

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular risk in The Netherlands

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066952
Article Type:	Cohort profile
Date Submitted by the Author:	27-Jul-2022
Complete List of Authors:	Castelijns, Maria; University Medical Centre Utrecht, Department of Vascular Medicine Helmink, Marga; University Medical Centre Utrecht, Department of Vascular Medicine Asselbergs, Folkert; University Medical Centre Utrecht, Department of Cardiology de Borst, Gert-Jan; University Medical Centre Utrecht, Department of Vascular Surgery Bots, Michiel; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care cramer, maarten jan; University Hospital Utrecht, Department of Vascular Medicine Emmelot-Vonk, Marielle; University Medical Centre Utrecht, Department of Vascular Medicine Emmelot-Vonk, Marielle; University Medical Centre Utrecht, Department of Geriatrics Geerlings, Mirjam I; University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care de Jong, P. A.; University Medical Centre Utrecht, Department of Radiology van der Kaaij, Niels; University Medical Centre Utrecht, Department of Cardiothoracic Surgery Kappelle, Jaap; University Medical Centre Utrecht, Department of Cardiothoracic Surgery Kappelle, Jaap; University Medical Centre Utrecht, Department of Gynaecology and Obstetrics van der Meer, Manon; University Medical Centre Utrecht, Department of Gynaecology and Obstetrics van der Meer, Manon; University Medical Centre Utrecht, Department of Cardiology Mol, Barend; University Medical Centre Utrecht, Department of Cardiology Onland-Moret, N. Charlotte; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care van Petersen, Rutger ; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care

63		BMJ Open
		Ruigrok, Ynte; University Medical Centre Utrecht, Department of Neurology Vandersteen, Angela; University Medical Centre Utrecht, Department of Vascular Medicine Verhaar , Marianne; University Medical Center Utrecht, Department of Nephrology and Hypertension Westerink, Jan; University Medical Centre Utrecht, Department of Vascular Medicine Visseren, Frank; University Medical Centre Utrecht, Department of Vascular Medicine
	Keywords:	Vascular medicine < INTERNAL MEDICINE, EPIDEMIOLOGY, PREVENTIVE MEDICINE, General diabetes < DIABETES & ENDOCRINOLOGY
		SCHOLARONE [™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

BMJ Open

1
4
5
6
7
8
0
9
10
11
12
13
14
14
15
16
17
18
10
19
20
21
22
23
24
27 25
25
26
27
28
29
20
30
31
32
33
34
25
22
36
37
38
39
10
40
41
42
43
44
45
16
40
4/
48
49
50
51
51
52
53
54
55
56
50
5/
58
59

60

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease 1 2 (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular 3 risk in The Netherlands 4 Maria C. Castelijns*^a, Marga A.G. Helmink*^a, Steven H.J. Hageman^a, Folkert W. Asselbergs^b, Gert J. 5 de Borst^c, Michiel L. Bots^d, Maarten-Jan M. Cramer^b, Jannick A.N. Dorresteijn^a, Marielle H. 6 7 Emmelot-Vonk^e, Mirjam I. Geerlings^d, Pim A. de Jong^f, Niels van der Kaaij^g, L. Jaap Kappelle^h, A. 8 Titia Lelyⁱ, Manon G. van der Meer^b, Barend M. Mol^c, Hendrik M. Nathoe^b, N. Charlotte Onland-Moret^d, Rutger B. van Petersen^d, Ynte M. Ruigrok^h, Angela Vandersteen^a, Marianne C. Verhaar^j, Jan 9 Westerink^a, Frank L.J. Visseren^a 10 11 12 * Contributed equally ^a Department of Vascular Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX 13 14 Utrecht, the Netherlands ^b Department of Cardiology, University Medical Centre Utrecht, Utrecht, the Netherlands 15 ^c Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands 16 ^d Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht and Utrecht 17 18 University, Utrecht, the Netherlands ^e Department of Geriatrics, University Medical Centre Utrecht, the Netherlands 19 20 ^f Department of Radiology, University Medical Centre Utrecht, the Netherlands 21 ^g Department of Cardiothoracic Surgery, University Medical Centre Utrecht, the Netherlands 22 ^h Department of Neurology, University Medical Centre Utrecht, the Netherlands ⁱ Department of Gynaecology and Obstetrics, University Medical Centre Utrecht, the Netherlands 23 24 ^j Department of Nephrology and Hypertension, University Medical Centre Utrecht, the Netherlands 25 Corresponding author: F.L.J. Visseren, e-mail address: F.L.J. Visseren@umcutrecht.nl 26

3 4	28	Keywords: cardiovascular disease, risk factor, diabetes mellitus, cohort study, follow up study
5	29	
6 7 8 9 10 11 23 45 67 8 9 10 11 23 45 27 28 29 30 32 33 45 36 7 8 9 0 41 42 44 45 67 8 9 0 12 23 45 67 89 30 31 23 34 56 7 89 0 41 42 34 45 67 89 0 12 23 45 67 89 30 31 23 34 56 78 90 41 42 34 45 67 89 0 12 23 45 56 75 89 0 12 23 45 56 75 89 0 12 23 45 56 75 89 0 12 23 45 56 75 89 0 67 75 89 0 67 75 89 0 60 7 75 89 0 60 7 7 89 0 57 75 89 60 7 75 89 60 75 75 75 75 75 75 75 75 75 75 75 75 75	30	Word count: 5330

BMJ Open

31 Abstract

Purpose: The Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC SMART) study is an ongoing prospective single-centre cohort study with the aim to assess important
 determinants and the prognosis of cardiovascular disease progression. This article provides an update of
 the rationale, design, included patients, measurements and findings from the start in 1996 to date.

Participants: The UCC-SMART study includes patients aged 18-90 years referred to the University Medical Centre (UMC) Utrecht, The Netherlands, for management of cardiovascular disease (CVD) or severe cardiovascular risk factors. Since September 1996, a total of 14,830 patients has been included, of whom 8,603 patients were enrolled because of CVD and 5,684 patients because of cardiovascular risk factors. Upon inclusion patients undergo a standardized screening program including questionnaires, vital signs, laboratory measurements, electrocardiogram, vascular ultrasound of carotid arteries and aorta, ankle-brachial index and ultrasound measurements of adipose tissue, kidney size and intima media thickness. Outcomes of interest are collected through annual questionnaires and adjudicated by an endpoint committee.

Findings to date: By May 2022, 14,830 included patients contributed to a total follow-up time of over 134,000 person years. During follow-up, 2,259 patients suffered from a vascular endpoint (including non-fatal myocardial infarction, non-fatal stroke and vascular death) and 2,794 all-cause deaths, 943 incident cases of diabetes and 2,139 incident cases of cancer were observed up until January 2020. The UCC-SMART cohort contributed to over 350 articles published in peer-reviewed journals, including prediction models recommended by the 2021 ESC CVD prevention guidelines.

Future plans: The UCC-SMART study is an ongoing cohort in both inclusion and follow-up and provides a large database of information on a population at high cardiovascular risk for future studies to improve understanding of aetiology, prediction and prognosis of cardiovascular disease. It will continue be expanded with additional measurements and linkage to external registries.

1 2 3 4	55	Strengths and limitations
5 6	56	• The Utrecht Cardiovascular Cohort - Second Manifestations of Arterial disease (UCC-
/ 8	57	SMART) study is an ongoing cohort of over 14,000 patients with various manifestations of
9 10 11	58	CVD and cardiovascular risk factors
12 13	59	• The UCC-SMART study covers a long follow-up duration and a comprehensive prospective
14 15	60	capture of outcome data in a high cardiovascular risk population
16 17	61	• The use of a standardized screening program provides an extended resource of data for research
18 19	62	on cardiovascular disease epidemiology
20 21 22	63	• Limitations of the cohort are measurement of the determinants only at baseline for the majority
22 23 24	64	of patients, and the sparse information on socioeconomic status
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 354 55 56 57 58		

65 Introduction

66 Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, causing 67 around one-third of all deaths globally in 2019.[1] Atherosclerosis, the dominant cause of CVD, is 68 fuelled by multiple mutually reinforcing and co-existing risk factors. Because of the progressive nature 69 of atherosclerosis, patients with established CVD are at high risk of recurrent CVD and mortality.[2,3] 70 Treatment of cardiovascular risk factors is known to markedly reduce the risk of new cardiovascular 71 events.[4,5] Slowing down the process of atherosclerosis by timely identification and treatment of 72 cardiovascular risk factors is therefore of the utmost importance.

In 1996, the Second Manifestations of Arterial Disease (SMART) cohort study was set up enrolling patients newly referred to the University Medical Centre (UMC) Utrecht with clinically manifest CVD or marked risk factors for atherosclerosis. The study was designed with the aim of determining the prevalence of concomitant atherosclerotic disease and risk factors, as well as studying the incidence of future cardiovascular events and its predictors. Furthermore, the SMART study contributes to the complete and protocolized multidisciplinary care of these high risk patients, by integrating a standardized set of measurements into usual patient care. The rationale and design of the study were previously published in 1999[6], with the study containing around 600 patients at that time. In 2018, the name of SMART changed to Utrecht Cardiovascular Cohort (UCC)-SMART. By now, 26 years after enrolment of the first patient, many baseline measurements have been added, substudies have been initiated, the study has been linked to national registries and the data have been used in several large (inter)national collaborations. At the same time, demographic and guideline changes have led to differences in the baseline characteristics and absolute risk of the patients included in the cohort. The aim of the current article is to provide an update on the rationale, design, included patients, baseline measurements and follow-up to date.

89 Cohort description

90 The UCC-SMART-study is a single-centre prospective cohort study, ongoing in both inclusion and 91 follow-up, in which patient care and scientific research concerning cardiovascular risk factors and 92 disease are integrated. This is depicted in Figure 1 and discussed in more detail in the sections below.

Study population

Starting from September 1996, patients aged 18 to 80 years referred to the UMC Utrecht, the Netherlands, for management of CVD or severe risk factors for CVD, have been recruited. Patients with cerebrovascular disease (CeVD), coronary artery disease (CAD), abdominal aortic aneurysm (AAA), peripheral artery disease (PAD), renal artery stenosis or one or more of the following cardiovascular risk factors, if rated as severe, are eligible to be included: hypertension, hyperlipidaemia, diabetes mellitus, renal insufficiency and a positive family medical history. Patients with a chronic human immunodeficiency virus infection as a cardiovascular risk-increasing condition or with hypertensive pregnancy disorders have been included since 2007 and 2012, respectively. Definitions of the inclusion criteria are listed in Supplementary Table 1. If patients have a history of multiple vascular events or risk factors, the referral reason (usually the most recent event) is listed as the qualifying inclusion diagnosis, and any comorbidities are also registered. Pregnant women, patients with a short life expectancy and those insufficiently fluent in Dutch are not eligible.

Qualifying patients with CVD and/or risk factors listed above are recruited upon their first visit to the outpatient clinics and hospital wards of the departments of vascular medicine, internal medicine, nephrology, neurology, cardiology, cardiac surgery, obstetrics and vascular surgery. From 2021 onwards, the outpatient clinic of the department of geriatric medicine has been added to this list and the maximum age to be eligible for inclusion has been raised from 80 to 90 years old. In case of a recent cardiovascular event or intervention as the reason for inclusion, patients are invited after discharge from the hospital. In such cases, baseline measurements were generally performed more than 30 days after the acute event. All qualifying patients receive written and oral information about study goals and methods and are included only after written informed consent to use of their data for study goals, the reporting of incidental findings to their treating physician, indefinite period storage of blood samples

BMJ Open

for future research and follow-up through annual questionnaires. In addition, participants can opt in or out to the following items: retrieval of data from regional and national registries, use of their data in research collaborations with for-profit organizations, use of coded data and laboratory samples for research outside the European Union and possible future requests to participate in follow-up studies of UCC-SMART. When patients do not consent to any of these additional items, they can still partake in the UCC-SMART study. The study is in accordance with the Helsinki declaration and the Good Clinical Practice guidelines, and is approved by the ethics committee of the UMC Utrecht in 1996, 2014 and 2022 (reference number 22-088).

Baseline data collection

The screening program consists of questionnaires, physical examination, an electrocardiogram (ECG), blood, urine and radiology testing. Except for the questionnaires, to be filled out before the hospital visit, the diagnostic components of the program take place during a one-day visit. An overview of all the variables available in UCC-SMART is provided in Supplementary Table 2. Some measurements have only been collected for or starting from a certain time period (Figure 2 and Supplementary Table 3).

Health questionnaires

The questionnaires collect data on medical history including established CVD (CeVD, CAD, AAA and PAD as described in Supplementary Table 4), cardiovascular risk factors, symptoms of CVD (based on the Rose Angina Questionnaire)[7], medication use, family history and lifestyle. For women, a question on the age at menopause (if applicable) is included as well. From 2002 onward, information on obstetric history has been collected including the number of full-term pregnancies, miscarriages (<14 weeks of gestation), preterm deliveries (14 - 32 weeks of gestation), birth weight and pregnancy complications.

Physical examination

Anthropometric measurements are taken by trained (research) nurses and include body height in centimetres, weight in kilograms and waist and hip circumference in centimetres with patients wearing light clothing and no shoes. Weight and length are used to calculate body mass index in kg/m^2 . Waist

circumference is measured horizontally at the midpoint between the iliac crest and lower costal margin
and hip circumference is taken at the maximum horizontal circumference around the gluteal muscles.
The mean of two measurements is calculated. If the two measurements differ by >2 cm, a third is taken
and the mean of the closest two is calculated.

From 1996 up until 1999, office blood pressure was measured using a semiautomatic oscillometric device (Omega 1400; Invivo Research Laboratories Inc., Broken Arrow, OK, USA) every 4 minutes for a total of 25 minutes at the right brachial artery in supine position and the mean systolic (SBP) and diastolic blood pressure (DBP) were calculated. From April 1999 until 2015, using a nonrandom sphygmomanometer (Iso-Stabil 5; Speidel & Keller, Jungingen, Germany), 3 simultaneous measurements with an interval of 30 seconds were taken at both upper arms in upright position and the SBP and DBP of the last two measurements were calculated from the arm yielding the highest values. From 2015 onward, office blood pressure has been measured using an automatic oscillometric device (Microlife WatchBP Office AFIB; Microlife Corp, Widnau, Switzerland). The measurement is being performed unattended, in triplicate with an interval of 30 seconds, at both upper arms in supine position after the patient has rested for 30 seconds. The measurements on the arm with the highest blood pressure are recorded and the mean SBP and DBP is calculated.

In order to calculate the ankle-brachial index (ABI), blood pressure measurements are taken at rest at both upper arms every two minutes whilst the blood pressure is measured at both lower legs. For this, a Falcon Quad 8 MHz Doppler probe (Viasonix, Ra'anana, Israel) is used at a 60° angle at the dorsal pedal and posterior tibial arteries. The ABI is defined for each leg as the highest SBP at the ankle divided by the highest brachial SBP.

Laboratory testing

168 On the day of screening, a venous blood sample is drawn after at least eight hours of fasting to measure
169 glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides, creatinine, and
170 haemoglobin. Laboratory measurements of fasting insulin, C-reactive protein (CRP) and thyroid
171 stimulating hormone (TSH) were added in 2003 and glycated haemoglobin (HbA1c) and apolipoprotein
172 B (apoB) were added in 2006. Lastly, measurement of lipoprotein(a) was added in June 2020.

Page 11 of 63

BMJ Open

Glucose is measured using an enzymatic colorimetric assay (Beckman Coulter, Brea, CA, USA). Total cholesterol and triglycerides are measured using a commercial enzymatic dry chemistry kit (Johnson & Johnson, New Brunswick, NJ, USA) and HDL-C with a commercial enzymatic kit (Boehringer, Mannheim, Germany). Low-density lipoprotein cholesterol (LDL-C) is calculated using the Friedewald formula up to a plasma triglyceride level of 9 mmol/L.[8] Estimated glomerular filtration rate (eGFR) is calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula.[9] Spectrophotometry (Abbott Diagnostics, Santa Clara, CA, USA) is used to determine haemoglobin levels. CRP in plasma was initially determined using immunonephelometry (Nephelometer Analyzer BN II, Siemens, The Hague, The Netherlands) and from 2013 in heparin plasma on an AU5811 routine chemistry analyser (Beckman Coulter, Brea, CA, USA). Before November 2006, TSH was quantified using a third-generation assay on a Centaur analyser (Bayer, Germany). Since December 2006, TSH has been measured by a third-generation assay on a DXi analyser (Beckman Coulter, Woerden, The Netherlands). Correlation between the two analysers was r = 0.9991(n = 69), with an intercept of -0.05 mU/L (95%CI 0.22-0.12) and a slope of 1.04 (95%CI 1.029-1.052) (range 0-95 mU/L). ApoB and lipoprotein(a) are measured using nephelometry (Atellica Neph 630, Siemens, The Hague, The Netherlands). A morning-void urine sample is collected to determine urine albumin, creatinine, sodium and potassium levels. Urine albumin is measured using immunoturbidimetric assays. Ion selective electrode (Beckman Coulter, Brea, CA, USA) is used to determine urine sodium and potassium levels. DNA can be isolated from 10 mL of EDTA-augmented blood stored at -80° for genotyping.

