow metadata rep-
resentation, including workflow’s URI, used language, ver-
sion, etc. It ensures the interoperabilities among different
tool/workflow registries and enables workflow engines to re-
trieve the information to execute a workflow maintained at
a remote server, which improves the reusability of published
workflows. To help researchers share reusable workflows, we
took an approach to aid them in building their own workflow
registry that automatically ensures its reusability. We define
a workflow registry as a service that serves workflow infor-
mation via the GA4GH TRS protocol.
The information provided by the TRS API is various work-
flow metadata, such as author information, documentation,
language type and version, dependent materials, testing ma-
terials, etc. Large files, such as dependent materials and test-
ing materials, are not directly included in the TRS API re-
sponse but are described as remote locations, such as HTTP
protocol URLs. Therefore, the entities that a workflow reg-
istry collects are a set of workflow metadata described in the
form of the TRS API response. In this study, therefore, we
designed the system as an API server that delivers the TRS
API response.
In the Yevis registry, a workflow-sharing procedure is di-
vided into three processes: submission, review, and publica-
tion (Figure 2). To address the requirements listed in Table 1,
the Yevis system automatically performs processes, such as

2 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

DRAFT

Legend

Manual procedures

Automated by Yevis system

Generate metadata template

Run tests

Send pull request

Validate metadata

Receive Pull Request

Run tests

Review test results

Merge pull request

Publish relevant files with DOI

Serve TRS response

Run workflow

Yevis CLI
on Local PC

Fig. 1. The overall architecture of the yevis system. The registry administrator needs to set up a GitHub repository from our repository template and a Zenodo repository for
file persistence. Workflow developers test their workflows on a local computer using our Yevis-cli, then submit a pull request to the GitHub repository. The GitHub repository
has two GitHub Actions, testing on GitHub Actions or an external WES instance, and publishing workflow contents and metadata to the Zenodo repository and GitHub pages.

Table 1. The requirements for a workflow to be considered reusable with confidence. We classify these requirements from the perspectives of the availability, validity, and
traceability of the workflows. We propose that these requirements should be assured and provided to users by the workflow registries.

Perspective Requirement Description

Availability

Main workflow description The main workflow description file is available and accessible without restric-
tion.

Dependent materials The dependencies of the main workflow are available, e.g., definitions of de-
pendent workflows and tools.

Testing materials The job configuration files for testing are available, e.g., parameter and input
files.

Open-source license The workflow and the related materials are published under an appropriate
open-source license.

Validity
Language type The language used to describe the workflow is specified, e.g., CWL, WDL, or

Nextflow.
Language version The version of the workflow language used is specified.
Language syntax The language syntax of the workflow is valid.

Traceability

Authors and maintainers The contact information of the authors and the maintainers is identified.
Documentation The documentation of the workflow is available.
Workflow ID The unique identifier to specify the workflow is assigned, ideally by a URI.
Workflow metadata version The version number of the workflow metadata is specified.

metadata validation, workflow testing, test provenance gener-
ation, persisting associated files, DOI assignment, and TRS
response deployment. To generate the TRS API response
and publish it while addressing the requirements listed in Ta-
ble 1, we implemented a command-line application called
Yevis-cli. This application contains various utilities to sup-
port the workflow registration procedure including valida-
tion and testing. As a service and infrastructure to perform
these steps, we designed Yevis to use the services of GitHub
and Zenodo. Using these web services makes it possible for
communities to build a workflow registry without the need of

maintaining their own computer servers.

Workflow registration with automated validation and
testing. To set up a Yevis registry, registry maintainers need
to do an initial configuration of GitHub and Zenodo; this in-
volves, for example, creating a GitHub repository, changing
repository settings, and setting up security credentials. The
online documentation “Yevis: Getting Started” shows the
step-by-step procedures to deploy a workflow registry and
test it (21).
We defined the Yevis metadata file, a JSON or YAML format

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 3

DRAFT

Submitter's PC

Generate metadata template

Run tests

Create pull request

Edit metadata

Validate metadata

GitHub Pull Request

Validate metadata

Run tests

Review test results

Merge pull request

1. Submission

Workflow

2. Review 3. Publication

Submitter Maintainer

Legend

GitHub Actions

Manual

Automatic

GitHub Pages

GitHub Actions

Upload files to Zenodo

Obtain DOI

Generate TRS response

Deploy to GitHub Pages

Fig. 2. The flowchart of the workflow registration to a Yevis repository. The workflow registration procedure is divided into three processes: the submission, review, and
publication process. Each process is performed in different locations: in the submitter’s local environment, as part of the GitHub pull request, or as the GitHub Actions. The
generated TRS API response is deployed to GitHub Pages. The steps indicated by yellow boxes, such as validating metadata, are performed automatically using Yevis-cli.

file that contains structured workflow metadata (Figure 3).
Yevis-cli uses this file as its input and output in the submis-
sion process. The Yevis metadata file will be published on the
registry along with the TRS response to provide metadata that
is not included in the TRS protocol, such as an open-source
license.

Submission process. Figure 4 shows the submission process
using Yevis-cli. During this submission process, the work-
flow submitter describes the workflow metadata in their lo-
cal environment and submits it through a GitHub pull request
(i.e., a review request to the registry maintainer). First, Yevis-
cli generates a template for the Yevis metadata file, which re-
quires the URL of the main workflow description file as an
argument. In many workflow systems, the main workflow
description file is the entry point for workflow execution.
Yevis-cli generates a template supplemented with workflow
metadata automatically collected by using the GitHub REST
API and inspecting the workflow’s contents. Next, the sub-
mitter needs to edit the Yevis metadata file template and add
workflow tests. As a workflow testing, Yevis runs a workflow
with specified input data files and checks the final execution
status. If the run is completed successfully, Yevis consid-
ers the workflow passed the test. Yevis-cli runs the test us-
ing a GA4GH Workflow Execution Service (WES) instance,
a type of web service also described as workflow as a ser-
vice (18, 22); therefore, the testing materials must be written
along with the specification of the WES run request. Yevis-
cli performs these tests to check if the workflow execution
completes successfully. After preparing the Yevis metadata
file, Yevis-cli validates the workflow metadata syntax and
runs tests using WES in the submitter’s local environment.
If no WES endpoint is specified, the tests are run using Sap-
poro (23), a production-ready implementation of WES, and
Docker (24), a container virtualization environment. Using
these portable WES environments also ensures the portability
of testing in Yevis. Finally, Yevis-cli submits the workflow as
a GitHub pull request, once it confirms the required actions:
the metadata validation and the test passing. This restriction

reduces the burden on the registry maintainer because many
of the requirements listed in Table 1 can be ensured during
the submission process rather than the review process.

Review process. Figure 5 shows the workflow review process
using Yevis-cli. During the review process, registry maintain-
ers examine each workflow submitted as a Yevis metadata
file on the GitHub pull request UI. Because the submission
method is restricted to Yevis-cli, the submitted workflow is
guaranteed to pass validation and testing. To ensure the re-
producibility of test results on a local computer, Yevis auto-
matically validates and tests it on GitHub Actions (25). After
automated validation and testing, the maintainers review the
test results and log files to consider whether to approve the
pull request. Rather than using a chat tool or a mailing list,
the review process through the GitHub pull request improves
the transparency and traceability of workflow publication.

Publication process. Figure 6 shows the workflow submis-
sion process using Yevis-cli. During the publication process,
the system automatically persists all files associated with the
workflow. It generates the TRS response from the Yevis
metadata file. The approval of the pull request automati-
cally triggers the publication process on GitHub Actions. In
the GitHub Actions script, Yevis-cli uses the Zenodo API to
create a new Zenodo upload and persists all files related to
the workflow (26). It obtains the DOI and persistent URLs
of workflows from Zenodo, and appends them to the Yevis
metadata file. Following the Zenodo upload, the Yevis-cli in
the GitHub Actions generates a TRS response JSON file and
is deployed to GitHub Pages, GitHub’s static web page host-
ing service. Accordingly, the Yevis metadata file is merged to
the default branch of the GitHub repository and deployed to
GitHub Pages. With these two files, the TRS response JSON
file and the Yevis metadata file, a Yevis registry covers the
information that fulfills the requirements of a reusable work-
flow.

4 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

DRAFTFig. 3. Example of the Yevis metadata file. The main workflow description, dependent materials, etc. are described as remote locations; the file contains all the information
that the Yevis-cli requires to automate the whole process. This is the actual metadata file for the workflow described in the Section “Sharing workflows using Yevis.” This file is
automatically updated through the processes within Yevis; for example, the file URL field is replaced by the Zenodo record URL that persists in the associated workflow files.