Radiology testing

Non-invasive vascular imaging testing is performed by specially trained ultrasound technicians. Duplex examination of the carotid arteries is conducted to assess possible stenosis using peak systolic velocity measurements at the brachiocephalic trunk, carotid arteries (mid- and distal common, external and proximal and distal internal) and vertebral arteries (proximal and distal). Measurements are performed using an EPIQ-7 ultrasound machine (Philips Medical Systems, Eindhoven, The Netherlands). In case of abnormal signals and/or retrograde flow in the vertebral arteries, the proximal subclavian arteries are

evaluated in search of severe stenosis or occlusion. For research purposes, intima-media-thickness (IMT) of the carotid arteries is measured using a linear array transducer. With the patient lying down and the head turned 45° away from the side investigated, the ultrasound frame yielding an optimal longitudinal picture of the common carotid arterial wall is frozen at the time of the R-peak of ECG recording. Over a length of 1 cm starting from the carotid bulb towards proximal direction, the arterial wall thickness is measured from the lumen-intima interface to the media-adventitia interface. The mean of measurements in anterolateral, lateral and posterolateral directions is calculated.

Abdominal ultrasound examination is performed using the same ultrasound machine to obtain the maximal anterior-posterior diameter of the juxtarenal and infrarenal abdominal aorta and kidney length and volume. As of January 2000, visceral and subcutaneous adipose tissue measurements have been taken as well. The amount of subcutaneous fat is estimated by the distance from the linea alba to the skin. Visceral adipose tissue thickness is measured as the distance between the lumbar spine and the peritoneum. Measurements are taken at the end of quiet expiration on a frozen ultrasound frame at three points on the imaginary transversal line halfway between the iliac crest and lower costal margin: at the midsternal line and 10 cm to the left and right on the transversal line. Each measurement is taken three times and then the mean of the measurements is recorded as the actual thickness. Moreover, from September 1998 on, a protocolized 12-lead resting ECG has been recorded.

In the near future, echocardiography will be added to the UCC-SMART program to facilitate research on the presence of heart failure at baseline. Echocardiography will be performed using a Philips Affiniti 70 ultrasound machine (Philips Medical Systems, Andover, MA, USA) by using a specific protocol involving 2-dimensional (2D), M-mode, Doppler, tissue Doppler and 2D speckle tracking (STE) imaging in accordance with the European Association of Cardiovascular Imaging 2016 recommendations for chamber quantification.[10] In particular, left ventricular dimensions will be measured in order to calculate the left ventricular mass index.[11] Left ventricular ejection fraction will be assessed quantitatively, preferably with automated three-dimensional imaging or alternatively with the Simpsons biplane method. Left atrial maximal volume and right ventricular dimensions and function will be measured as recommended.[10] Multiple parameters of left ventricular diastolic function will be assessed, including pulsed-wave Doppler of the mitral inflow and tissue Doppler imaging of the mitral

BMJ Open

3 4	229
5 6	230
7 8	231
9 10	232
11 12	233
13 14	234
15 16	235
17 18	236
19 20	237
21 22	238
23 24	230
25 26	235
27 28	240
29 30	241
31 32	242
33 34	243
35 36	244
37 38	245
39 40	246
41 42	247
43 44	248
45 46	249
47 48	250
49 50	251
51 52	252
53 54	253
55 56	254
57 58	255
59	

annulus motion. Left ventricular diastolic function will be evaluated according to current diagnostic
algorithms.[12] A minimal of 3 sequential complexes will be recorded. Standard image analysis will be
then performed off-line in accordance with clinical guidelines using Philips IntelliSpace Cardiovascular
software and will include 2D STE analysis of the left ventricle and left atrium.

234 *Treatment recommendation*

After completion of the screening, the findings are assessed by a multidisciplinary team of two medical specialists (internist, cardiologist, neurologist or vascular surgeon). A treatment recommendation is formulated based on current applicable guidelines, according to which patients are already treated by their general practitioner or medical specialist. The screening results and treatment recommendation are reported in a medical letter which is sent to the treating specialist and general practitioner. Patients receive a summary of relevant findings and recommendations.

Incidental medical findings during the screening are reported to one of the study physicians and
if needed, discussed with specialists from the multidisciplinary team. The findings are added to the
medical record and sent to the treating specialist or general practitioner for further action.

245 Follow-up

Patients receive annual questionnaires with questions on hospital admissions and outpatient clinic visits,
regardless of whether they are still under the care of the UMC Utrecht. In case patients no longer wish
to complete the questionnaires, they are asked if they consent to collection of information from their
general practitioner. When the replies indicate possible outcome events, additional information is
collected through hospital discharge letters and relevant laboratory and radiology examinations. Clinical
events of interest include stroke, myocardial infarction, heart failure, AAA rupture, renal insufficiency,
vascular interventions, bleeding, diabetes and vascular and non-vascular mortality as defined in
Supplementary Table 5. Incident type 2 diabetes has been assessed since July 2006. To assess incident
diabetes between 1996 and 2006, a questionnaire was sent to all patients without diabetes at baseline
who were included before July 2006. Incident heart failure has been assessed since October 2011.
Subsequently, three members from the endpoint committee independently judge reported events. The

endpoint committee consists of medical specialists from the recruiting departments. If all three physicians judge differently, the event is discussed with two other physicians from the committee to reach consensus. Secondary outcomes are adjudicated by trained research nurses. As of 2021, diagnoses of dementia and mild cognitive impairment have been added to the annual questionnaire as a self-reported diagnoses

Linkage to external registries

Data in the UCC-SMART study can be enriched by collecting data from various registries and organizations, for example to obtain additional information on outcomes and medication use. Some examples of this linkage so far are described below.

Netherlands Cancer Registry

CVD and cancer share many risk factors and pathophysiological mechanisms, including body fat distribution, diet, physical inactivity, smoking, chronic inflammation burden, and oxidative stress.[13] To evaluate the relation between several cardiovascular risk factors and the risk of cancer, the UCC-SMART cohort has been linked to the Netherlands Comprehensive Cancer Organisation (IKNL), a nationwide registry receiving notifications of all new cancer diagnoses. By linking the cohort to the national cancer registry several times, with the most recent linkage taking place in 2022, information on cancer incidence and details of cancer types and histopathology was obtained.

Central Agency for Statistics (CBS) Netherlands

The UCC-SMART cohort can be linked to Statistic Netherlands (also known as CBS), which contains data on ICD-10 coded diagnoses and hospital admissions since 1996. This allows for, amongst others, collection of endpoints that are not regularly collected in UCC-SMART or have been collected from a later time point, such as heart failure diagnoses.

Utrecht Patient Oriented Database (UPOD)

BMJ Open

The UCC-SMART cohort can be linked to UPOD[14], a database containing electronic patient data of patients treated at the UMC Utrecht. This database has been collecting patient characteristics, medication orders, laboratory test results, hospital discharge diagnoses and medical procedures since 2000.

Consortia

The data collected in UCC-SMART is added to several consortia such as a genetics consortium (GENIUS-CHD[15] on genetics of subsequent coronary heart disease), the Netherlands consortium of dementia cohorts and the Chronic Kidney Disease Prognosis Consortium[16].

Substudies

SMART-2

Patients with a history of CVD or diabetes are invited to participate in the SMART-2 substudy. In this study, the baseline measurements of UCC-SMART are repeated in order to investigate the course of atherosclerosis and vascular risk factors over time, and to evaluate the effects of treatment. Until May 2022, 2,313 patients have participated in UCC-SMART-2 after a median of 9.9 years (IQR 9.2 – 10.8) since their inclusion in UCC-SMART. As with UCC-SMART, the findings of UCC-SMART-2 with an accompanying treatment recommendation are communicated to the patient, his or her treating medical specialist and general practitioner.

SMART-ORACLE

SMART-ORACLE aims to determine the additional value of contrast-enhanced computed tomography (CT) of the coronary and carotid arteries on top of traditional cardiovascular risk factors in patients with a history of CVD, diabetes or hypertension.[17] The study is still ongoing and has currently been conducted in 1,252 patients.

SMART-MR and SMART Medea

SMART-MR and SMART Medea target the investigation of brain changes in patients with CVD using
1.5T magnetic resonance imaging (MRI) (and 7T MRI in a subset of patients).[18,19] This study was
conducted in 1,309 patients. Amongst others, measurements of the total cerebral blood flow have been
performed and characteristics of white matter lesions and microbleeds have been mapped.

Athero-Express

In May 2022, the Athero-Express biobank and study cohort have been incorporated into the UCC-SMART study.[20] The objective of Athero-Express is to investigate the value of plaque characteristics in relation to long term cardiovascular events. This ongoing prospective study, initiated in April 2002, includes patients undergoing femoral or carotid endarterectomy. During surgery, the atherosclerotic plaque is harvested and immunohistochemically stained in order to asses fat, collagen, macrophages and smooth muscle cells.

Other substudies

Several other substudies have been carried out within the UCC-SMART cohort. As part of SMART-**Junior**, additional questionnaires have been sent to 4,270 patients in order to investigate the presence of cardiovascular risk factors and CVD in their offspring.[21] In **DISH**, diffuse idiopathic skeletal hyperostosis was scored on chest X-rays of 4,791 patients, performed in the context of health care, using the Resnick criteria. [22,23] SMART-HEART aimed to detect patient characteristics related to the development of left ventricle hypertrophy using 1.5T cardiac MRI in 536 patients with hypertension, but free of known coronary or valvular disease.[24] In order to determine whether intima and media calcification differ in their associated CVD risks and to elucidate which risk factors lead to the development of those types of calcification, CT-scans of the femoral head to the feet have been performed in 520 patients as part of ARTEMIS.[25] The aim of the Small aneurysms trial was to estimate the overall rupture rates of small AAAs and to investigate demographic characteristics and cardiovascular risk factors for association with AAA growth using ultrasound scanning of the aorta in 230 patients with an initial AAA diameter of 30-55 mm. [26] In Brown adipose tissue, supraclavicular and subcutaneous adipose tissue fat-signal-fractions were assessed in 50 patients with CVD using 1.5T

BMJ Open

water-fat MRI.[27] SPAIN evaluated the feasibility of a web-based coaching program for vascular risk
factor treatment, described the patterns of use of this program and measured changes in risk factors in
50 patients with CVD.[28] RULE investigated the impact of the UCC-SMART study compared to usual
care on cardiovascular risk factors in 604 patients with CVD or type 2 diabetes.[29]

A few clinical trials have been conducted within the UCC-SMART study. TEMPUS was a randomized crossover trial in 78 patients that investigated the effects of a cardiovascular polypill on LDL-C, ambulatory blood pressure and adherence as compared to the administration of the individual, identically dosed components of the polypill.[30] SMART-Inform was a three-armed randomized controlled trial (RCT) in 303 patients using a statin with CVD.[31] The aim was to determine whether communicating personalized statin therapy-effects leads to lower decisional conflicts associated with statin use compared with standardized (non-personalized) therapy-effects. BEST was an RCT investigating whether a clearly written agreement on risk factor management between general practitioners and hospitals improved the vascular risk profile of 197 patients compared with usual care. [32] Another RCT was VENUS, which included 236 patients with ≥ 2 modifiable risk factors, investigating whether risk factor management in the hospital improved with nurse practitioner care on top of usual care compared with usual care alone.[33] Lastly, **IRIS** was an RCT that evaluated whether an internet-based vascular risk factor management program promoting self-efficacy on top of usual care is more effective than usual care alone in reducing vascular risk factors in 330 patients with CVD.[34] Supplementary Table 6 provides a detailed overview of the substudies. A timeline showing the different substudies is presented in Supplementary Figure 1.

360 Data quality and management

Jota collected in the UCC-SMART program is stored in the electronic medical record of the UMC
Utrecht. Blood samples (serum, citrate plasma, EDTA plasma and erythrocytes concentrate aliquots) are
stored at -80°C according to the Biobanks Regulations to be found at the UMC Utrecht website
(https://www.umcutrecht.nl/nl/centrale-biobank). The central biobank of the UMC Utrecht is ISO9001
certified (certificate number 2175592). Release of material for future research is reviewed by the UMC
Utrecht Biobanks Review Committee.

Recorded data is downloaded from the electronic medical record and pseudonymized by the data manager who holds the encryption key, only to be accessed after permission of the principal investigator. The UCC-SMART study group periodically performs quality checks for missing values and inconsistencies compared to source documents, or values outside of the range deemed likely.

372 Patient and public involvement

Patients were not involved in the study design. Their experiences of burden and required time are considered in the implementation of new components in the program. Relevant findings of the UCC-SMART screening program and corresponding recommendations are sent to the patients. In addition, patients regularly receive a newsletter containing up-to-date facts and figures of the UCC-SMART study and substudies and findings of publications using UCC-SMART data. The UMC Utrecht policies are in line with open science, for opening up the research agenda to societal stakeholders, open research data and open access publications.

Characteristics of study population

By May 2022, a total of 14,830 patients has been included (Figure 3). Of those, 3,294 patients died and 1,546 patients are lost to follow-up. Reasons for loss to follow-up include withdrawal of informed consent or being unreachable for further questionnaires. Figure 4 shows the numbers and distribution of the reasons for inclusion. The most common inclusion diagnosis was CAD (n = 4,729), followed by hypertension (n = 2,344) and CeVD (n = 2,276). PAD was the enrolment diagnosis in 1,173 patients and AAA in 369 patients. Hyperlipidaemia was the inclusion diagnosis in 1,433 patients and diabetes mellitus in 730 patients.

Patient characteristics, medication use and measurements at baseline are listed in Table 1. This table is stratified for medical history at baseline, with the items of medical history either being the inclusion diagnosis or a comorbidity. This means that patients may fall into more than one category as listed in Table 1. The majority of patients included in the cohort is male (65%), especially among the subgroup of patients with established CVD (73% men, 27% women). The mean age of the total population is 56.8 Page 19 of 63

BMJ Open

±12.5 years. In total, 2,608 individuals (18%) had diabetes and 9,633 individuals (65%) had established CVD at inclusion. Of these CVD patients, 1,399 (15%) have polyvascular disease, i.e. multiple vascular beds (cerebral, coronary, abdominal aorta or lower extremity) being affected. The proportion of missing variables is less than 3% for all variables, except for adipose tissue measurements on ultrasound (3.6%), albuminuria (4.7%) and CRP level (9.0%). Vascular screening indicated significant carotid artery stenosis (>50% occlusion) in 526 (4%) patients, AAA in 188 (1%) patients and low ABI (≤ 0.9) in 829 (6%) patients who were not previously diagnosed with CeVD, AAA or PAD, respectively. Of the 3095 patients with established CVD included between 2012 and 2022 (to account for applicable guidelines), 2075 (67%) had a SBP <140 mmHg, 753 (25%) had a LDL-C \leq 1.8 and 2737 (88%) were using antithrombotic agents at baseline. selme.

		History of CVD				Cardiovascular risk factors			
	Cerebrovascular	Coronary artery	Abdominal aortic Peripheral arter		Hypertension	Hyperlipidaemi	Diabetes mellitus	Renal insufficiency	
	disease	disease	aneurysm	disease		a	(type 1 + 2)		
Number of patients	2801	5999	767	1646	8228	12972	2608	1118	
Medical history ^a									
Cerebrovascular disease	2801 (100)	553 (9)	117 (15)	209 (13)	1655 (20)	2492 (19)	442 (17)	248 (22)	
Coronary artery disease	553 (20)	5999 (100)	322 (42)	433 (26)	3192 (39)	5762 (44)	1131 (43)	497 (44)	
Abdominal aortic aneurysm	117 (4)	322 (5)	767 (100)	134 (8)	466 (6)	693 (5)	114 (4)	151 (14)	
Peripheral artery disease	209 (7)	433 (7)	134 (17)	1646 (100)	906 (11)	1492 (12)	328 (13)	205 (18)	
Hypertension	1655 (60)	3192 (54)	466 (62)	906 (57)	8228 (100)	7285 (57)	1736 (68)	902 (82)	
Hyperlipidaemia	2492 (90)	5762 (96)	693 (91)	1492 (92)	7285 (90)	12972 (100)	2275 (88)	1016 (92)	
Diabetes mellitus	442 (16)	1131 (19)	114 (15)	328 (20)	1736 (21)	2275 (18)	2608 (100)	365 (33)	
Health questionnaire									
Age (years)	60.0 ± 11.2	61.5 ± 9.5	65.2 ± 9.3	59.9 ± 10.6	58.7 ± 11.7	58.0 ± 11.7	59.3 ± 12.1	63.4 ± 11.3	
Male sex	1744 (62)	4849 (81)	636 (83)	1100 (67)	5174 (63)	8699 (67)	1815 (70)	911 (82)	
Previous or current smoking	2106 (76)	4511 (75)	661 (86)	1473 (90)	5697 (69)	9265 (72)	1865 (72)	847 (76)	
Packyears in (former) smokers	20.2 (9.4 - 35.1)	20.7 (9.4 - 33.6)	28.0 (13.8 - 42.3)	27.9 (14.6 - 40.6)	18.9 (8.3 - 33.3)	18.9 (8.8 - 32.5)	21.0 (9.5 - 36.2)	22.8 (10.5 - 37.8	
Current alcohol use	1484 (53)	3641 (61)	368 (48)	770 (47)	4787 (58)	7584 (59)	1229 (47)	511 (46)	
Highest level of education									
- Primary/secondary scho	ool 554 (31)	1248 (29)	128 (34)	315 (40)	1764 (31)	2569 (29)	553 (35)	210 (32)	
- Vocational school	631 (35)	1466 (35)	117 (31)	236 (30)	1824 (32)	2891 (33)	519 (33)	223 (34)	
- University (of applied	560 (31)	1415 (33)	125 (33)	196 (25)	1914 (34)	3031 (35)	422 (27)	194 (30)	
science)									
Exercise (METh/week)	0.0 (0.0 - 10.5)	0.0 (0.0 - 12.0)	0 (0.0 - 6.0)	0 (0.0 – 5.5)	0 (0.0 - 11.0)	0 (0.0 – 12.0)	0 (0.0 – 6.0)	0 (0.0 – 5.5)	
Medication use									
Lipid-lowering therapy	1682 (60)	4995 (83)	417 (54)	849 (52)	4720 (57)	8253 (64)	1664 (64)	678 (61)	
Antihypertensive therapy	1724 (62)	5409 (90)	545 (71)	912 (55)	7130 (87)	9080 (70)	1980 (76)	965 (86)	

BMJ Open

Platelet inhibitors	2062 (74)	5263 (88)	450 (59)	987 (60)	4532 (55)	7694 (59)	1453 (56)	640 (57)
Oral anticoagulant therapy	311 (11)	821 (14)	123 (16)	234 (14)	743 (9)	1188 (9)	271 (10)	182 (16)
Glucose lowering therapy	287 (10)	757 (13)	67 (9)	189 (11)	1176 (14)	1475 (11)	1621 (62)	216 (19)
Anthropometric measurements								
Systolic blood pressure (mmHg)	141 ± 22	137 ± 20	142 ± 20	144 ± 21	150 ± 23	140 ± 22	144 ± 21	150 ± 24
Diastolic blood pressure (mmHg)	82 ± 12	80 ± 11	83 ± 12	81 ± 11	87 ± 14	83 ± 13	82 ± 12	85 ± 14
Ankle-brachial index ≤ 0.9	398 (14)	680 (11)	165 (22)	1063 (66)	1195 (15)	1751 (14)	434 (17)	283 (26)
Body mass index (kg/m ²)	26.6 ± 4.2	27.3 ± 4.0	26.4 ± 3.8	26.3 ± 4.3	27.6 ± 4.6	27.0 ± 4.3	28.7 ± 5.0	27 ± 4
Waist circumference (cm)	93.7 ± 12.9	97.4 ± 11.6	97.6 ± 12.1	95.0 ± 12.5	96.4 ± 13.3	95.1 ± 12.7	100.7 ± 13.7	98.9 ± 12.5
Hip circumference (cm)	103.6 ± 8.7	104.2 ± 7.6	103.8 ± 7.8	103.0 ± 8.7	105.1 ± 9.2	104.1 ± 8.5	106.3 ± 9.8	104.4 ± 8.4
Visceral fat (cm)	8.6 ± 2.6	9.3 ± 2.6	9.5 ± 2.6	9.2 ± 2.7	9.0 ± 2.8	8.8 ± 2.7	10.1 ± 2.9	9.9 ± 2.8
Subcutaneous fat (cm)	2.5 ± 1.2	2.4 ± 1.2	2.2 ± 1.1	2.4 ± 1.5	2.6 ± 1.4	2.5 ± 1.3	2.4 ± 1.4	2.2 ± 1.4
Carotid artery stenosis	652 (24)	443 (8)	84 (11)	255 (16)	77 (10)	1104 (9)	283 (11)	181 (16)
cIMT (mm)	0.9 (0.7 – 1.0)	0.9 (0.7 – 1.0)	0.9 (0.8 – 1.1)	0.9 (0.8 – 1.1)	0.8 (0.7 – 1.0)	0.8 (0.7 – 1.0)	0.9 (0.7 – 1.0)	0.9 (0.8 – 1.1)
Aortic aneurysm	81 (3)	244 (4)	307 (41)	72 (4)	289 (4)	458 (4)	61 (2)	108 (10)
Kidney size (cm)	11.1 ± 1.0	11.3 ± 1.0	11.3 ± 1.0	11.2 ± 1.1	11.2 ± 1.0	11.2 ± 1.0	11.5 ± 1.0	10.9 ± 1.3
Laboratory measurements								
Haemoglobin (mmol/L)	8.9 ± 0.8	8.9 ± 0.8	8.8 ± 0.9	8.9 ± 0.9	8.9 ± 0.8	8.9 ± 0.8	8.8 ± 0.9	8.5 ± 1.0
Total cholesterol (mmol/L)	4.9 ± 1.2	4.5 ± 1.1	5.1 ± 1.3	5.3 ± 1.3	5.0 ± 1.3	5.1 ± 1.4	4.7 ± 1.3	5.0 ± 1.4
LDL-C (mmol/L)	2.9 ± 1.1	2.6 ± 0.9	3.1 ± 1.1	3.2 ± 1.1	2.9 ± 1.1	3.1 ± 1.2	2.7 ± 1.0	2.9 ± 1.1
HDL-C (mmol/L)	1.3 ± 0.4	1.2 ± 0.3	1.2 ± 0.4	1.2 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.2 ± 0.3	1.2 ± 0.4
Apolipoprotein B (g/L)	0.8 ± 0.3	0.8 ± 0.2	0.9 ± 0.2	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3
Triglycerides (mmol/L)	1.3 (0.9 – 1.9)	1.4 (1.0 – 2.0)	1.5 (1.1 – 2.1)	1.5 (1.1 – 2.3)	1.4 (1.0 – 2.1)	1.4 (1.0 – 2.1)	1.6 (1.1 – 2.4)	1.7 (1.2 – 2.5)
HbA1c (%)	5.6 (5.4 - 6.0)	5.7 (5.4 – 6.1)	5.7 (5.4 – 6.1)	5.8 (5.5 - 6.5)	5.7 (5.4 – 6.2)	5.6 (5.4 – 6.1)	6.9 (6.3 – 7.8)	5.9 (5.5 - 6.9)
Fasting glucose (mmol/L)	5.7 (5.3 – 6.3)	5.9 (5.4 - 6.6)	5.8 (5.4 - 6.5)	5.8 (5.3 - 6.7)	5.8 (5.4 - 6.6)	5.8 (5.3 - 6.4)	8.1 (6.9 – 10.0)	6.0 (5.5 – 7.2)
eGFR (mL/min/1.73 m ²)	47.7 ± 39.9	63.12±34.3	58.2 ± 32.3	51.2 ± 39.9	48.7 ± 40.4	53.6 ± 40.4	55.4 ± 40.5	39.8 ± 25.6
Albuminuria (mg/L)	10.0 (6.0 – 24.1)	9.0 (6.0 - 20.0)	12.9 (8.0 - 39.9)	11.0 (7.0 - 32.0)	11.0 (7.0 – 29.0)	9.0 (6.0 - 22.0)	14.0 (8.0 - 41.0)	82.0 (16.0 - 257.6)
CRP (mg/L)	2.1 (1.0 - 4.5)	1.9 (1.0 – 4.0)	3.3 (1.6 - 6.9)	3.1 (1.4 – 6.3)	2.2 (1.0 - 4.7)	2.0 (1.0 - 4.2)	2.4 (1.1 – 5.1)	3.2 (1.5 – 7.2)
TSH (mU/L)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.8 (1.2 – 2.6)	1.8 (1.2 – 2.5)	1.9 (1.3 – 2.7)	1.8 (1.3 – 2.7)

1 2 3	405	Data are presented as number (percentage), mean \pm standard difference or median (interguartile range).
4 5	100	
6	406	^a Based on inclusion diagnosis, items of the health questionnaire and/or measurements at baseline:
7	407	Cerebrovascular disease: history of stroke, carotid surgery or percutaneous transluminal angioplasty;
8	408	Coronary artery disease: history of myocardial infarction, cardiac arrest, coronary bypass surgery or percutaneous transluminal coronary angioplasty;
9 10	409	Abdominal aortic aneurysm: history of abdominal aortic aneurysm, transluminal or surgical treatment of abdominal aortic aneurysm;
11	410	Peripheral artery disease: history of amputation of (part of) lower limb, lower limb peripheral artery surgery or percutaneous transluminal angioplasty;
12	411	Hypertension: treatment with antihypertensive drugs or blood pressure \geq 160/95 mmHg at baseline measurement;
13 14	412	Hyperlipidaemia: treatment with lipid-lowering agents, total cholesterol \geq 5 mmol/L or LDL-cholesterol \geq 3.2 mmol/L at baseline measurement;
15	413	Diabetes mellitus: treatment with antidiabetic agents, fasting glucose ≥ 7.0 mmol/L or non-fasting glucose ≥ 11.1 mmol/L at baseline measurement;
16 17	414	Renal insufficiency: creatinine >120 mmol/L and/or microprotein/creatinine ratio in urine >20.
17	415	Cut-off values applied at the start of UCC-SMART study, please note target values have changed over time and continuous variable are available.
20 21	416	cIMT, carotid intima media thickness; CRP, C-reactive protein; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated haemoglobin
22 23 24	417	type A1C; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MET, metabolic equivalent of task; TSH: thyroid stimulation hormone.
25 26 27		
28 29 30		
31		
32		
33 34		
35		
36		
37		
38 30		
40		
41		
42		20
43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
44		
45		

418 Findings to date

The findings of this section are reported for patients included up to January 2020, because the collection and processing of outcome events has been completed up until this date. These patients contributed to a total follow-up time of 134,439 person-years. Median follow-up time was 9.2 years (interquartile range 4.8 - 14.1 years). During follow-up, 2,259 (16%) patients suffered from a first combined major cardiovascular endpoint (including non-fatal myocardial infarction, non-fatal stroke or cardiovascular death). Furthermore, there were 943 cases of incident diabetes, 105 cases of end-stage kidney disease, 161 cases of heart failure and 434 cases of major bleeding. A total of 3,264 patients underwent a vascular intervention during follow-up. Of patients with previously established CVD, 1906 patients (21%) suffered from the combined vascular endpoint mentioned above as subsequent event, whereas 353 patients (7%) with severe risk factors without prior CVD experienced this combined outcome as their first ever event. Of the 2,450 individuals with diabetes at baseline, 568 (23%) individuals suffered from the combined vascular endpoint. Corresponding incidence rates are 21.2 per 1000 person years for patients with established CVD and 8.2 per 1000 person years for patients without a history of CVD. Numbers and observed incidence rates of all specific outcome events of interest are listed in Table 2. Through linkage with the Dutch National Cancer Registry, a total of 2,139 patients were diagnosed with cancer during follow-up. This includes 414 diagnoses of lung cancer, 354 of prostate cancer, 294 of intestinal cancer and 163 of breast cancer as most common diagnoses.

437 Table 2. Number and incidence rates of outcome events from 1996 to 2020

Outcome event	Number of first	Person-years of	Incidence rate per
	events	follow-up	1000 person-years
Non-fatal stroke	613	131,684	4.66
Ischemic stroke	502	132,042	3.80
Haemorrhagic infarction	20	134,362	0.15
Intracerebral haemorrhage	66	134,285	0.49
Subarachnoid haemorrhage	17	134,322	0.13
Type not determined	8	134,430	0.06
Retinal syndromes	16	134,338	0.12
Infarction	13	134,353	0.10
Haemorrhage	3	134,424	0.02
Non-fatal myocardial infarction	793	130,065	6.10
Heart failure	161	134,075	1.20
Systolic heart failure, due to	115	134,203	0.86
coronary disease	85	134,266	0.63
valve disorders	11	134,425	0.08
other causes	19	134,390	0.14
HFpEF, due to	46	134,311	0.34
coronary disease	15	134,390	0.11
valve disorders	8	134,418	0.06
other causes	23	134,381	0.17
Non-fatal rupture AAA	5	139,895	0.04
End-stage kidney disease	105	134,118	0.78
Vascular intervention	3,264	110,154	29.6
Heart	1606	121,936	13.2
Carotid or intracranial arteries	240	132,611	1.81
Aorta	439	131,553	3.34
Peripheral arteries	953	127,914	7.45
Renal artery	62	133,970	0.46
Major bleeding			
ISTH major bleeding	434	129,804	3.34
BARC 3 or 5 bleeding	457	132,497	3.45
Incident diabetes	943	124,310	7.59
Type 1 diabetes	1	131,417	0.01
Type 2 diabetes	942	124,330	7.58

Vascular mortality	1,267	134,439	9.42	
Fatal cerebral infarction	85		0.63	
Fatal cerebral haemorrhage	65		0.48	
Fatal stroke – type not determined	21		0.16	
Fatal myocardial infarction				
Fatal heart failure	63		0.47	
Fatal rupture AAA	198		1.47	
Sudden death	29		0.22	
Other	401		2.98	
	405		3.01	
Non-vascular mortality	1317	134,439	9.80	
Fatal malignancy	800		5.95	
Fatal infection	169		1.26	
Unnatural death	58		0.43	
Other	290	290		
All-cause mortality	2,794	134,439	20.78	
Malignancy ^a	2,139	127,514	16.77	
Lung	414		3.25	
Prostate	354		2.78	
Breast	163		1.28	
Intestinal	294		2.31	
Other	914		7.17	

^a Other subtypes of cancer in the dataset include cancer of the lip, oral cavity or pharynx; oesophagus; stomach; liver, intrahepatic bile ducts, or gallbladder; pancreas; respiratory tract; thymus; bone or articular cartilage of limb; melanoma; mesothelial or soft tissue; vulva or vagina; cervix uteri or corpus uteri; ovary; penis or testes; kidney, renal pelvis or ureter; bladder; eye, brain, and other parts of the central nervous system; thyroid gland; lymphatic/hematopoietic.

46 443

AAA, abdominal aortic aneurysm; BARC, Bleeding Academic Research Consortium; HFpEF, heart failure with
preserved ejection fraction; ISTH, International Society on Thrombosis and Haemostasis.

The large database of observational data is used for over 350 etiological and prognostic studies so far, and the coverage of a wide age range and long follow-up provides opportunity to develop and validate prediction models. This has been done with the SMART risk score[35,36], the SMART-REACH lifetime model for patients with previous CVD[3] and the DIAL lifetime model[37] for patients with type 2 diabetes (to be found at https://u-prevent.com and the ESC 'CVD risk calculation'-app). These estimates serve clinical practice by providing insight into risk and thus supporting patient education and shared decision making. Moreover, routinely collection of patient data allows for embedding clinical trials within the cohort, as has been done with, amongst others, TEMPUS[30] and SMART-Inform[31].

The vascular screening in the UCC-SMART study is a structured uniform program to detect risk factors and asymptomatic atherosclerosis and provides a basis for optimizing treatment of high-risk patients. In a previous study comparing the UCC-SMART screening program to usual care in another university hospital in the Netherlands, a beneficial effect of the screening program on SBP and LDL-C was seen.[29] Previous research on screening programs in the general population shows improvement of cardiovascular risk factors and detection of patients at risk, but conflicting results are found on mortality and cardiovascular events. [2,38] In a population at risk (e.g. with hypertension or diabetes) the beneficial effect of cardiovascular screening is more clearly pronounced. [2,39] In addition, a higher baseline achievement of secondary prevention targets is associated with improved cardiovascular health outcomes in an patients with established CVD and type 2 diabetes.[40]

466 Strengths and limitations

The UCC-SMART study is a unique ongoing prospective cohort study in more than 14,000 patients with a history of various manifestations of CVD or severe cardiovascular risk factors, providing a large database of information on a population at high cardiovascular risk. Collecting diverse outcome events in this population allows for research on risk factors for different manifestations of CVD and incident diabetes. Linkage to multiple registries facilitates the investigation of relationships between cardiovascular risk factors and diseases and other conditions such as cancer and dementia. Page 27 of 63

BMJ Open

473 By the integration of health care and scientific research, patient care becomes more complete 474 and data already to be collected for patient care is used to increase knowledge of CVD, whilst the 475 additive burden for participating patients is limited.

The main strengths of the UCC-SMART cohort include the large size, its capture of a high-risk population with various CVD manifestations and risk factors with few exclusion criteria, the use of a standardized diagnostic protocol, the long follow-up duration and the comprehensive prospective capture of a wide range of data. Because inclusion of patients is still ongoing, the UCC-SMART cohort provides a good representation of the past and current population of patients at high cardiovascular risk. Due to the high risk study population, the prevalence and incidence of the main outcome variables are higher than in the general population, thereby increasing the power to study these outcomes. Furthermore, all outcome events are adjudicated independently by three physicians of the endpoint committee, reducing the risk of misclassification. The proportion of missing data is small, possibly explained by the protocolized screening program taking place in one day. The substudies provide additional information on specific cardiovascular risk factors (e.g. parental history of CVD[41], characteristics related to left ventricle hypertrophia[24], and the presence of diffuse idiopathic skeletal hyperostosis[42]), manifestations of atherosclerosis (e.g. brain changes on MRI[18] and cognitive decline[19]), and other important aspects in cardiovascular risk management (e.g. the effect of a cardiovascular polypill[43]).

Limitations also need to be considered. Due to the prospective observational design, for the majority of the patients, risk factors are only measured at baseline and may have changed during follow-up. This could be reflected by the finding of this article that not all patients with CVD meet treatment goals for modifiable risk factors at baseline. Since patients are included several weeks to months after an index CVD event, risk factors are likely to be further optimized during this period after baseline examination. For a subset of patients with CVD or diabetes, a repeat of the baseline measurements after a median of 9.9 years is indeed available, allowing for investigating the course of atherosclerosis over time. Furthermore, ten percent of the included patients is lost to follow-up. Yet, the median time to loss to follow-up is 7.4 years, so those patients still contribute to a fair amount of patient-years. In addition, because UCC-SMART is a single-centre study in a university hospital, it can be disputed whether it

> represents the general high risk population and patients with established CVD. The UMC Utrecht provides care to nationwide patients referred for complex and specialized care, but also to patients referred by general practitioners from the region. Moreover, the UCC-SMART study does not include patients requiring highly specialized care (including heart transplantation and rare causes of vascular disease). Lastly, except for information on education level, the database does not contain extensive information on socioeconomic status.