Workflow browsing interface. To make it easier for reg-
istry maintainers and users to browse workflows, we imple-
mented Yevis-web, a workflow browsing interface (Figure 7).
As the interface is a browser-based application implemented
in JavaScript, registry maintainers can deploy the browser on
GitHub Pages. Yevis-web accesses the TRS API served via
GitHub Pages and the GitHub REST API to retrieve work-
flow information. To help organize the submissions to the
registry, the browser shows workflows of both statuses, those
already published and those still under the review process.

Results
Feature comparison with existing registries. To clarify
the advantages of a workflow registry built by Yevis, we com-
pared the characteristics of a Yevis-based registry with Work-
flowHub (14), Dockstore (15), and nf-core (16). As compar-
ison views, we focused on three aspects; diversity, reliability,
and usability of workflows available in a registry.
In the diversity of registered workflow, as “Acceptable work-
flows” in Table 2, WorkflowHub and Dockstore have an ad-
vantage because they have no restrictions on workflows in
terms of their purposes or languages. As mentioned in the
Introduction section, nf-core has the policy to collect only
best-practice workflows written in Nextflow. In contrast, a
Yevis-based registry can accept any workflows written in any
language as long as the registry administrator approves the

submission. The only limitation in a Yevis-based registry is
the testing environment because the submission to the reg-
istry requires a suitable testing environment for the given
workflow. By default, Yevis uses Sapporo WES for its test
execution, a WES implementation with multi-engine support
which enables developers to extend its execution capability.
With the reliability of available workflows, we prioritize the
features such as general quality control of submissions and
testing preparation. As shown in Table 2, in WorkflowHub
and Dockstore, each developer is responsible for quality con-
trol and testing for the submission. As a result, they may have
workflows that are not reusable, such as those lack dependen-
cies, documentation, or the appropriate open-source license.
The platforms do not have a strict testing policy, although it
helps lower the barrier to submission. On the other hand, nf-
core does quality control and testing of its workflows by its
community to provide reliable workflows. In a Yevis-based
registry, the registry itself provides automated functions to
manage the quality of workflows based on the proposed re-
quirements and test workflows in the submitter’s environment
and the remote CI/CD environment.
For usability, we focused on two standardized forms to iden-
tify the workflow: DOI and TRS 2. A Yevis-based registry
is only one of the four that provides DOI for each regis-
tered workflow. Assigning DOI for workflow files prevents
the problem of altering resource URLs. For TRS compati-
bility, currently, nf-core is the only one not providing TRS

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 5

DRAFT

Yevis metadata fileEdit metadata

Prepare workflow

Create pull request

yevis make-template

yevis validate

yevis test

yevis pull-request

Submission Timeline Submitter's Actions Processes

Generate
metadata template

Validate metadata

WES (Sapporo)
Execute on WES

Workflow URL

GitHub Pull Request

Run tests

Fig. 4. The timeline of the workflow submission process using Yevis-cli. The submitter executes four subcommands of Yevis-cli: “make-template,” “validate,” “test,” and
“pull-request” in its local environment. The submitter needs to edit a template of the Yevis metadata file using any text editor. The workflow and its metadata need to pass
validation and testing before their submission, which helps to reduce the burden on the registry maintainer.

GitHub Actions

Yevis metadata file

Merge pull request

yevis validate

yevis test

Review Timeline Maintainer's Actions Processes

GitHub Repository

Review test results Test results

Fig. 5. The timeline of the workflow review process using Yevis-cli. The workflow and its metadata are again validated and tested automatically on GitHub Actions. The test
results and logs can then be reviewed by the registry maintainers with the GitHub pull request UI.

6 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

DRAFT

GitHub Actions

Yevis metadata file

yevis publish

Publication Timeline Processes

GitHub PagesTRS API response

Zenodo

Obtain DOI

Upload files

Updated
Yevis metadata file

Deploy

Fig. 6. The timeline of the workflow publication process using Yevis-cli. All steps are performed automatically on GitHub Actions. All files related to the workflow are persisted
by uploading them to Zenodo. The DOI is generated by Zenodo, and the Yevis metadata file is updated to append the DOI information and the persisted file URL. The GitHub
Actions generates a TRS response from the Yevis metadata; it then deploys both of them to GitHub Pages.

Fig. 7. Screenshot of Yevis-web. Yevis-web is a browser-based application used via a web browser, which is deployed by workflow registry maintainers and communicates
with the TRS API and GitHub REST API to retrieve workflow information. The browser shows both published and under-review workflows to help maintainers in organizing
the registry. Upon selecting a workflow of interest, Yevis-web displays more detailed information, such as test results and the contents of the files related to the workflow.

responses. It may be because of the design of Nextflow lan-
guage, which boosts developers’ productivity on a specific di-
rectory structure rather than using distributed relevant work-
flow files. However, three out of four has TRS compatibility,
which helps data scientist write a tool to reuse the available
workflows with the unified API response.