> In conclusion, we have provided an updated extensive overview of the design of the UCCSMART study as well as an overview of the findings to date. A future goal is to make the UCC-SMART
> data Findable, Accessible, Interoperable and Reusable (FAIR).[44]

511 Collaboration

The UCC-SMART study group directs the academic focus of research using the UCC-SMART data and consists of members from both epidemiological and clinical cardiovascular research. Datasets are provided to interested researchers after approval of request by the UCC-SMART study group. Access to the data request module can be applied for via <u>ucc-smart@umcutrecht.nl</u>.

518 Conflict of interest

519 The authors declare no conflict of interest.

521 Financial support

The UCC-SMART study was financially supported by the UMC Utrecht, the Netherlands. The
supporting sources had no involvement in study design, analysis, interpretation, writing of the results,
or the decision to submit for publication.

526 Author contributions

F.L.J.V., S.H.J.H., J.W., M.C.C. and M.A.G.H. contributed to the conception and design of the work.
All authors contributed to the analysis or interpretation of data for the work. M.A.G.H. and M.C.C.
drafted the manuscript. All authors critically revised the manuscript. All gave final approval and agreed
to be accountable for all aspects of work ensuring integrity and accuracy.

532 Acknowledgements

We gratefully acknowledge the contribution of the participants, the research nurses, R. van Petersen (data-manager), A. Vandersteen (study manager), the founders of the SMART-study in 1996: A. Algra, J.D. Banga, B.C. Eikelboom and Y. van der Graaf, and the members of the UCC-SMART Studygroup: F.W. Asselbergs, M.J. Cramer and H.M. Nathoe, Department of Cardiology; G.J. de Borst, Department of Vascular Surgery; M.L. Bots and M.I. Geerlings, Julius Centre for Health Sciences and Primary Care; M.H. Emmelot-Vonk, Department of Geriatrics; P.A. de Jong, Department of Radiology; A.T. Lely, Department of Gynaecology and Obstetrics; N.P. van der Kaaij, Department of Cardiothoracic Surgery; L.J. Kappelle and Y.M. Ruigrok, Department of Neurology; M.C. Verhaar, Department of Nephrology & Hypertension; F.L.J. Visseren (chair), Department of Vascular Medicine, UMC Utrecht.

3 4	542	Refer	ierences					
5 6 7 8 9 10 11 12	543	[1]	Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global					
	544		Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019					
	545		Study. J Am Coll Cardiol. 2020;76(25):2982-3021.					
	546	[2]	Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC					
13 14	547		Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol.					
15 16 17 18	548		2022;29(1):5–115.					
	549	[3]	Kaasenbrood L, Bhatt DL, Dorresteijn JAN, Wilson PWF, D'Agostino RB, Massaro JM, et al.					
19 20	550		Estimated life expectancy without recurrent cardiovascular events in patients with vascular					
21 22	551		disease: The SMART-REACH model. J Am Heart Assoc. 2018;7(16).					
23 24 25	552	[4]	Adler A, Agodoa L, Algra A, Asselbergs FW, Beckett NS, Berge E, et al. Pharmacological					
25 26 27 28 29 30 31 32 33 34 35	553		blood pressure lowering for primary and secondary prevention of cardiovascular disease across					
	554		different levels of blood pressure: an individual participant-level data meta-analysis. Lancet.					
	555		2021;397(10285):1625–36.					
	556	[5]	Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the					
	557		evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532-61.					
36 37	558	[6]	Simons PCG, Algra A, Van De Laak MF, Grobbee DE, Van Der Graaf Y. Second					
38 39	559		manifestations of ARTerial disease (SMART) study: Rationale and design. Eur J Epidemiol.					
40 41	560		1999;15(9):773–81.					
42 43	561	[7]	Rose GA, Blackburn H. Cardiovascular survey methods. Monogr Ser World Health Organ.					
44 45 46	562		1968;56:1–188.					
40 47 48	563	[8]	Tremblay AJ, Morrissette H, Gagné JM, Bergeron J, Gagné C, Couture P. Validation of the					
49 50	564		Friedewald formula for the determination of low-density lipoprotein cholesterol compared with					
51 52	565		β -quantification in a large population. Clin Biochem. 2004;37(9):785–90.					
53 54	566	[9]	Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, et al. A new equation					
55 56	567		to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12.					
57 58	568	[10]	Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al.					
59 60	569		Recommendations for cardiac chamber quantification by echocardiography in adults: an					

Page 31 of 63

BMJ Open

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	570		update from the American Society of Echocardiography and the European Association of
	571		Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015
	572		Jan;28(1):1-39.e14.
	573	[11]	Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic
	574		assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol.
	575		1986 Feb;57(6):450-8.
	576	[12]	Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al.
	577		Recommendations for the Evaluation of Left Ventricular Diastolic Function by
19 20	578		Echocardiography: An Update from the American Society of Echocardiography and the
21 22 22	579		European Association of Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc
23 24 25	580		Echocardiogr. 2016 Apr;29(4):277-314.
26 27	581	[13]	Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and
28 29	582		cancer. Circulation. 2016;133(11):1104–14.
30 31	583	[14]	ten Berg MJ, Huisman A, van den Bemt PMLA, Schobben AFAM, Egberts ACG, van Solinge
32 33	584		WW. Linking laboratory and medication data: new opportunities for pharmacoepidemiological
34 35	585		research. Clin Chem Lab Med. 2007;45(1):13–9.
36 37	586	[15]	Patel RS, Asselbergs FW. The GENIUS-CHD consortium. Eur Heart J. 2015 Oct;36(40):2674-
38 39	587		6.
40 41	588	[16]	Matsushita K, Ballew SH, Astor BC, Jong PE de, Gansevoort RT, Hemmelgarn BR, et al.
42 43	589		Cohort profile: the chronic kidney disease prognosis consortium. Int J Epidemiol. 2013
44 45 46	590		Dec;42(6):1660–8.
40 47 48	591	[17]	Franssens BT, Nathoe HM, Leiner T, Van Der Graaf Y, Visseren FLJ. Relation between
49 50	592		cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed
51 52	593		tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol.
52 53 54 55 56 57 58 59 60	594		2017;24(6):660–70.
	595	[18]	Geerlings MI, Appelman APA, Vincken KL, Algra A, Witkamp TD, Mali WPTM, et al. Brain
	596		volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The
	597		SMART-MR study. Atherosclerosis. 2010;210(1):130-6.

1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	598	[19]	Grool AM, Van Der Graaf Y, Mali WPTM, Geerlings MI. Location of cerebrovascular and
	599		degenerative changes, depressive symptoms and cognitive functioning in later life: The
	600		SMART-Medea study. J Neurol Neurosurg Psychiatry. 2011;82(10):1093-100.
	601	[20]	Verhoeven BAN, Velema E, Schoneveld AH, de Vries JPPM, de Bruin P, Seldenrijk CA, et al.
	602		Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation
	603		to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol.
	604		2004;19(12):1127–33.
	605	[21]	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al.
	606		Prevalence and risk of cardiovascular risk factors and events in offspring of patients at high
	607		vascular risk and effect of location of parental vascular disease. Int J Cardiol. 2015;195:195-
	608		202.
	609	[22]	Harlianto NI, Oosterhof N, Foppen W, Hol ME, Wittenberg R, van der Veen PH, et al. Diffuse
28 29	610		idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased
30 31 32 33 34 35 36 37 38 39	611		cardiovascular risk. Rheumatology. 2021;1–8.
	612	[23]	Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in
	613		diffuse idiopathic skeletal hyperostosis (DISH). Radiology. 1976 Jun;119(3):559-68.
	614	[24]	Meijs MFL, Bots ML, Vonken EJA, Cramer MJM, Melman PG, Velthuis BK, et al. Rationale
	615		and design of the SMART Heart study. Netherlands Hear J. 2007;15(9):295-8.
40 41 42	616	[25]	Zwakenberg SR, De Jong PA, Hendriks EJ, Westerink J, Spiering W, De Borst GJ, et al.
43 44	617		Intimal and medial calcification in relation to cardiovascular risk factors. PLoS One. 2020;15(7
45 46	618		July):1–14.
47 48	619	[26]	Schlösser FJV, Tangelder MJD, Verhagen HJM, van der Heijden GJMG, Muhs BE, van der
49 50	620		Graaf Y, et al. Growth predictors and prognosis of small abdominal aortic aneurysms. J Vasc
51 52 53 54 55 56 57 58 50	621		Surg. 2008;47(6):1127–33.
	622	[27]	Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FLJ, Hoogduin JM.
	623		Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in
	624		patients with manifest cardiovascular disease. NMR Biomed. 2016;29(1):48-56.
60	625	[28]	Goessens BMB, Visseren FLJ, de Nooijer J, van den Borne HW, Algra A, Wierdsma J, et al. A

Page 33 of 63

1

BMJ Open

2			
3 4 5 6	626		pilot-study to identify the feasibility of an Internet-based coaching programme for changing the
	627		vascular risk profile of high-risk patients. Patient Educ Couns. 2008;73(1):67-72.
7 8	628	[29]	Brouwer BG, Visseren FLJ, Algra A, Van Bockel JH, Bollen ELEM, Doevendans PA, et al.
9 10 11 12 13 14 15 16	629		Effectiveness of a hospital-based vascular screening programme (SMART) for risk factor
	630		management in patients with established vascular disease or type 2 diabetes: A parallel-group
	631		comparative study. J Intern Med. 2010;268(1):83-93.
	632	[30]	Lafeber M, Grobbee DE, Bots ML, Thom S, Webster R, Rodgers A, et al. The Evening versus
17 18	633		Morning Polypill Utilization Study: The TEMPUS rationale and design. Eur J Prev Cardiol.
19 20 21	634		2014;21(4):425–33.
21 22 23	635	[31]	Jaspers NEM, Visseren FLJ, Van Der Graaf Y, Smulders YM, Damman OC, Brouwers C, et al.
24 25	636		Communicating personalised statin therapy-effects as 10-year CVD-risk or CVD-free life-
26 27	637		expectancy: Does it improve decisional conflict? Three-armed, blinded, randomised controlled
28 29	638		trial. BMJ Open. 2021;11(7):1-8.
30 31	639	[32]	Brouwer BG. SMART risk factor screening in patients at high vascular risk [dissertation].
32 33	640		Utrecht University; 2008.
34 35	641	[33]	Goessens BMB, Visseren FLJ, Sol BGM, de Man-Van Ginkel JM, Van Der Graaf Y. A
36 37	642		randomized, controlled trial for risk factor reduction in patients with symptomatic vascular
38 39 40	643		disease: The multidisciplinary Vascular Prevention by Nurses Study (VENUS). Eur J Prev
40 41 42	644		Cardiol. 2006;13(6):996–1003.
43 44	645	[34]	Vernooij WP, Kaasjager HAH, Van Der Graaf Y, Wierdsma J, Grandjean HMH, Hovens
45 46	646		MMC, et al. Internet based vascular risk factor management for patients with clinically
47 48	647		manifest vascular disease: Randomised controlled trial. BMJ. 2012;344(7863):1-13.
49 50	648	[35]	Dorresteijn JAN, Visseren FLJ, Wassink AMJ, Gondrie MJA, Steyerberg EW, Ridker PM, et
51 52	649		al. Development and validation of a prediction rule for recurrent vascular events based on a
53 54 55 56 57 58 59 60	650		cohort study of patients with arterial disease: The SMART risk score. Heart. 2013;99(12):866-
	651		72.
	652	[36]	Hageman SHJ, McKay AJ, Ueda P, Gunn LH, Jernberg T, Hagström E, et al. Estimation of
	653		recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular

1 2			
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	654		disease: the updated SMART2 algorithm. Eur Heart J. 2022;
	655	[37]	Berkelmans GFN, Gudbjörnsdottir S, Visseren FLJ, Wild SH, Franzen S, Chalmers J, et al.
	656		Prediction of individual life-years gained without cardiovascular events from lipid, blood
	657		pressure, glucose, and aspirin treatment based on data of more than 500 000 patients with Type
	658		2 diabetes mellitus. Eur Heart J. 2019;40(34):2899–906.
	659	[38]	Cho JH, Han KD, Jung H-Y, Bond A. National health screening may reduce cardiovascular
	660		morbidity and mortality among the elderly. Public Health. 2020 Oct;187:172-6.
17 18	661	[39]	Antoku Y, Takemoto M, Mito T, Shiiyama R, Otsuka-Morisaki H, Tanaka A, et al. Impact of
19 20	662		Annual Cardiovascular Screening Tests in Patients with Type 2 Diabetes Mellitus without
21 22 22	663		Previous Histories of Cardiovascular Disease: Four-year Clinical Outcomes. Intern Med. 2021
23 24 25	664		Sep;60(17):2725–32.
26 27	665	[40]	Pagidipati NJ, Navar AM, Pieper KS, Green JB, Bethel MA, Armstrong PW, et al. Secondary
28 29	666		Prevention of Cardiovascular Disease in Patients With Type 2 Diabetes Mellitus. Circulation.
30 31	667		2017 Sep 26;136(13):1193–203.
32 33	668	[41]	Weijmans M, van der Graaf Y, de Borst GJ, Nathoe HM, Algra A, Visseren FLJ, et al. Parental
34 35	669		history and the risk of subsequent vascular events in patients with clinically manifest vascular
36 37	670		disease: The effects of sex of the parent and vascular disease location. Atherosclerosis.
38 39	671		2014;234(1):129–35.
40 41 42	672	[42]	Harlianto NI, Westerink J, Foppen W, Hol ME, Wittenberg R, Van Der Veen PH, et al.
42 43 44 45 46	673		Visceral adipose tissue and different measures of adiposity in different severities of diffuse
	674		idiopathic skeletal hyperostosis. J Pers Med. 2021;11(7):1–11.
47 48	675	[43]	Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a
49 50	676		morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood
51 52 53 54 55 56 57 58 59 60	677		pressure and adherence in high-risk patients; A randomized crossover trial. Int J Cardiol.
	678		2015;181:193–9.
	679	[44]	Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR
	680		Guiding Principles for scientific data management and stewardship. Sci Data.
	681		2016;3(1):160018.
Figure legends

Figure 1. Course of the UCC-SMART study

ECG, electrocardiogram; UCC-SMART, Utrecht Cardiovascular Cohort - Second Manifestations of Arterial Disease; UMC Utrecht, University Medical Centre Utrecht

Figure 2. Timeline of measurements collected for or starting from a certain period

ACE, angiotensin converting enzyme; apoB, apolipoprotein B; CAC, coronary artery calcium; CRP, C-reactive protein; CT, computerized tomography; CV, cardiovascular; CVD, cardiovascular disease; HbA1c, glycated haemoglobin; Lp(a), lipoprotein a; MRI, magnetic resonance imaging; T, Tesla; TSH, thyroid stimulating hormone

Figure 3. Cumulative number of patients over time

Inclusion in the UCC-SMART study started in September 1996.