Sharing workflows using Yevis. To demonstrate that a re-
search community can publish the workflows using Yevis
while addressing the requirements listed in Table 1, we built
a workflow registry that publishes “DAT2-cwl” workflows
with the Yevis system (27)1. These workflows written in
CWL are the appendix of the book Next Generation Se-
quencer DRY Analysis Manual, 2nd Edition (28) and are
maintained by the book’s authors and communities. These
workflows have been maintained by a community of bioin-

1https://github.com/pitagora-network/
yevis-DAT2-cwl

formatics experts; however, they fulfill only a part of the re-
quirements that we defined. For example, the workflows have
test data but would require continuous testing. They also lack
workflow metadata in a standard format.

Among the DAT2-cwl workflows, we selected a bacterial
genome analysis workflow in building a new registry with
Yevis (29). This workflow combines the following command
line tools: SeqKit (30), FastQC (31), fastp (32), and Platanus-
b (33). Each tool used in the workflow is packaged in a
Docker container. First, we described a Yevis metadata file
(Figure 3) for this workflow using Yevis-cli and appended
a test of the workflow in the form of a WES run request.
We then performed the workflow registration procedure de-
scribed in the Section “Workflow registration with automated
validation and testing” using Yevis-cli that enable the au-
tomation of many of the steps in the validation, testing, re-
viewing, and publishing.

Through the publication procedure of the bacteria genome

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 7

https://github.com/pitagora-network/yevis-DAT2-cwl
https://github.com/pitagora-network/yevis-DAT2-cwl

DRAFT

Table 2. Feature comparison with existing registries and Yevis-based registry. We focused on five characteristics of registries: acceptable workflows on each registry, workflow
quality control responsibility, workflow testing responsibility, DOI assignment, and TRS compatibility.

Registry URL Acceptable workflows Quality control by Testing by DOI TRS

WorkflowHub workflowhub.eu No restrictions Each developer Each developer No Yes
Dockstore dockstore.org No restrictions Each developer Each developer No Yes
nf-core nf-co.re Generic workflows only nf-core community nf-core community No No
Built by Yevis (a GitHub repo.) Depend on administrator Automated by Yevis Forced by Yevis Yes Yes

analysis workflow, we evaluated how the Yevis system ad-
dressed the requirements listed in Table 1. Requirements
classified as “Availability” were addressed by being uploaded
to Zenodo under an appropriate open source license (34). The
Yevis metadata file (Figure 3) (35) and TRS API response
(Figure 8) were updated through Yevis’s publication process
to use URLs persisted by Zenodo. Requirements classified
as “Validity” were addressed by running tests on GitHub Ac-
tions. The contents in the Yevis metadata file and the TRS
response satisfy the validity requirements, such as workflow
type, workflow language version, and the URL of the test
results. Requirements classified as “Traceability” were ad-
dressed by describing, reviewing, and publishing them in the
Yevis metadata file and TRS API response. From the above,
we confirmed that Yevis successfully published the bacteria
genome analysis workflow while addressing the defined re-
quirements.

Discussion
Through our survey of existing workflow registries, such
as Dockstore, WorkflowHub, and nf-core, it was revealed
that they are maintained based on numerous contributions by
various communities and the use of sufficient computer re-
sources. While these established workflow registries accept
submissions and are available for use by researchers, there
are still cases in which there is a need to create a new work-
flow publication platform. For example, in the case of the
Bioinformation and DDBJ center, the institute (hereafter re-
ferred to simply as DDBJ) needed to have a collection of
workflows that would be allowed to run on the WES on their
computing platform. Therefore, we designed Yevis as a tool
to help workflow developers create a registry to share their
workflows. DDBJ used Yevis to create and then to maintain
a workflow registry dedicated to workflows for use on the
DDBJ WES (36).
Yevis can promote the concept of a distributed workflow reg-
istry model that underlies the specifications of the GA4GH
Cloud Work Stream (18). In the distributed workflow reg-
istry model, researchers have the option to build their own
workflow registry, rather than submitting to a centralized reg-
istry. The API standard for workflow registry specified by
GA4GH enables a decentralized model, which promotes di-
versity in workflow development and in the research of analy-
sis methods. Resource sharing, particularly of analysis meth-
ods, has a bigger impact on a community studying a minor
target with limited human resources.

The Yevis system strongly relies on web services, such as
GitHub and Zenodo. This is because we aimed to pro-
vide support to individuals or communities without suffi-
cient computing resources, but this may result in a lock-in
to these web services. To demonstrate the proposed methods
are achievable without using any third-party web services, we
prepared the script and procedures for an on-premise Yevis
registry2. Although the on-premise version lacks some use-
ful features, such as the review interface or external resource
validation, the alternate implementation shows the robustness
of our idea to build a workflow registry even without depen-
dencies.
While we provide the GitHub-based version as primary solu-
tion, there are also limitations caused by the restriction of the
web service. Automatic testing with GitHub Actions may
cause the issue of computational resource shortage. To ex-
tend the capability of testing, Yevis has the option to spec-
ify the location of an external WES endpoint to run the test,
which also enables the testing with a specific computational
request such as GPUs or job schedulers. The registry main-
tainer can check the testing log as an artifact file on GitHub
action. However, the file will expire 90 days after execution.
To keep the provenance of the test log, we aim to improve
the system to have a function to record the test procedure in
a standard format, such as RO-crate.
Compared to existing workflow registries that have a web
form for workflow registration, the Yevis system provides
only a command-line interface, Yevis-cli, as a method to sub-
mit a workflow. This is because we prefer to test workflows
locally in advance of submission, while the existing registries
test as part of a review process. By using the same test suite
on both the submitter’s environment (local) and as part of the
registry’s automatic process (remote), Yevis-cli ensures bet-
ter reliability of the test results. This also helps to reduce the
cost to a registry maintainer by ensuring a workflow is at least
runnable on the submitter’s local environment.
The Yevis system provides a well-needed solution for re-
search communities that aim to share their workflows and
wish to establish their own registry as described. However,
we recognize it still has some limitations. One of the chal-
lenges is how workflow developers write the workflow test-
ing. Currently, Yevis tests the workflows by running them
with the specified input files and evaluates the execution sta-
tus. However, the execution status only shows the successful

2https://data.dbcls.jp/~inutano/yevis/yevis_on_
premise.zip

8 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

https://data.dbcls.jp/~inutano/yevis/yevis_on_premise.zip
https://data.dbcls.jp/~inutano/yevis/yevis_on_premise.zip

DRAFT

$ curl -fsSL https://pitagora-network.org/yevis-DAT2-cwl/tools/d03458d8-837c-4173-afa3-
55ebe538b0b2/versions/1.0.0 | jq .
{
 "author": [
 "suecharo"
],
 "name": "DAT2-cwl - bacteria genome workflow",
 "url": "https://pitagora-network.github.io/yevis-DAT2-cwl/tools/d03458d8-837c-4173-afa3-
55ebe538b0b2/versions/1.0.0",
 "id": "1.0.0",
 "descriptor_type": [
 "CWL"
],
 "verified": true,
 "verified_source": [
 "https://github.com/pitagora-network/yevis-DAT2-cwl/actions/runs/2317749577"
]
}

Fig. 8. TRS API response of the DAT2-cwl/bacteria-genome workflow. This JSON response is deployed on GitHub Pages by Yevis and is accessible via the HTTP protocol.
The main workflow metadata in the TRS protocol is served at the path “/tools/{id}/versions/{version_id}”. Two other possible paths for the associated files and the tests are
“/tools/{id}/versions/{version_id}/files” and “/tools/{id}/versions/{version_id}/tests”.

completion of the computing process, which does not ensure
the workflow produced the outputs as expected. Therefore,
the test can pass even if the input files are not the ones that
reflect the real use cases. The evaluation of the outputs is
not as simple as checking the output file identities, because
some workflows can produce outputs with subtle differences
which do not change the biological interpretation. For ex-
ample, the correct outputs of the same workflow may not be
identical because of the tools using heuristic algorithms or
regularly updated databases. We are challenging this prob-
lem in a separate project and aim to incorporate the results
into our system in the future (37).
Another challenge for the proposed distributed registry
model is the findability of workflows. In the model where
each developer is responsible for their content, the use of ap-
propriate terms for describing workflow metadata can be an
issue. A possible solution to improve the findability of work-
flows in distributed registries is to collect metadata in a cen-
tralized registry to curate them and create the search index.
However, this will require a further challenge to distinguish
the collected workflows using only metadata.
Many researchers agree that resource sharing is a key factor
in the era of data science. As workflow systems and their
communities grow, researchers have worked to share their
data analysis procedures along with their data. Despite the
fact that workflow systems are developed for automation, it
sounds strange that maintaining workflow registries still re-
lies on manual efforts. Through the development of Yevis,
we found there are many possibilities for further automation
in the process of resource sharing. Through the defined re-
quirements for reusable workflows and a system that ensures
them automatically, we believe that our work can contribute
to moving open science forward.