Figure 4. Distribution of inclusion diagnoses

Figure 4. Distances

Page 37 c 1996	of 63 2000	2005	5 2010	2015	BMJ Open 2020	
1		H-1				Questionnaire about social support VENUS
2						Questionnaire about CV risk factors and CVD in children of participants SMART Junior
3 4						Questionnaire about obstetric history
5					>	Questionnaire about level of education: native country
6 7	_	-				Questionnaire about quality of life L SMAPT 2
8						
9 10						Questionnaire about depression (symptoms and/or diagnosis SMART-MR & SMART-2
11						Neuropsychological assessment SMART-MR
12 13	I				\rightarrow	Waist and hip circumference
14	H					Serum ACE, adipokines, extracellular vesicles
15 16			H			Circadian cortisol using saliva
17						Serum uric acid
18 19						Bone metabolism regulators
20			· · · ·			
21					191	Genetics
23						Sodium and potassium urinary excretion
24					\mapsto	(Lp(a))
25 26						Homocysteine
27						HbA1c, ApoB
28 29		H				TSH, CRP, fasting insulin
30 31						Ultrasound Vascular wall stiffness
32	—					Ultrasound Flow-mediated vasodilatation
33 34				i		1.5T MRI Subcutaneous and supraclavicular brown adipose tissue <i>Brown adipose tissue</i>
35 36				—		CT Calcification in femoral and crural arteries <i>ARTEMIS</i>
37						1.5T MRI Mass and volume of left ventricle: volume of left atrium SMART HEART
38 39						CT Enicardial adipose tissue CAC-score calcification on heart valves and in aorta L SMART-ORACLE
40						
41 42						
43	H-			For peer review only - H	nttp://bmiopen.bmi.c	1.5T MRI Various manifestations of brain changes caused by CVD or CV risk factors SMART-MR
44 45			H			7T MRI Various manifestations of brain changes caused by CVD or CV risk factors SMART-MR & SMART Medea
46						

Supplementary material

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular

risk in The Netherlands

Content list

1 2

Supplementary Table 5. Substudies of UCC-SMART......12

3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
26	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
 / Q	
+0 40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59 60

3
4
5
6
7
8
0
9 10
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
20
20
31
32
33
34
35
36
37
38
39
10
-+U // 1
41
42
43
44
45
46
47
48
49
50
51
51
52 52
53
54
55
56
57
58
59
60
50

Supplementary Table 1. Inclusion criteria and exclusion criteria	

Inclusion criteria	Definition
One or more of the following cardiovascu	lar diseases or risk factors:
Carc	liovascular disease
Transient ischemic attack	Sudden onset, <24 hours of:
	<i>carotid</i> : temporary motor weakness in one half of
	the body, language disorder, blindness in one eve
	the body, minguage assorably, omignoss in one eye
	vartabrobasilar >2 simultaneously: bilateral
	motor weakness or paraesthesia dizziness
	dialagia darabasia staria daranthuis
	dipiopia, dyspnagia, ataxia, dysartinna
	unknown vascular region: hemianopia, dysarthria
Cerebral infarction	Criteria as for TIA, but duration of >24 hours
Subarachnoid haemorrhage	Sudden headache and (temporary) loss of
	consciousness, often accompanied by neck stiffness,
	nausea and vomiting, with blood in basal cisterns
	confirmed by CT or xantochromia in cerebrospinal
	fluid
Carotid artery stenosis	Duplex ultrasound confirmed stenosis or occlusion of
	>1 carotid artery with diameter reduction >50%
Ischemic retinal syndrome	Visual field defect diagnosed as retinal syndrome by
ischerine retinar synaronie	onbthalmologist
Angina pectoris	Chest pain with proven stenosis on coronary
Angina pectoris	angiogram
Myocardial infarction	≥ 2 of following:
	- Chest pain >20 minutes, not relieved by nitrates;
	- ST elevation >1 mm in 2 contiguous ECG leads,
	or left bundle branch block;
	- Troponin levels >60 ng/L with rise and fall
	pattern*
Coronary syndrome requiring PCI or	
CABG	
Abdominal aortic aneurysm	Ultrasound confirmed local dilatation of abdominal
,	aorta with anterior-posterior diameter >3 cm and/or
	distal-proximal ratio of >15
Renal artery stenosis	Stenosis of ≥ 1 renal artery with lumen narrowing
Renar artery stenosis	>50% caused by atherosclerosic
Derinhanal artemy disagas of the lawser	Eastaine alagaification
Peripheral artery disease of the lower	
limbs	- Fontaine II: intermittent claudication: pain (or
	other symptoms) in one or both legs after certain
	walking distance, disappearing at rest;
	- Fontaine III: rest/nocturnal pain;
	- Fontaine IV: ischemic ulceration, necrosis or
	gangrene; confirmed by ABI ≤0.90 at rest and/or
	$\geq 20\%$ post-exercise decrease
Cardio	vascular risk factors
Hypertension	Estimated as severe risk factor by physician. based
	on e.g. difficult-to-control hypertension target organ
	damage medical or family history
Hyperlinidaemia	Estimated as severe risk factor by physician based
пурацианиа	on a g difficult to control hyperbideserie
	on c.g. unitout-to-control hyperhipidaenila,
	suspected lipid metabolism disorder, medical or
	tamily history

Diabetes mellitus	Fasting glucose \geq 7.0 mmol/L, non-fasting glucose			
	\geq 11.1 mmol/L or use of oral antidiabetic agents or			
	insulin			
Renal insufficiency	Serum creatinine >120 µmol/L			
HIV infection	Chronic infection with human immunodeficiency			
	virus			
Family medical history	Positive family history for premature cardiovascular			
	disease in 1 st degree relatives			
Pre-eclampsia†	Gestational hypertension accompanied by			
	proteinuria, other maternal organ dysfunction or			
	uteroplacental dysfunction			
HELLP syndrome [†]	Haemolysis, elevated liver enzymes, low platelets as			
	a manifestation of pre-eclampsia			
Placental abruption [†]	Gestational hypertension accompanied by placental			
	abruption as an effect of uteroplacental insufficiency			
Intrauterine growth restriction ⁺	Gestational hypertension accompanied by fetal			
	growth restriction as an effect of uteroplacental			
	insufficiency			
Rema	ining inclusion criteria			
18 – 90 years of age				
Independent in most daily activities	Rankin scale $\leq 3^1$			
Exclusion criteria				
Pregnancy				
Short life expectancy	<u></u>			
Insufficient understanding and expression of the Dutch language				
No informed consent				
Follow-up impossible				

* In earlier years of the UCC-SMART study, this laboratory item was defined as CK elevation of $\geq 2x$ upper limit and MB-fraction >5% of total CK level.

[†] Hypertensive pregnancy complications are based on the ISSHP criteria²

ABI, ankle-brachial index; CABG, coronary artery bypass grafting; CK, creatine kinase; CT, computed tomography; ECG, electrocardiogram; HELLP, haemolysis, elevated liver enzymes and low platelets; HIV, human immunodeficiency virus; ISSHP, International Society for the Study of Hypertension in Pregnancy; PCI, percutaneous coronary intervention; TIA, transient ischemic attack.

BMJ Open

Health questionnaire	Medication use	Physical examination	Radiology measurements	Laboratory measurements
Medical history	Statins	Weight (kg)	Visceral fat (cm)	Haemoglobin (mmol/L)
Age (years)	Ezetimibe	Height (m)	Subcutaneous fat (cm)	Haematocrit (%)
Sex	Fibrates	Blood pressure (mmHg)	Carotid artery stenosis (%)	Total cholesterol (mmol/L)
Smoking and pack years	Thiazide diuretics	Ankle-brachial index	Carotid intima thickness (mm)	LDL-C (mmol/L)
Alcohol use and number of units	Loop diuretics	Body mass index (kg/m ²)	Aortic artery diameter (cm)	HDL-C (mmol/L)
Level of education	Potassium saving diuretics	Waist circumference (cm)	Kidney size and volume (cm; mL)	Apolipoprotein B (g/L)
Country of birth	ACE-inhibitors	Hip circumference (cm)	Electrocardiography	Trigly cerides (mmol/L)
Quality of life*	Angiotensin II-receptor blockers		Echocardiograp hy †	HbA1c (%)
Exercise (MET-hours per week)	Aldosterone antagonists			Fasting glucose (mmol/L)
	Beta-blockers			Fasting insulin (mU/L)
	Calcium antagonists			Creatinine (µmol/L)
	Alpha blockers			eGFR (ml/min/1.73 m ²)
	Central acting antihypertensives			Albuminuria (mg/L)
	Direct vasodilators			Albumin-to-creatinine ratio
	Aspirin			CRP (mg/L)
	Clopidogrel			TSH (mU/L)
	Dipyridamole			Lp(a)
	DOAC			Urine sodium
	Vitamin K antagonists			Urine potassium
	LMWH			
	Oral glucose-lowering therapy			
	Insulin			
	Antidepressants			
	Benzodiazepines			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

* Based on EQ-5D questionnaire

† Echocardiography will be added to the UCC-SMART program in the near future

ACE, angiotensin converting enzyme; CRP, C-reactive protein; DOAC, direct oral anticoagulant; eGFR, estimated glomerular filtration rate; HbA1c,

glycosylated haemoglobin type A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LMWH, low molecular

weight heparin; Lp(a), lipoprotein(a); MET, metabolic equivalent of task; TSH, thyroid stimulating hormone; UCC-SMART, Utrecht Cardiovascular Cohort -

Second Manifestations of Arterial Diseas

Supplementary Table 3. Measurements that have been performed in the past

Vascular wall stiffness was determined from 2001 until 2003 using the Wall Track System that captures vascular diameter changes using radio-frequent signals. At the first signal, the position of the anterior and posterior vascular wall of the common carotid artery are marked at 2 cm proximal to the carotid bulb. Then, for five times on both the left and right side, changes in arterial diameter (ΔD) and end-diastolic diameter (D_d) are registered during four seconds, and the mean is calculated. Carotid distension is defined as the change in artery diameter in systole relative to diastolic diameter. Other stiffness indices include β stiffness index (ln(SBP/DBP)/($\Delta D/D_d$)), compliance coefficient (($\pi \times D_d \times \Delta D$)/2×pulse pressure), distensibility coefficient (($2 \times \Delta D/D_d$)/pulse pressure), Peterson's modulus (pressure change required for theoretical 100% increase in diameter) and Young's elastic modulus (pressure per mm² required for theoretical 100% extension).

Flow-mediated vasodilatation (FMD) was assessed temporarily starting from March 1999. Here, the Wall Track System described above was used to capture the diameter of the brachial artery in the elbow crease. Following 3 baseline readings, new measurements were taken every 30 seconds for 5 minutes: first after a blood pressure cuff at the forearm was inflated to 100 mmHg above SBP for 4 minutes, and then after sublingual administration of 400 µg of nitroglycerin. Endothelial function was defined as the proportional increase of diameter after nitrate and the baseline-adjusted maximal diameter following ischemia. This examination was stopped in June 2001, since analysis in the first 400 patients showed this measurement was not related to other known measures of atherosclerosis.

Quality of life information was collected through questionnaires based on the 36-Item Short Form Health Survey (SF-36)³, sent to participants from 2001 until 2019. This quality of life assessment contains scales for 1) limitations in physical activities; 2) limitations in social activities; 3) limitations in usual role activities because of physical health problems; 4) bodily pain; 5) mental health; 6) limitations in usual role activities because of emotional problems; 7) vitality and 8) general health perceptions.

Homocysteine was measured from 1998 until 2011 in fasting blood samples by high performance liquid chromatography with fluorescence detection. Up until 2000, a methionine loading test was performed in patients younger than 50 years. Plasma homocysteine was measured six hours after oral administration of 100mg methionine per kilogram bodyweight.

DBP, diastolic blood pressure; SBP; systolic blood pressure

Cardiovas cular dis e ase	Definition of cardiovas cular disease*
Cerebrovascular disease	TIA, cerebral infarction, ischemic retinal syndrome, carotid surgery or angioplasty in medical history
Coronary artery disease	Myocardial infarction, angina pectoris, ≥ 1 vessel disease on coronary angiography, PCI or CABG in medical history
Abdominal aortic aneurysm	Abdominal aortic aneurysm, surgical or endovascular treatment of abdominal aortic aneurysm in medical history
Peripheral artery disease	Fontaine classification \geq II, amputation, vascular surgery or angioplasty in medical history

Supplementary Table 4. Definitions of established cardiovascular disease

* Definitions of these items are listed in Supplementary Table 1.

CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; TIA, transient ischemic attack.

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
50 27
3/
38
39
40
41
42
43
44
45
46
40 //7
4/
48
49
50
51
52
53
54
55
56
50
57
58
59
60

Outcome event	Definition of outcome event
	Primary endpoints
Stroke Ischemic stroke / haemorrhagic infarction	>24 hours of associated clinical signs causing increased disability of ≥ 1 grade on modified Rankin scale ¹ , and new (haemorrhagic) infarction on CT or MRI <2 weeks after stroke
Cerebral haemorrhage	Cerebral haemorrhage confirmed with CT, MRI or surgery
Subarachnoid haemorrhage	Subarachnoid haemorrhage confirmed with CT, MRI or surgery
Type not determined	>24 hours of associated clinical signs causing increased disability of ≥ 1 grade on modified Rankin scale, but no brain imaging performed
Retinal syndromes	
Infarction	Associated clinical symptoms, typical fundus changes and/or vision loss, scotoma on perimetry
Haemorrhage	Associated clinical symptoms, typical fundus changes and vision loss
Myocardial infarction	The assessment includes: chest pain >30 minutes, elevated cardiac enzymes, characteristic ECG-changes
STEMI	Acute chest pain with persistent (>20 minutes) ST-elevation
NSTEMI	Acute chest pain without ST-elevation, with elevated troponin
Intervention-related myocardial infarction	New Q wave and elevated troponin <7 days after any intervention (for PCI >3x, for CABG >5x)
Probable myocardial infarction	Typical pain, persistent STT-changes, no documented course of cardiac enzymes
Heart failure	≥2 of the following: dyspnoea, dyspnoea on exertion, paroxysmal nocturnal dyspnoea, orthopnoea, exercise intolerance, pulmonary oedema, increased central venous pressure, third heart tone, hepatojugular reflux, altered hemodynamics, peripheral oedema, cardiomegaly; and (intensified) treatment with loop diuretics or intravenous vasoactive inotropic agents
	Classified as: systolic heart failure (at least moderate left ventricle dysfunction or LVEF <40%) or heart failure with preserved ejection fraction, due to coronary disease, valve disease or other causes
Rupture of abdominal aortic aneurysm	Rupture abdominal aortic aneurysm, proven by ultrasound, CT or laparotomy
Renal disease End-stage renal disease	CKD stage 5 (i.e. persisting eGFR <15ml/min/1.73 m ² for >3 months and/or need for renal replacement therapy (chronic dialysis or renal transplantation))

Acute renal insufficiency – temporary renal replacement therapy	Acute kidney injury requiring temporary renal replacement therapy
Acute renal insufficiency – no renal replacement therapy	Acute kidney injury KDIGO stage 3 (i.e. serum creatinine 3 times baseline creatinine and/or serum creatinine \geq 354 µmol/L)
Bleeding	Bleeding requiring outpatient treatment or (prolonged) hospitalization
Major bleeding	<i>ISTH definition:</i> fatal bleeding and/or bleeding in critical area or organ (such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular, pericardial, intramuscular causing compartment syndrome), bleeding causing Hb level drop of \geq 1.24 mmol/L or leading to transfusion of \geq 2 units of blood ⁴
	<i>BARC type 3:</i> overt bleeding with Hb level drop of ≥ 1.86 mmol/L, leading to transfusion, cardiac tamponade, surgical intervention for control or intravenous vasoactive agents, or located intracranial or intraocular compromising vision <i>BARC type 5:</i> fatal bleeding ⁵
Diabetes	Self-reported diagnosis, confirmed and classified based on a questionnaire. If necessary, additional information is requested from the general practitioner or looked up in the electronic health record.
DM type 1	Insulin needed immediately at onset and absence of oral glucose lowering medication. Supportive but not mandatory: \leq 25 years of age, BMI <25 kg/m ² , presence of anti-GAD antibodies
DM type 2	Diagnosed between age 35 and 40 and BMI >33 kg/m ² or diagnosed after age 40 and BMI >27 kg/m ²
Dementia	Self-reported diagnosis, confirmed and classified based on a questionnaire. Classified as: Alzheimer's disease; vascular dementia; a mix of Alzheimer's disease and vascular dementia; Lewy Body dementia; or frontotemporal dementia.
Vascular mortality Fatal cerebral infarction	Cerebral infarction leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without infarction)
Fatal cerebral haemorrhage	Cerebral haemorrhage leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without infarction)
Fatal stroke - type not determined	Stroke without radiological confirmation leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without stroke)
Fatal myocardial infarction	Documented myocardial infarction followed by death (>1 hour after onset of symptoms)
Fatal heart failure	Heart failure leading to death

Fatal rupture abdominal aortic aneurysm	Rupture abdominal aortic aneurysm followed by death
Fatal bleeding	Major bleeding leading to death
Sudden death	Witnessed death occurring within 1 hour after onset of symptoms, or within 24 hours given convincing circumstantial evidence
Other	Death without apparent cause in case of cardiovascular history, terminal renal insufficiency, dementia (unless clearly non-vascular), pulmonary haemorrhage*
Non-vascular mortality	Death caused by malignancy, infection, unnatural death or other
All-cause mortality	Death from any cause
	Secondary endpoints
Amputation	Any amputation of a toe or part of the foot or leg due to chronic ischemia. <i>Excluding:</i> traumatic amputations, amputation due to sepsis, amputation of fingers.
Vascular intervention†	Percutaneous coronary intervention; coronary artery bypass grafting; carotid endarterectomy, angioplasty or stenting; vertebral artery angioplasty or stenting; vascular surgery or percutaneous transluminal angioplasty of the aorta(bifurcation), iliac arteries, femoral and crural arteries; vascular intervention because of abdominal angina; LVAD. Angioplasty and stenting of other arteries are registered as well.
Vascular intervention of an intracranial aneurysm	Coiling or clipping of an intracranial aneurysm

* In accordance with Antiplatelets Trialists' Collaboration, Lancet 2002

[†] Excluding interventions already planned before or at inclusion, but including re-interventions and complications of an intervention already planned before or at inclusion.