Availability of source code and requirements
• Project name: Yevis-cli

• Project home page: https://github.com/
ddbj/yevis-cli

• DOI: 10.5281/zenodo.6541109

• biotoolsID: yevis-cli

• Operating system(s): Platform independent

• Programming language: Rust

• Other requirements: Docker recommended

• License: Apache License, Version 2.0

• Project name: Yevis-web

• Project home page: https://github.com/
ddbj/yevis-web

• DOI: 10.5281/zenodo.6541031

• biotoolsID: yevis-web

• Operating system(s): Platform independent

• Programming language: TypeScript

• License: Apache License, Version 2.0

Availability of supporting data and materials
Data and materials related to the DAT2-cwl workflows de-
scribed in the Section “Sharing workflows using Yevis” are
available on GitHub and Zenodo as follows:

• GitHub repository for DAT2-cwl workflows (27)

• Workflow registry yevis-DAT2-cwl (38)

• Workflow browser for yevis-DAT2-cwl (39)

Declarations
List of abbreviations. API: Application Programming In-
terface; CI/CD: Continuous Integration/Continuous Deliv-
ery; CWL: Common Workflow Language; DDBJ: Bioinfor-
mation and DDBJ Center; DNA: Deoxyribonucleic Acid;
DOI: Digital Object Identifier; FAIR: Findable, Accessible,
Interoperable, and Reusable; GA4GH: Global Alliance for

Suetake et al. | Workflow sharing with automated metadata validation and test execution bioRχiv | 9

https://github.com/ddbj/yevis-cli
https://github.com/ddbj/yevis-cli
https://github.com/ddbj/yevis-web
https://github.com/ddbj/yevis-web

DRAFT

Genomics and Health; HTTP: Hypertext Transfer Protocol;
ID: Identifier; REST: Representational State Transfer; TRS:
Tool Registry Service; UI: User Interface; URI: Uniform Re-
source Identifier; URL: Uniform Resource Locator; WDL:
Workflow Description Language; WES: Workflow Execution
Service;

Ethical Approval. Not applicable for this study.

Consent for publication. Not applicable for this study.

Competing Interests. The authors declare that they have no
competing interests.

Funding. This study was supported by JSPS KAKENHI
Grant Number 20J22439, the Life Science Database Integra-
tion Project, and the National Bioscience Database Center
(NBDC) of the Japan Science and Technology Agency (JST).
This study was also supported by the CREST program of the
Japan Science and Technology Agency (Grant Number JP-
MJCR17A1).

Author’s Contributions. H.S. and T.O. conceived and de-
veloped the methodology and software and conducted the in-
vestigation. H.S., T.F., and T.O. wrote the manuscript. T.F.,
T.I., and T.O. supervised the project. All authors read and
approved the final version of the manuscript.

Acknowledgements
We acknowledge and thank the following scientific com-
munities and their collaborative events where several of the
authors engaged in irreplaceable discussions and develop-
ment throughout the project: the Pitagora Meetup, Work-
flow Meetup Japan, NBDC/DBCLS BioHackathon Series,
and Elixir’s BioHackathon Europe Series. We also would
like to thank Ascade Inc. for their support with the software
development.

References
1. Sara Goodwin, John D. McPherson, and Richard W. McCombie. Coming of age: Ten years

of next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351,
2016. doi: 10.1038/nrg.2016.49.

2. Lincoln D. Stein. The case for cloud computing in genome informatics. Genome Biology,
11(5):207, 2010. doi: 10.1186/gb-2010-11-5-207.

3. Pjotr Prins, Joep de Ligt, Artem Tarasov, Ritsert C. Jansen, Edwin Cuppen, and Philip E.
Bourne. Toward effective software solutions for big biology. Nature Biotechnology, 33(7):
686–687, 2015. doi: 10.1038/nbt.3240.

4. Jeffrey M. Perkel. Workflow systems turn raw data into scientific knowledge. Nature, 573
(7772):149–150, 2019. doi: 10.1038/d41586-019-02619-z.

5. Felipe da Veiga Leprevost, Valmir C. Barbosa, Eduardo L. Francisco, Yasset Perez-Riverol,
and Paulo C. Carvalho. On best practices in the development of bioinformatics software.
Frontiers in Genetics, 5, 2014. doi: 10.3389/fgene.2014.00199.

6. Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojša Tijanić, and
Samuel Lampa. Existing workflow systems, 2021. https://s.apache.org/

existing-workflow-systems.
7. Laura Wratten, Andreas Wilm, and Jonathan Göke. Reproducible, scalable, and shareable

analysis pipelines with bioinformatics workflow managers. Nature Methods, 18(10):1161–
1168, 2021. doi: 10.1038/s41592-021-01254-9.

8. Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin
Čech, John Chilton, et al. The Galaxy platform for accessible, reproducible and collaborative

9. Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, Nebojša
Tijanić, Hervé Ménager, et al. Methods included: Standardizing computational reuse and
portability with the common workflow language. arXiv, 2021. doi: 10.48550/arXiv.2105.
07028.

biomedical analyses: 2018 update. Nucleic Acids Research, 46:W537–W544, 2018. doi:
10.1093/nar/gky379.

10. Kate Voss, Jeff Gentry, and Geraldine Van Der Auwera. Full-stack genomics pipelining
with GATK4 + WDL + Cromwell. F1000Research, 2017. doi: 10.7490/F1000RESEARCH.
1114631.1.

11. Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo Prieto Barja, Emilio Palumbo,
and Cedric Notredame. Nextflow enables reproducible computational workflows. Nature
Biotechnology, 35(4):316–319, 2017. doi: 10.1038/nbt.3820.

12. J. Koster and S. Rahmann. Snakemake—a scalable bioinformatics workflow engine. Bioin-
formatics, 28(19):2520–2522, 2012. doi: 10.1093/bioinformatics/bts480.

13. Felipe da Veiga Leprevost, Björn A. Grüning, Saulo Alves Aflitos, Hannes L. Röst, Ju-
lian Uszkoreit, Harald Barsnes, Marc Vaudel, et al. BioContainers: An open-source and
community-driven framework for software standardization. Bioinformatics, 33(16):2580–
2582, 2017. doi: 10.1093/bioinformatics/btx192.

14. Carole Goble, Stian Soiland-Reyes, Finn Bacall, Stuart Owen, Alan Williams, Ignacio
Eguinoa, Bert Droesbeke, et al. Implementing FAIR Digital Objects in the EOSC-Life Work-
flow Collaboratory. Zenodo, 2021. doi: 10.5281/zenodo.4605654.

15. Brian D. O’Connor, Denis Yuen, Vincent Chung, Andrew G. Duncan, Xiang Kun Liu, Jan-
ice Patricia, Benedict Paten, et al. The Dockstore: Enabling modular, community-focused
sharing of Docker-based genomics tools and workflows. F1000Research, 6:52, 2017. doi:
10.12688/f1000research.10137.1.

16. Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, An-
dreas Wilm, Maxime Ulysse Garcia, et al. The nf-core framework for community-curated
bioinformatics pipelines. Nature Biotechnology, 38(3):276–278, 2020. doi: 10.1038/
s41587-020-0439-x.

17. Global Alliance for Genomics and Health. ga4gh/tool-registry-service-schemas, 2016.
https://github.com/ga4gh/tool-registry-service-schemas.

18. Heidi L. Rehm, Angela J. H. Page, Lindsay Smith, Jeremy B. Adams, Gil Alterovitz,
Lawrence J. Babb, Maxmillian P. Barkley, et al. GA4GH: International policies and standards
for data sharing across genomic research and healthcare. Cell Genomics, 1(2):100029,
2021. doi: 10.1016/j.xgen.2021.100029.

19. Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes, Daniel Garijo, Yolanda Gil,
Michael R. Crusoe, Kristian Peters, and Daniel Schober. FAIR computational workflows.
Data Intelligence, 2(1-2):108–121, 2020. doi: 10.1162/dint_a_00033.

20. Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles
Axton, Arie Baak, Niklas Blomberg, et al. The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data, 3(1):160018, 2016. doi: 10.1038/sdata.2016.
18.

21. Hirotaka Suetake and Tazro Ohta. Yevis: Getting Started, 2022. https://

sapporo-wes.github.io/yevis-cli/getting_started. doi: 10.5281/zenodo.
6793218.