Anti-GAD, antibodies to glutamic acid decarboxylase; BARC; Bleeding Academic Research Consortium; BMI, body mass index; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; CT, computed tomography; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; Hb, haemoglobin; KDIGO, Kidney Disease Improving Global Outcomes; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MRI, magnetic resonance imaging; NSTEMI, non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; STEMI, STelevation myocardial infarction

Substudy	Period in which the patients were included	N	Aim	Key publications	Additional measurements within substudy
ARTEMIS (ARTErial calcifications of the Media and Intima in SMART)	2015 - 2017	520	1) To determine whether intima and media calcification differ in their respective associated CVD risks. 2) To elucidate which risk factors and mechanisms lead to the development of these respective types of calcification and in turn to cardiovascular disease	 Zwakenberg, 2020, PloS One⁶ Hoek, 2021, Atherosclerosis⁷ 	<u>Technique</u> : unenhanced thin-slice CT-scan o the legs (femoral head to feet) <u>Measurement</u> : calcification in the femoral and crural arteries scored as absent, predominant intimal arterial calcification, predominant medial arterial calcification or indistinguishable; calcification volume.
Athero-Express Added to UCC- SMART study in June 2022	2002 - present	Patients undergoing a femoral or carotid endarterectomy	To investigate the value of plaque characteristics in relation to cardiovascular outcomes	Verhoeven, 2004, Eur J Epidemiology ⁸	During surgery, the atherosclerotic plaque is collected and immunohistochemically stained in order to asses fat, collagen, macrophages and smooth muscle cells
BEST (BEtter risk factor treatment with STructured agreement) RCT	2004 - 2006	197 patients with at least 2 modifiable risk factors	To investigate whether a clearly written agreement on risk factor management between general practitioners and hospital improved the vascular risk profile of high-risk patients compared with usual care after 1 year	Brouwer, B.G. 2008. SMART risk factor screening in patients at high vascular risk. Utrecht University, Utrecht ⁹	NA
Brown adipose tissue	2014 - 2016	50 patients with clinically manifest CVD	 To evaluate and optimize a protocol for quantifying brown adipose tissue with MRI and to assess BAT volume per patient. 2) To evaluate the reproducibility of MRI by determining inter-scan, intra-observer and inter-observer variability in BAT volume 	 Franssens, 2016, NMR Biomed¹⁰ Franssens, 2017, J Magn. Reson. Imaging¹¹ 	<u>Technique:</u> 1.5T water-fat MRI of supraclavicular and subcutaneous adipose tissue <u>Measurement:</u> fat signal fraction value, representative of the amount of triglycerides, intracellular water content and capillary density, of supraclavicular and subcutaneous adipose tissue

DISH (Diffuse idiopathic skeletal hyperostosis)	1996 - 2018	4,791 (all patients from SMART with chest X-ray within 3 months of inclusion)	N.A.	- Harlianto, 2021, Rheumatology ¹² - Harlianto, 2021, J. Pers. Med. ¹³	<u>Technique:</u> Chest X-ray within three months of inclusions (if available in routine clinical care) <u>Measurement:</u> X-rays were scored for DISH using the Resnick criteria. ¹⁴ DISH is classified following the presence of ossification of at least four contiguous vertebrae; (relative) preservation of the intervertebral disc height; and the absence of apophyseal joint bony ankylosis or sacroiliac joint erosion. Thoracic aortic calcification subjective score as absent, mild, moderate and severe.
IRIS	2008 - 2010	330 patients	1) To evaluate whether an internet-	- Vernooij, 2012, BMJ ¹⁵	NA
(Internet-based		with a recent	based vascular risk factor	- Greving, 2015, BMJ	
vascular Risk factor		clinical	management program promoting	Open ¹⁶	
Intervention and		manifestation	self-efficacy on top of usual care is		
Self-management)		of	more effective than usual care		
_ ~_		atherosclerosis	alone in reducing vascular risk		
RCT		of CAD, CeVD	factors in patients with a recent		
		or PAD and $(1) > 2$	clinical manifestation of a vascular		
		With ≥ 2	disease.		
		treatable risk	2) To evaluate whether an internet-		
		factors not at	based vascular fisk factor		
		IMC Utrocht	management program for reducing		
		$\pm Rijnstate)$	with a recent clinical manifestation		
		T Rijistate)	of a vascular disease is cost-		
			effective.		
RULE	2005 - 2007	604 patients	To assess risk factor status after	Brouwer, 2010. J of Int	NA
(Risk management		with CAD,	referral in patients with established	Med ¹⁷	
in Utrecht and		CeVD, PAD or	vascular disease or type 2 diabetes		
		T2DM from	who took part in the		

Leiden Evaluation		UMC Utrecht	multidisciplinary hospital-based		
study)		(+ 566 patients	vascular screening program		
		from LUMC)	SMART, compared with a group		
Two-centre parallel-			who did not participate in such a		
group comparative investigation			program		
Small ane urys ms	1996 - 2005	230 patients	To estimate overall rupture rates of	Schlosser, 2008, J Vasc	Technique: Ultrasound scanning of the a
trial (AAA)		with an initial	small AAAs and to investigate a	Surg ¹⁸	
		AAA diameter	predefined set of demographic		
		of 30-55mm,	characteristics and cardiovascular		Massurement: A A A diameter and change
		who were	risk factors for association with		with initial AAA diameter
		examined by \geq	AAA growth		
		2 AAA			
		diameter			
		measurements			
		and with ≥ 6			
		months of FU			
SMART-2	2007 - present	1794 patients	To study the course of		NA
		with a history	atherosclerosis and vascular risk		
		of CVD or	factors over time, and to evaluate) ,	
		diabetes, a	the effects of treatment in the past	1	
		median of 9.9			
		years after			
		inclusion in			
	1006 2006	UCC-SMART		M	
SMART HEART	1996 - 2006	536 patients	To detect patient characteristics	- Meijs, 2007 , Neth Heart	<u>rechnique:</u> 1.51 cardiac MRI and delay
		with ≥ 3 years	with special focus on the detection	Mains 2000 Fur I Pray	ennancement cardiac MRI
		hypertension, but free of	of SNDs that confer an increased	- Meijs, 2009, Eur J Flev	
		known	susceptibility for the development	Varnooji 2012 Am I	Measurement: IV mass IV and diastal
		MIUWII	of I VH and thus heart failure	- vemooij, 2012, Am J	and end-systolic volumes and left atrial
		volular		$D_{P} B_{P} S_{P} S_{P$	volumes: areas of hyperintense myocard
		disaasa		- De Deus, 2013, Eul J Clin Invest 22	classified as myocardial scar tissue (use
		uisease			assess the presence of unrecognized
					assess the presence of unrecognized

Page 54	l of 63
---------	---------

2		•	1	1		
3 4 5						myocardial infarction). Infarct size was quantified as scar mass relative to LV mass.
6 7 8 9 10 11 12 13 14 15	SMART Inform Three-armed hypothesis-blinded RCT	2017 - 2018	303 patients with stable CVD and using a statin	To determine whether communicating personalized statin therapy-effects obtained by prognostic algorithm leads to lower decisional conflict associated with statin use in patients with stable CVD compared with standard (non-personalized) therapy-effects	Jaspers, 2021, BMJ Open ²³	NA
16 17 18 19 20 21 22 23 24 25 26	SMART-Junior	Questionnaires sent between 2009-2013 to patients who were included between 2001 and 2012	4,270 (10,564 children)	1) To investigate the presence of cardiovascular risk factors and vascular disease in offspring of patients participating in the SMART cohort. 2) To identify a risk profile of the parent prognostic for the development of traditional cardiovascular risk factors or cardiovascular events in their children.	- Weijmans, 2015, Int J Cardiol ²⁴ - Weijmans, 2015, Am Heart J ²⁵	 Questions about CV risk factors (incl. dates of risk factor diagnoses): presence of diabetes, hypertension, hypercholesterolemia, smoking behaviour and present weight of the offspring Questions about CVD (incl. dates of occurrence): whether offspring had experienced MI, PCI, CABG, stroke, PAD, or AAA.
27 28 29 30 31 32 33 34 35 36 37 38 39 40	SMART-MR and SMART Medea	2001 - 2005 1 st follow-up: 2006-2009 2 nd follow-up: 2013-2017	1,309	To investigate brain changes using 1.5T MRI in patients with symptomatic atherosclerotic disease (and 7T MRI in follow-up from 2013-2017)	 Geerlings, 2010, Atherosclerosis²⁶ Muller, 2011, Ann Neurol²⁷ Conijn, 2011, Stroke²⁸ Kloppenborg, 2012, Neurology²⁹ Jochemsen 2013, JAMA Neurology³⁰ Van der Veen, 2015, Stroke³¹ Zwartbol, 2019, Stroke³² 	Technique: - 1.5T brain MRI - 7T brain MRI - 7T brain MRI Measurement: - Total cerebral blood flow (mL/min per 100 mL brain parenchymal volume) - White matter lesions: volume (mL), shape (using the concavity index and fractal dimension ³⁵) and location were scored - Brain parenchymal fraction (% of intracranial volume (ICV) that is occupied by

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28					- Ghaznawi 2021, Neurology ³³ - Rissanen, 2021, Neurology ³⁴	brain tissue), an indicator for global brain atrophy - Ventricular enlargement (% of ventricular volume of the total ICV), an indicator for subcortical brain atrophy - Cortical gray matter fraction (% cortical gray matter volume of the total ICV), an indicator of cortical brain atrophy - Infarcts: location, affected flow territory and type were scored <u>Neuropsychological assessment (from 2003):</u> - 15-learning word test ³⁶ - Rey-Osterrieth Complex Figure test ³⁷ - Visual Elevator test ³⁸ - Brixton Spatial Anticipation test ³⁹ - Verbal Fluency test (letter) ⁴⁰ - Dutch version of the National Adult Reading test ⁴¹ <u>From 2006:</u> - MMSE ⁴² - Verbal Fluency test (animals) ⁴⁰ - Digit Symbol Substitution Test ⁴³ - Forward Digit Span and Backward Digit Span ⁴⁴
28 SN 29 (O) 30 (As. 31 As. 32 an 33 Ca 34 pa 35 26	MART-ORACLE Optimizing Risk resessment with CT- ogiography or alcium score in attients at high risk	2012 - present	1.182 (until Dec 2021; ongoing) patients with a history of symptomatic vascular	1) To determine whether there is additional value of performing CAC score, CTCA, total aorta calcification, burden as compared to traditional risk factors in the risk stratification in predicting any cardiovascular event. 2) To	 Franssens, 2017, Eur J of Prev Cardiol⁴⁵ Van 't Klooster, 2020, IJC Heart & Vasculature⁴⁶ 	<u>Technique:</u> Cardiac non-contrast enhanced CT and CTA of the heart and the carotids to the circle of Willis

for a cardiovascular		disease, T2DM	estimate the additional value of		Measurement:
event)		or hypertension	CTCA and CAC score on top of		- Radiodensity and volume of epicardial
			traditional risk factors in predicting		adipose tissue
			cardiac events. 3) To determine the		- Coronary artery calcium (scored using th
			value of soft plaque burden in the		Agatston method ⁴⁷)
			carotid and coronary arteries in		- Calcifications on heart valves and in the
			predicting acute vascular events		thoracic aorta (quantified using a pseudo-
					mass score: mean calcium houndsfield uni
					\times region of interest volume)
					- CAD-RADS ⁴⁸
					- Carotid stenosis
SPAIN	2005	50 patients	1) To evaluate the feasibility of an	Goessens, 2008, Patient	NA
(Selfmanagement of		with computer	Internet-based vascular risk	education and	
vascular Patients		facilities	reduction program in terms of	counseling ⁴⁹	
Activated by			accessibility, frequency and pattern		
Internet and Nurses)			of use of an individualized website		
			for patients with a		
			recent clinical manifestation of		
			arterial disease. 2) To evaluate		
			whether the use was related to a		
			change in vascular risk factors after		
			6 months		
TEMPUS	1996 - 2009.	78 patients	1) To assess whether there is a	- Lafeber, 2014, Eur J	At baseline and at the end of each treatme
(The Evening versus	Patients were	with	difference in the morning or	Prev Cardio ^{po}	period: medical history, anthropometric
Morning Polypill	screened	established	evening administration of a	- Lafeber, 2014, Int J	parameters, laboratory blood tests, office
Utilization Study)	between 2012 -	CVD or those	cardiovascular polypill, an FDC	Cardiol ⁵¹	24-hour ambulatory BP monitoring, platel
~	2013	at intermediate	formulation containing aspirin,		function, pulse wave analysis, adherence
Randomized open		to high risk of	sinvastatin, lisinopril and		therapy, and questionnaires
blinded endpoint		CVD with	hydrochlorothiazide, on LDL-C and		
crossover trial		indication for	mean 24-hour systolic BP levels in		
		the use of	individuals at high risk of		
		cardiovascular	cardiovascular disease. 2) To assess		
		medication,	the effect of the polypill on LDL-C,		
		according to	ambulatory BP, anti-platelet		
		the current	function, adherence and patients		

		Dutch	preference as compared to the			
		guidelines	administration of the individual,			
			identically dosed components of the			
			polypill administered at different			
			times of the day, as is currently recommended in clinical care.			
VENUS	Patients	236 patients	To investigate whether risk factor	- Goessens, 2006, Eur J	Questionnaire about social support using a	
(Vascular	included	with ≥ 2	management in the hospital	Cardiovasc Prev Rehabil ⁵²	social support questionnaire for Dutch CHD	
prEvention by	between May	modifiable risk	improved with nurse practitioner	- Sol, 2009, Eur J C	patients:	
NUrses Study)	2002 and October 2003	factors	care plus usual care compared with usual care	Nurse ⁵³	- Structural support: whether they have a spouse and whether they have someone they	
RCT			6		could turn to about their health problems	
			DR		- Functional support: statements about active involvement, protective buffering and	
					overprotection.	

AAA, aortic abdominal aneurysm; BAT, brown adipose tissue; BP, blood pressure; CABG, coronary artery bypass grafting; CAC, coronary artery calcium; CAD, coronary artery disease, CAD-RADS, CAD-reporting and data system, CeVD, cerebrovascular disease; CHD, coronary heart disease; CT, computed tomography; CTA, CT angiography; CTCA, CT coronary angiography; CV, cardiovascular; CVD, cardiovascular disease; DISH, diffuse idiopathic skeletal hyperostosis; FDC, fixed dose combination; FU, follow-up; LDL-c, low-density lipoprotein cholesterol; LUMC, Leiden University Medical Center; LV, left ventricle; LVH, left ventricle hypertrophy; MI, myocardial infarction; MRI, magnetic resonance imaging; NA, not applicable; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; SMART, Second Manifestations of Arterial Disease; SNP; single nucleotide polymorphism; T2DM, type 2 diabetes mellitus; UCC-SMART, Utrecht Cardiovascular Cohort–SMART; UMC, University Medical Center

1.5T brain MRIs have been performed between 2001 and 2005. Follow-up of 1.5T MRI was performed between 2006 and 2009 and from 2013 to 2017. During the second follow-up, a 7T brain MRI was added in a subsample. A detailed overview of the substudies is provided in Supplementary Table 5.

ARTEMIS, ARTErial calcifications of the Media and Intima in SMART (Second Manifestations of Arterial Disease)⁶; BEST, BEtter risk factor treatment with STructured agreement⁹; Brown Adipose Tissue¹⁰; DISH, Diffuse idiopathic skeletal hyperostosis¹²; IRIS, Internet-based vascular Risk factor Intervention and Self-management¹⁵; RULE, Risk management in Utrecht and Leiden Evaluation study¹⁷; SMART HEART¹⁹; SMART Inform²³; SMART-JUNIOR²⁴; SMART-MR²⁶; ORACLE; Optimizing Risk Assessment with CT-angiography or Calcium score in patients at high risk for a cardiovascular event⁴⁵; SPAIN, Self-management of vascular Patients Activated by Internet and Nurses⁴⁹; TEMPUS, The Evening versus Morning Polypill Utilization Study⁵⁰; VENUS, Vascular prEvention by NUrses Study⁵².

1.

1

2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
21	
22	
25 24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50 51	
52	
53	
54	
55	
56	
57	
50 50	
60	

References

- van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988 May;19(5):604–7.
- Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive Disorders of Pregnancy. Hypertension. 2018 Jul;72(1):24–43.
- Ware JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–83.
- 4. Schulman S, Kearon C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005 Apr 4;3(4):692–4.
- Mehran R, Rao S V, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. Circulation. 2011 Jun;123(23):2736–47.
- Zwakenberg SR, De Jong PA, Hendriks EJ, Westerink J, Spiering W, De Borst GJ, et al. Intimal and medial calcification in relation to cardiovascular risk factors. PLoS One. 2020;15(7 July):1–14.
- Hoek AG, Zwakenberg SR, Elders PJM, de Jong PA, Spiering W, Bartstra JW, et al. An elevated ankle-brachial index is not a valid proxy for peripheral medial arterial calcification. Atherosclerosis. 2021;323(March):13–9.
- Verhoeven BAN, Velema E, Schoneveld AH, de Vries JPPM, de Bruin P, Seldenrijk CA, et al. Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol. 2004;19(12):1127–33.
- Brouwer BG. SMART risk factor screening in patients at high vascular risk [dissertation]. Utrecht University; 2008.
- Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FLJ, Hoogduin JM. Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in patients with manifest cardiovascular disease. NMR Biomed. 2016;29(1):48–56.
- Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FLJ. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging. 2017;46(2):497–504.
- 12. Harlianto NI, Oosterhof N, Foppen W, Hol ME, Wittenberg R, van der Veen PH, et al. Diffuse idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased

cardiovascular risk. Rheumatology. 2021;1-8.