22. Global Alliance for Genomics and Health. ga4gh/workflow-
execution-service-schemas, 2017. https://github.com/ga4gh/

workflow-execution-service-schemas.
23. Hirotaka Suetake, Tomoya Tanjo, Manabu Ishii, Bruno P. Kinoshita, Takeshi Fujino, Tsuyoshi

Hachiya, et al. Sapporo: A workflow execution service that encourages the reuse of
workflows in various languages in bioinformatics. F1000Research, 11:889, 2022. doi:
10.12688/f1000research.122924.1.

24. Dirk Merkel. Docker: Lightweight Linux containers for consistent development and deploy-
ment. Linux Journal, 2014:2, 2014.

25. Hirotaka Suetake and Tazro Ohta. ddbj/yevis-cli: 0.5.1 - actions_example/yevis-test-
pr.yml, 2022. https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_

example/yevis-test-pr.yml. doi: 10.5281/zenodo.6793218.
26. Hirotaka Suetake and Tazro Ohta. ddbj/yevis-cli: 0.5.1 - actions_example/yevis-publish-

pr.yml, 2022. https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_

example/yevis-publish-pr.yml. doi: 10.5281/zenodo.6793218.
27. Pitagora Network members. pitagora-network/DAT2-cwl: 1.1.1, May 2022. doi: 10.5281/

zenodo.6565977.
28. Bono Hidemasa and Atsushi Shimizu. Next Generation Sequencer DRY Analysis Manual

2nd Edition. Gakken Medical Shujunsha, 2019.
29. Pitagora Network members. GitHub - pitagora-network/DAT2-cwl: 1.1.1 - workflow/bacteria-

genome, May 2022. doi: 10.5281/zenodo.6565977.
30. Wei Shen, Shuai Le, Yan Li, and Fuquan Hu. SeqKit: A cross-platform and ultrafast toolkit

for FASTA/Q file manipulation. PLOS One, 11(10):e0163962, 2016. doi: 10.1371/journal.
pone.0163962.

31. Simon Andrews. FastQC: A quality control tool for high throughput sequence data, 2010.
32. Shifu Chen, Yanqing Zhou, Yaru Chen, and Jia Gu. fastp: An ultra-fast all-in-one FASTQ

preprocessor. Bioinformatics, 34(17):i884–i890, 2018. doi: 10.1093/bioinformatics/bty560.
33. Rei Kajitani, Kouta Toshimoto, Hideki Noguchi, Atsushi Toyoda, Yoshitoshi Ogura, Miki

Okuno, Mitsuru Yabana, et al. Efficient de novo assembly of highly heterozygous genomes
from whole-genome shotgun short reads. Genome Research, 24(8):1384–1395, 2014. doi:
10.1101/gr.170720.113.

34. Hirotaka Suetake. DAT2-cwl/bacteria-genome workflow files uploaded to Zenodo by Yevis,
May 2022. doi: 10.5281/zenodo.6545122.

35. Hirotaka Suetake. Yevis metadata file for the DAT2-cwl/bacteria-genome workflow, May
2022. doi: 10.5281/zenodo.6572565.

36. Hirotaka Suetake and Tazro Ohta. ddbj/workflow-registry: 1.0.2, 2022. doi: 10.5281/zenodo.
6719845.

37. Hirotaka Suetake, Tsukasa Fukusato, Takeo Igarashi, and Tazro Ohta. A workflow repro-
ducibility scale for automatic validation of biological interpretation results. bioRxiv, 2022.

38. Hirotaka Suetake. pitagora-network/yevis-DAT2-cwl: 1.0.0, 2022. doi: 10.5281/zenodo.
6572565.

39. Hirotaka Suetake. pitagora-network/yevis-DAT2-cwl-browser: 1.0.0, 2022. doi: 10.5281/
zenodo.6575089.

10 | bioRχiv Suetake et al. | Workflow sharing with automated metadata validation and test execution

https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://github.com/ga4gh/tool-registry-service-schemas
https://sapporo-wes.github.io/yevis-cli/getting_started
https://sapporo-wes.github.io/yevis-cli/getting_started
https://github.com/ga4gh/workflow-execution-service-schemas
https://github.com/ga4gh/workflow-execution-service-schemas
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-test-pr.yml
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-test-pr.yml
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-publish-pr.yml
https://github.com/ddbj/yevis-cli/blob/0.5.1/actions_example/yevis-publish-pr.yml