- Harlianto NI, Westerink J, Foppen W, Hol ME, Wittenberg R, Van Der Veen PH, et al. Visceral adipose tissue and different measures of adiposity in different severities of diffuse idiopathic skeletal hyperostosis. J Pers Med. 2021;11(7):1–11.
- 14. Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH). Radiology. 1976 Jun;119(3):559–68.
- Vernooij WP, Kaasjager HAH, Van Der Graaf Y, Wierdsma J, Grandjean HMH, Hovens MMC, et al. Internet based vascular risk factor management for patients with clinically manifest vascular disease: Randomised controlled trial. BMJ. 2012;344(7863):1–13.
- Greving JP, Kaasjager HAH, Vernooij JWP, Hovens MMC, Wierdsma J, Grandjean HMH, et al. Cost-effectiveness of a nurse-led internet-based vascular risk factor management programme: Economic evaluation alongside a randomised controlled clinical trial. BMJ Open. 2015;5(5):1–8.
- Brouwer BG, Visseren FLJ, Algra A, Van Bockel JH, Bollen ELEM, Doevendans PA, et al. Effectiveness of a hospital-based vascular screening programme (SMART) for risk factor management in patients with established vascular disease or type 2 diabetes: A parallel-group comparative study. J Intern Med. 2010;268(1):83–93.
- Schlösser FJV, Tangelder MJD, Verhagen HJM, van der Heijden GJMG, Muhs BE, van der Graaf Y, et al. Growth predictors and prognosis of small abdominal aortic aneurysms. J Vasc Surg. 2008;47(6):1127–33.
- 19. Meijs MFL, Bots ML, Vonken EJA, Cramer MJM, Melman PG, Velthuis BK, et al. Rationale and design of the SMART Heart study. Netherlands Hear J. 2007;15(9):295–8.
- 20. Meijs MF I., Vergouwe Y, Cramer MJ m., Vonken EJA, Velthuis BK, Verton DJ, et al. A prediction model for left ventricular mass in patients at high cardiovascular risk. Eur J Prev Cardiol. 2010;17(6):621–7.
- Vernooij JWP, Cramer MJM, Visseren FLJ, Korndewal MJ, Bots ML, Meijs MFL, et al. Relation between abdominal obesity, insulin resistance and left ventricular hypertrophy diagnosed by electrocardiogram and magnetic resonance imaging in hypertensive patients. Am J Cardiol. 2012;110(2):227–33.
- de Beus E, Meijs MFL, Bots ML, Visseren FLJ, Blankestijn PJ, Algra A, et al. Presence of albuminuria predicts left ventricular mass in patients with chronic systemic arterial hypertension. Eur J Clin Invest. 2015;45(6):550–6.

1 2 3 7	Lagran NEM Viscoren ELL Van Dar Groof V. Smuldars VM. Damman OC. Brouwars C. et al.
5 <u>2</u> . 4 5 6	Communicating personalised statin therapy-effects as 10-year CVD-risk or CVD-free life- expectancy: Does it improve decisional conflict? Three-armed blinded randomised controlled
7 8 9	trial. BMJ Open. 2021;11(7):1–8.
10 24 11 12 13 14 15	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al. Prevalence and risk of cardiovascular risk factors and events in offspring of patients at high vascular risk and effect of location of parental vascular disease. Int J Cardiol. 2015;195:195– 202.
16 17 2: 18 19 20 21 22	5. Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al. The relation between the presence of cardiovascular disease and vascular risk factors in offspring and the occurrence of new vascular events in their parents already at high vascular risk. Am Heart J. 2015;170(4):744-752.e2.
23 24 20 25 26 27 28	 Geerlings MI, Appelman APA, Vincken KL, Algra A, Witkamp TD, Mali WPTM, et al. Brain volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The SMART-MR study. Atherosclerosis. 2010;210(1):130–6.
29 2' 30 2' 31 32 33	7. Muller M, Van Der Graaf Y, Algra A, Hendrikse J, Mali WP, Geerlings MI. Carotid atherosclerosis and progression of brain atrophy: The SMART-MR Study. Ann Neurol. 2011;70(2):237–44.
34 35 28 36 37 38 39 40	3. Conijn MMA, Kloppenborg RP, Algra A, Mali WPTM, Kappelle LJ, Vincken KL, et al. Cerebral small vessel disease and risk of death, ischemic stroke, and cardiac complications in patients with atherosclerotic disease: The second manifestations of arterial disease-magnetic resonance (SMART-MR) study. Stroke. 2011;42(11):3105–9.
41 42 29 43 44 45 46	N. Kloppenborg RP, Geerlings MI, Visseren FL, Mali WPTM, Vermeulen M, Van Der Graaf Y, et al. Homocysteine and progression of generalized small-vessel disease :The SMART-MR study. Neurology. 2014;82(9):777–83.
47 30 48 49 50 51	 Jochemsen HM, Muller M, Visseren FL, Scheltens P, Vincken KL, Mali WP, et al. Blood pressure and progression of brain atrophy the SMART-MR study. JAMA Neurol. 2013;70(8):1046–53.
52 53 3 54 55 56 57	 Van Der Veen PH, Muller M, Vincken KL, Hendrikse J, Mali WPTM, Van Der Graaf Y, et al. Longitudinal Relationship between Cerebral Small-Vessel Disease and Cerebral Blood Flow. Stroke. 2015;46(5):1233–8.
57 58 32 59 60	2. Zwartbol MHT, Van Der Kolk AG, Ghaznawi R, Van Der Graaf Y, Hendrikse J, Geerlings MI, et al. Intracranial Vessel Wall Lesions on 7T MRI (Magnetic Resonance Imaging): Occurrence

and Vascular Risk Factors: The SMART-MR Study. Stroke. 2019;50(1):88-94.

- 33. Ghaznawi R, Geerlings MI, Jaarsma-Coes M, Hendrikse J, de Bresser J. Association of White Matter Hyperintensity Markers on MRI and Long-term Risk of Mortality and Ischemic Stroke: The SMART-MR Study. Neurology. 2021;96(17):e2172–83.
- 34. Rissanen I, Lucci C, Ghaznawi R, Hendrikse J, Kappelle LJ, Geerlings MI. Association of Ischemic Imaging Phenotype With Progression of Brain Atrophy and Cerebrovascular Lesions on MRI: The SMART-MR Study. Neurology. 2021;97(11):e1063–74.
- 35. Ghaznawi R, Geerlings MI, Jaarsma-Coes MG, Zwartbol MHT, Kuijf HJ, van der Graaf Y, et al. The association between lacunes and white matter hyperintensity features on MRI: The SMART-MR study. J Cereb Blood Flow Metab. 2019;39(12):2486–96.
- Brand N, Jolles J. Learning and Retrieval Rate of Words Presented Auditorily and Visually. J Gen Psychol. 1985 Apr 1;112(2):201–10.
- 37. Osterrieth PA. Le test de copie d'une figure complexe; contribution à l'étude de la perception et de la mémoire. [Test of copying a complex figure; contribution to the study of perception and memory.]. Arch Psychol (Geneve). 1944;30:206–356.
- 38. Robertson IH, Ward T, Ridgeway V, Nimmo-Smith I. The structure of normal human attention: The Test of Everyday Attention. J Int Neuropsychol Soc. 1996 Nov;2(6):525–34.
- Burgess PW, Shallice T. Bizarre responses, rule detection and frontal lobe lesions. Cortex. 1996 Jun;32(2):241–59.
- 40. Wilkins AJ, Shallice T, McCarthy R. Frontal lesions and sustained attention. Neuropsychologia. 1987;25(2):359–65.
- Schmand B, Geerlings MI, Jonker C, Lindeboom J. Reading ability as an estimator of premorbid intelligence: does it remain stable in emergent dementia? J Clin Exp Neuropsychol. 1998 Feb;20(1):42–51.
- 42. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98.
- 43. Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. Oxford University Press, USA; 2004.
- 44. Wechsler D. Wechsler adult intelligence scale. Arch Clin Neuropsychol. 1955;
- 45. Franssens BT, Nathoe HM, Leiner T, Van Der Graaf Y, Visseren FLJ. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed

arc

BMJ Open

2	
3	
4	
5	
2	
o	
7	
8	
a	
10	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
~~ ~~	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
26	
50	
37	
38	
39	
40	
-TU 41	
41	
42	
43	
44	
40	
46	
47	
48	
<u>10</u>	
77	
50	
51	
52	
53	
55 E A	
54	
55	
56	
57	
50	
20	
59	

60

tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol. 2017;24(6):660–70.

- 46. van 't Klooster CC, Nathoe HM, Hjortnaes J, Bots ML, Isgum I, Lessmann N, et al. Multifocal cardiovascular calcification in patients with established cardiovascular disease; prevalence, risk factors, and relation with recurrent cardiovascular disease. IJC Hear Vasc. 2020;27:100499.
- Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte MJ, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990 Mar;15(4):827–32.
- 48. Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. Coronary Artery Disease - Reporting and Data System (CAD-RADS): An Expert Consensus Document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc Imaging. 2016 Sep;9(9):1099–113.
- 49. Goessens BMB, Visseren FLJ, de Nooijer J, van den Borne HW, Algra A, Wierdsma J, et al. A pilot-study to identify the feasibility of an Internet-based coaching programme for changing the vascular risk profile of high-risk patients. Patient Educ Couns. 2008;73(1):67–72.
- Lafeber M, Grobbee DE, Bots ML, Thom S, Webster R, Rodgers A, et al. The Evening versus Morning Polypill Utilization Study: The TEMPUS rationale and design. Eur J Prev Cardiol. 2014;21(4):425–33.
- 51. Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood pressure and adherence in high-risk patients; A randomized crossover trial. Int J Cardiol. 2015;181:193–9.
- 52. Goessens BMB, Visseren FLJ, Sol BGM, de Man-Van Ginkel JM, Van Der Graaf Y. A randomized, controlled trial for risk factor reduction in patients with symptomatic vascular disease: The multidisciplinary Vascular Prevention by Nurses Study (VENUS). Eur J Prev Cardiol. 2006;13(6):996–1003.
- 53. Sol BGM, van der Graaf Y, Goessens BMB, Visseren FLJ. Social support and change in vascular risk factors in patients with clinical manifestations of vascular diseases. Eur J Cardiovasc Nurs [Internet]. 2009;8(2):137–43. Available from: http://dx.doi.org/10.1016/j.ejcnurse.2008.10.005

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1+3
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
6		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6+11-
	-	participants. Describe methods of follow-up	12
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6-11
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-11
measurement	Ũ	assessment (measurement). Describe comparability of assessment methods if	
mousurement		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-12
Study size	10	Explain how the study size was arrived at	6-7
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	16-17
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	n.a.
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	16-17
1 di ticipanto	15	notentially eligible examined for eligibility confirmed eligible included in the	
		study completing follow-up and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eq demographic clinical social)	16-17
Descriptive data	14	and information on exposures and notential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	
		(c) Summarise follow-up time (eq. average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	17-18
Outcome data	13*	Report numbers of outcome events of summary measures over time	1, 10

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16- 18
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	n.a.
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	19- 20
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	19- 20
Generalisability	21	Discuss the generalisability (external validity) of the study results	20
Other informati	on		·
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	21

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular risk in the Netherlands

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066952.R1
Article Type:	Cohort profile
Date Submitted by the Author:	27-Dec-2022
Complete List of Authors:	Castelijns, Maria; University Medical Centre Utrecht, Department of Vascular Medicine Helmink, Marga; University Medical Centre Utrecht, Department of Vascular Medicine Asgelbergs, Folkert; University Medical Centre Utrecht, Department of Cardiology de Borst, Gert-Jan; University Medical Centre Utrecht, Department of Vascular Surgery Bots, Michiel; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care cramer, maarten jan; University Medical Centre Utrecht, Department of Vascular Medicine Emmelot-Vonk, Marielle; University Medical Centre Utrecht, Department of Geriatrics Geerlings, Mirjam I; University Medical Centre Utrecht, Department of Gardiology van der Kaaij, Niels; University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care de Jong, P. A.; University Medical Centre Utrecht, Department of Radiology van der Kaaij, Niels; University Medical Centre Utrecht, Department of Cardiology van der Kaaij, Niels; University Medical Centre Utrecht, Department of Cardiology van der Kaaij, Niels; University Medical Centre Utrecht, Department of Cardiology van der Kaaij, Niels; University Medical Centre Utrecht, Department of Cardiology van der Kaaij, Niels; University Medical Centre Utrecht, Department of Cardiology (Aspelle, Jaap; University Medical Centre Utrecht, Department of Gynaecology and Obstetrics van der Meer, Manon; University Medical Centre Utrecht, Department of Cardiology Mol, Barend; University Medical Centre Utrecht, Department of Cardiology Mol, Barend; University Medical Centre Utrecht, Department of Cardiology Onland-Moret, N. Charlotte; University Medical Centre Utrecht, Department of Cardiology Onland-Moret, N. Charlotte; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care van Petersen, Rutger ; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care

	Ruigrok, Ynte; University Medical Centre Utrecht, Department of Neurology van Smeden, Maarten; University Medical Centre Utrecht Teraa, Martin; University Medical Centre Utrecht, Department of Vascular Surgery Vandersteen, Angela; University Medical Centre Utrecht, Department of Vascular Medicine Verhaar , Marianne; University Medical Centre Utrecht, Department of Nephrology and Hypertension Westerink, Jan; University Medical Centre Utrecht, Department of Vascular Medicine Visseren, Frank; University Medical Centre Utrecht, Department of Vascular Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine, Diabetes and endocrinology, Epidemiology
Keywords:	Vascular medicine < INTERNAL MEDICINE, EPIDEMIOLOGY, PREVENTIVE MEDICINE, General diabetes < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

BMJ Open

ر ۸
4
5
0 7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ ı วว
22
23
24
25
26
27
28
29
30
31
32
33
34
25
26
20
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
57
J∠ ⊑D
53
54
55
56
57
58
59

60

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease 1 2 (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular 3 risk in the Netherlands 4 Maria C. Castelijns*^a, Marga A.G. Helmink*^a, Steven H.J. Hageman^a, Folkert W. Asselbergs^b, Gert J. 5 6 de Borst^c, Michiel L. Bots^d, Maarten J. Cramer^b, Jannick A.N. Dorresteijn^a, Marielle H. Emmelot-7 Vonk^e, Mirjam I. Geerlings^d, Pim A. de Jong^f, Niels van der Kaaij^g, L. Jaap Kappelle^h, A. Titia Lelyⁱ, Manon G. van der Meer^b, Barend M. Mol^c, Hendrik M. Nathoe^b, N. Charlotte Onland-Moret^d, Rutger 8 9 B. van Petersen^d, Ynte M. Ruigrok^h, Maarten van Smeden^d, Martin Teraa^c, Angela Vandersteen^a, Marianne C. Verhaar^j, Jan Westerink^a, Frank L.J. Visseren^a 10 11 12 * Contributed equally ^a Department of Vascular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX 13 14 Utrecht, the Netherlands ^b Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands 15 ^c Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands 16 ^d Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht 17 18 University, Utrecht, the Netherlands ^e Department of Geriatrics, University Medical Center Utrecht, the Netherlands 19 20 ^f Department of Radiology, University Medical Center Utrecht, the Netherlands 21 ^g Department of Cardiothoracic Surgery, University Medical Center Utrecht, the Netherlands 22 ^h Department of Neurology, University Medical Center Utrecht, the Netherlands ⁱ Department of Gynaecology and Obstetrics, University Medical Center Utrecht, the Netherlands 23 24 ^j Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands 25 Corresponding author: F.L.J. Visseren, e-mail address: F.L.J. Visseren@umcutrecht.nl 26

2 3	28	Keywords: cardiovascular disease, risk factor, diabetes mellitus, cohort study, follow up study
4 5	29	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	29 30	Word count: 5,547
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		
Page 5 of 64

BMJ Open

 31 Abstract

Purpose: The Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC SMART) study is an ongoing prospective single-center cohort study with the aim to assess important
 determinants and the prognosis of cardiovascular disease progression. This article provides an update of
 the rationale, design, included patients, measurements and findings from the start in 1996 to date.

Participants: The UCC-SMART study includes patients aged 18-90 years referred to the University Medical Center (UMC) Utrecht, the Netherlands, for management of cardiovascular disease (CVD) or severe cardiovascular risk factors. Since September 1996, a total of 14,830 patients has been included. Upon inclusion, patients undergo a standardized screening program, including questionnaires, vital signs, laboratory measurements, an electrocardiogram, vascular ultrasound of carotid arteries and aorta, ankle-brachial index and ultrasound measurements of adipose tissue, kidney size and intima media thickness. Outcomes of interest are collected through annual questionnaires and adjudicated by an endpoint committee.

Findings to date: By May 2022, the included patients contributed to a total follow-up time of over 134,000 person-years. During follow-up, 2,259 patients suffered a vascular endpoint (including nonfatal myocardial infarction, non-fatal stroke and vascular death) and 2,794 all-cause deaths, 943 incident cases of diabetes and 2,139 incident cases of cancer were observed up until January 2020. The UCC-SMART cohort contributed to over 350 articles published in peer-reviewed journals, including prediction models recommended by the 2021 ESC CVD prevention guidelines.

Future plans: The UCC-SMART study guarantees an infrastructure for research in patients at high cardiovascular risk. The cohort will continue to include about 600 patients yearly and follow-up will be ongoing to ensure an up-to-date cohort in accordance with current health care and scientific knowledge. In the near future, UCC-SMART will be enriched by echocardiography, and a food frequency questionnaire at baseline enabling the assessment of associations between nutrition and CVD and diabetes.

56 Strengths and limitations

- The Utrecht Cardiovascular Cohort Second Manifestations of Arterial disease (UCC-SMART) study is an ongoing cohort of almost 15,000 patients with various manifestations of CVD and cardiovascular risk factors
- The UCC-SMART study covers a long follow-up duration and prospectively captures extensive outcome data in a high cardiovascular risk population
- The use of a standardized screening program that includes baseline characteristics, physical examination, laboratory testing and non-invasive imaging provides an extended resource of data for research on cardiovascular disease epidemiology
 - Limitations of the cohort include measurement of the determinants only at baseline for the majority of patients, and the sparse information on socioeconomic status

67 Introduction

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, causing around one-third of all deaths globally in 2019.[1] Atherosclerosis, the dominant cause of CVD, is fuelled by multiple mutually reinforcing and co-existing risk factors. Because of the progressive nature of atherosclerosis, patients with established CVD are at high risk of recurrent CVD and mortality.[2,3] Treatment of cardiovascular risk factors is known to markedly reduce the risk of new cardiovascular events.[4,5] Slowing down the process of atherosclerosis by timely identification and treatment of cardiovascular risk factors is therefore of the utmost importance.

In 1996, the Second Manifestations of Arterial Disease (SMART) cohort study was set up enrolling patients newly referred to the University Medical Center (UMC) Utrecht with clinically manifest CVD or marked risk factors for atherosclerosis. The study was designed with the aim of determining the prevalence of concomitant atherosclerotic disease and risk factors, as well as studying the incidence of future cardiovascular events and its predictors. Furthermore, the SMART study contributes to the complete and protocolized multidisciplinary care of these high risk patients by integrating a standardized set of measurements into usual patient care. The rationale and design of the study were previously published in 1999[6], with the study containing around 600 patients at that time. In 2018, the name of SMART changed to Utrecht Cardiovascular Cohort (UCC)-SMART. By now, 26 years after enrolment of the first patient, many baseline measurements have been added, substudies have been initiated, the study has been linked to national registries and the data have been used in several large (inter)national collaborations. At the same time, demographic and guideline changes have led to differences in the baseline characteristics and absolute risk of the patients included in the cohort. The aim of the current article is to provide an update on the rationale, design, included patients, baseline measurements and follow-up to date.

91 Cohort description

92 The UCC-SMART-study is a single-centre prospective cohort study, ongoing in both inclusion and 93 follow-up, in which patient care and scientific research concerning cardiovascular risk factors and 94 disease are integrated. This is depicted in Figure 1 and discussed in more detail in the sections below.

Study population

Starting from September 1996, patients aged 18 to 80 years referred to the UMC Utrecht, the Netherlands, for management of CVD or severe risk factors for CVD, have been recruited. Patients with cerebrovascular disease (CeVD), coronary artery disease (CAD), abdominal aortic aneurysm (AAA), peripheral artery disease (PAD), renal artery stenosis or one or more of the following cardiovascular risk factors, if rated as severe, are eligible to be included: hypertension, hyperlipidaemia, diabetes mellitus, renal insufficiency and a positive family medical history. Patients with a chronic human immunodeficiency virus infection as a cardiovascular risk-increasing condition or with hypertensive pregnancy disorders have been included since 2007 and 2012, respectively. Definitions of the inclusion criteria are listed in Supplementary Table 1. If patients have a history of multiple vascular events or risk factors, the referral reason (usually the most recent event) is listed as the qualifying inclusion diagnosis and any comorbidities are also registered. Pregnant women, patients with a short life expectancy and those insufficiently fluent in Dutch are not eligible.

Qualifying patients with CVD and/or risk factors listed above are recruited upon their first visit to the outpatient clinics and hospital wards of the departments of vascular medicine, internal medicine, nephrology, neurology, cardiology, cardiac surgery, obstetrics and vascular surgery. From 2021 onwards, the outpatient clinic of the department of geriatric medicine has been added to this list and the maximum age to be eligible for inclusion has been raised from 80 to 90 years old. In case of a recent cardiovascular event or intervention as the reason for inclusion, patients are invited after discharge from the hospital. In such cases, baseline measurements are generally performed more than 30 days after the acute event. All qualifying patients receive written and oral information about study goals and methods and are included only after written informed consent to use their data for study goals, the reporting of incidental findings to their treating physician, indefinite period storage of blood samples for future research and follow-up through annual questionnaires. In addition, participants can opt in or out to the following items: retrieval of data from regional and national registries, use of their data in research collaborations with for-profit organizations, use of coded data and laboratory samples for research outside the European Union and possible future requests to participate in follow-up studies of UCC-

BMJ Open

SMART. When patients do not consent to any of these additional items, they can still partake in theUCC-SMART study.

126 Baseline data collection

127 The screening program consists of questionnaires, physical examination, an electrocardiogram (ECG), 128 blood, urine and radiology testing. Except for the questionnaires, to be filled out before the hospital visit, 129 the diagnostic components of the program take place during a one-day visit. An overview of all the 130 variables available in UCC-SMART is provided in Supplementary Table 2. Some measurements have 131 only been collected for or starting from a certain time period (Figure 2 and Supplementary Table 3).

Health questionnaires

The questionnaires collect data on medical history including established CVD (CeVD, CAD, AAA and PAD as described in Supplementary Table 4), cardiovascular risk factors, symptoms of CVD (based on the Rose Angina Questionnaire[7]), medication use, family history and lifestyle. For women, a question on the age at menopause (if applicable) is included as well. From 2002 onward, information on obstetric history has been collected including the number of full-term pregnancies, miscarriages (<14 weeks of gestation), preterm deliveries (14 - 32 weeks of gestation), birth weight and pregnancy complications. As of August 2022, a 160-item food frequency questionnaire (FFQ), validated in the Dutch population, has been added to the questionnaires.[8] Recently, these questionnaires have also been sent to people who were included in the UCC-SMART study before August 2022. The results of the questionnaires will follow in 2023.

Physical examination

Anthropometric measurements are taken by trained (research) nurses and include body height in centimetres, weight in kilograms and waist and hip circumference in centimetres with patients wearing light clothing and no shoes. Weight and length are used to calculate body mass index in kg/m². Waist circumference is measured horizontally at the midpoint between the iliac crest and lower costal margin and hip circumference is taken at the maximum horizontal circumference around the gluteal muscles.

The mean of two measurements is calculated. If the two measurements differ by >2 cm, a third is taken and the mean of the closest two is calculated.

From 1996 up until 1999, office blood pressure was measured using a semiautomatic oscillometric device (Omega 1400; Invivo Research Laboratories Inc., Broken Arrow, OK, USA) every 4 minutes for a total of 25 minutes at the right brachial artery in supine position and the mean systolic (SBP) and diastolic blood pressure (DBP) were calculated. From April 1999 until 2015, using a non-random sphygmomanometer (Iso-Stabil 5; Speidel & Keller, Jungingen, Germany), 3 simultaneous measurements with an interval of 30 seconds were taken at both upper arms in upright position and the SBP and DBP of the last two measurements were calculated from the arm yielding the highest values. From 2015 onward, office blood pressure has been measured using an automatic oscillometric device (Microlife WatchBP Office AFIB; Microlife Corp, Widnau, Switzerland). The measurement is performed unattended, in triplicate with an interval of 30 seconds, at both upper arms in supine position after the patient has rested for 30 seconds. The measurements on the arm with the highest blood pressure are recorded and the mean SBP and DBP are calculated.

In order to calculate the ankle-brachial index (ABI), blood pressure measurements are taken at rest at both upper arms every two minutes whilst the blood pressure is measured at both lower legs. For this, a Falcon Quad 8 MHz Doppler probe (Viasonix, Ra'anana, Israel) is used at a 60° angle at the dorsal pedal and posterior tibial arteries. The ABI is defined for each leg as the highest SBP at the ankle divided by the highest brachial SBP.

Laboratory testing

On the day of screening, a venous blood sample is drawn after at least eight hours of fasting to measure
glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides, crealk gatinine,
and haemoglobin. Laboratory measurements of fasting insulin, C-reactive protein (CRP) and thyroid
stimulating hormone (TSH) were added in 2003 and glycated haemoglobin (HbA1c) and apolipoprotein
B (apoB) were added in 2006. Lastly, measurement of lipoprotein(a) was added in June 2020.

177 Glucose is measured using an enzymatic colorimetric assay (Beckman Coulter, Brea, CA,
178 USA). Total cholesterol and triglycerides are measured using a commercial enzymatic dry chemistry kit

Page 11 of 64

BMJ Open

(Johnson & Johnson, New Brunswick, NJ, USA) and HDL-C with a commercial enzymatic kit (Boehringer, Mannheim, Germany). Low-density lipoprotein cholesterol (LDL-C) is calculated using the Friedewald formula up to a plasma triglyceride level of 9 mmol/L.[9] Estimated glomerular filtration rate (eGFR) is calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula.[10] Spectrophotometry (Abbott Diagnostics, Santa Clara, CA, USA) is used to determine haemoglobin levels. CRP in plasma was initially determined using immunonephelometry (Nephelometer Analyzer BN II, Siemens, The Hague, The Netherlands) and from 2013 in heparin plasma on an AU5811 routine chemistry analyser using turbidimetry (Beckman Coulter, Brea, CA, USA). These types of measurements are strongly correlated (r = 0.99) and can therefore be pooled for analyses.[11] Before November 2006, TSH was quantified using a third-generation assay on a Centaur analyser (Bayer, Germany). Since December 2006, TSH has been measured by a third-generation assay on a DXi analyser (Beckman Coulter, Woerden, The Netherlands). Correlation between the two analysers is r = 0.9991 (n = 69), with an intercept of -0.05 mU/L (95%CI -0.22-0.12) and a slope of 1.04 (95%CI 1.029–1.052) (range 0–95 mU/L). ApoB and lipoprotein(a) are measured using nephelometry (Atellica Neph 630, Siemens, The Hague, The Netherlands). A morning-void urine sample is collected to determine urine albumin, creatinine, sodium and potassium levels. Urine albumin is measured using immunoturbidimetric assays. Ion selective electrode (Beckman Coulter, Brea, CA, USA) is used to determine urine sodium and potassium levels. DNA can be isolated from 10 mL of EDTA-augmented blood stored at -80° for genotyping.

Radiology testing

Non-invasive vascular imaging testing is performed by specially trained ultrasound technicians. Duplex examination of the carotid arteries is conducted to assess possible stenosis using peak systolic velocity measurements at the brachiocephalic trunk, carotid arteries (mid- and distal common, external and proximal and distal internal) and vertebral arteries (proximal and distal). Measurements are performed using an EPIQ-7 ultrasound machine (Philips Medical Systems, Eindhoven, The Netherlands). In case of abnormal signals and/or retrograde flow in the vertebral arteries, the proximal subclavian arteries are evaluated in search of severe stenosis or occlusion. For research purposes, intima-media-thickness

(IMT) of the carotid arteries is measured using a linear array transducer. With the patient lying down and the head turned 45° away from the side investigated, the ultrasound frame yielding an optimal longitudinal picture of the common carotid arterial wall is frozen at the time of the R-peak of ECG recording. Over a length of 1 cm starting from the carotid bulb towards proximal direction, the arterial wall thickness is measured from the lumen-intima interface to the media-adventitia interface. The mean of measurements in anterolateral, lateral and posterolateral direction is calculated.

Abdominal ultrasound examination is performed using the same ultrasound machine to obtain the maximal anterior-posterior diameter of the juxtarenal and infrarenal abdominal aorta and kidney length and volume. As of January 2000, visceral and subcutaneous adipose tissue measurements were added. The amount of subcutaneous fat is estimated by the distance from the linea alba to the skin. Visceral adipose tissue thickness is measured as the distance between the lumbar spine and the peritoneum. Measurements are taken at the end of a quiet expiration on a frozen ultrasound frame at three points on the imaginary transversal line halfway between the iliac crest and lower costal margin: at the midsternal line and 10 cm to the left and right on the transversal line. Each measurement is taken three times and then the mean of the measurements is recorded as the actual thickness. Ultrasonography has been proven a suitable technique to measure intra-abdominal adipose tissue with good reproducibility.[12,13] Moreover, from September 1998 on, a protocolized 12-lead resting ECG has been recorded.

In the near future, echocardiography will be added to the UCC-SMART program to facilitate research on the presence of heart failure at baseline. Echocardiography will be performed using a Philips Affiniti 70 ultrasound machine (Philips Medical Systems, Andover, MA, USA) by using a specific protocol involving 2-dimensional (2D), M-mode, Doppler, tissue Doppler and 2D speckle tracking (STE) imaging in accordance with the European Association of Cardiovascular Imaging 2016 recommendations for chamber quantification.[14] In particular, left ventricular dimensions will be measured in order to calculate the left ventricular mass index.[15] Left ventricular ejection fraction will be assessed quantitatively, preferably with automated three-dimensional imaging or alternatively with the Simpsons biplane method. Left atrial maximal volume and right ventricular dimensions and function will be measured as recommended.[14] Multiple parameters of left ventricular diastolic function will be Page 13 of 64

BMJ Open

assessed, including pulsed-wave Doppler of the mitral inflow and tissue Doppler imaging of the mitral annulus motion. Left ventricular diastolic function will be evaluated according to current diagnostic algorithms.[16] A minimal of three sequential complexes will be recorded. Standard image analysis will then be performed off-line in accordance with clinical guidelines using Philips IntelliSpace Cardiovascular software and will include 2D STE analysis of the left ventricle and left atrium.

Treatment recommendation

After completion of the screening, the findings are assessed by a multidisciplinary team of two medical specialists (internist, cardiologist, neurologist or vascular surgeon). A treatment recommendation is formulated based on current applicable guidelines, according to which patients are already treated by their general practitioner or medical specialist. The screening results and treatment recommendation are reported in a medical letter which is sent to the treating specialist and general practitioner. Patients receive a summary of relevant findings and recommendations.

Incidental medical findings during the screening are reported to one of the study physicians and if needed, discussed with specialists from the multidisciplinary team. The findings are added to the medical record and sent to the treating specialist or general practitioner for further action.

Follow-up

Patients receive annual questionnaires with questions on hospital admissions and outpatient clinic visits, regardless of whether they are still under the care of the UMC Utrecht. In case patients no longer wish to complete the questionnaires, they are asked if they consent to collection of information from their general practitioner. When the replies indicate possible outcome events, additional information is collected through hospital discharge letters and relevant laboratory and radiology examinations. Clinical events of interest include stroke, myocardial infarction, heart failure, AAA rupture, renal insufficiency, vascular interventions, bleeding, diabetes and vascular and non-vascular mortality as defined in Supplementary Table 5. Incident type 2 diabetes has been assessed since July 2006. To assess incident diabetes between 1996 and 2006, a questionnaire was sent to all patients without diabetes at baseline who were included before July 2006. Incident heart failure has been assessed since October 2011. Three

members from the endpoint committee independently judge reported events. The endpoint committee consists of medical specialists from the recruiting departments. If all three physicians judge differently, the event is discussed with two other physicians from the committee to reach consensus. Secondary outcomes are adjudicated by trained research nurses. As of 2021, diagnoses of dementia and mild cognitive impairment have been added to the annual questionnaire as self-reported diagnoses.

Data quality and management

Data collected in the UCC-SMART program is stored in the electronic medical record of the UMC Utrecht. Blood samples (serum, citrate plasma, EDTA plasma and erythrocytes concentrate aliquots) are stored at -80°C according to the Biobanks Regulations to be found at the UMC Utrecht website (https://www.umcutrecht.nl/nl/centrale-biobank). The central biobank of the UMC Utrecht is ISO9001 certified (certificate number 2175592). Release of material for future research is reviewed by the UMC Utrecht Biobanks Review Committee.

Recorded data is downloaded from the electronic medical record and pseudonymized by the data manager who holds the encryption key, only to be accessed after permission of the principal investigator. The UCC-SMART study group periodically performs quality checks for missing values and inconsistencies compared to source documents, or values outside of the range deemed likely.

- - Patient and public involvement

Patients were not involved in the study design. Their experiences of burden and required time are considered in the implementation of new components in the program. Relevant findings of the UCC-SMART screening program and corresponding recommendations are sent to the patients. In addition, patients regularly receive a newsletter containing up-to-date facts and figures of the UCC-SMART study and substudies and findings of publications using UCC-SMART data. The UMC Utrecht policies are in line with open science, for opening up the research agenda to societal stakeholders, open research data and open access publications.

BMJ Open

Linkage to other registries

Data in the UCC-SMART study can be enriched by collecting data from various registries and organizations, for example to obtain additional information on outcomes and medication use. Some examples of these linkages are described below.

Netherlands Cancer Registry

297 CVD and cancer share many risk factors and pathophysiological mechanisms, including body fat 298 distribution, diet, physical inactivity, smoking, chronic inflammation burden, and oxidative stress.[17] 299 To evaluate the relation between several cardiovascular risk factors and the risk of cancer, the UCC-300 SMART cohort has been linked to the *Netherlands Comprehensive Cancer Organisation* (IKNL), a 301 nationwide registry receiving notifications of all new cancer diagnoses. By linking the cohort to the 302 national cancer registry repeatedly, with the most recent linkage taking place in 2022, information on 303 cancer incidence and details of cancer types and histopathology was obtained.

305 Central Agency for Statistics (CBS) Netherlands

The UCC-SMART cohort can be linked to the *Central Agency for Statistics* (CBS), also known as *Statistic Netherlands*, which contains data on ICD-10 coded diagnoses and hospital admissions since 1996. This allows for, amongst others, collection of endpoints that are not regularly collected in UCC-SMART or have been collected from a later time point, such as heart failure diagnoses. The CBS collects data from all hospitals in the Netherlands and from general practitioner practices affiliated with 'Nivel' healthcare registration, which are a good reflection of the Dutch population.[18,19]

313 Utrecht Patient Oriented Database (UPOD)

The UCC-SMART cohort can be linked to UPOD[20], a database containing electronic patient data from routine clinical care in the UMC Utrecht. This database has been collecting patient characteristics, medication orders, laboratory test results, hospital discharge diagnoses and medical procedures since 2000, enabling the addition of baseline and follow-up information to the UCC-SMART study.

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
27	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
55	
50	
5/	
58	
59	

319 Consortia 320 The data collected in UCC-SMART is added to several consortia such as a genetics consortium (GENIUS-CHD[21] on genetics of subsequent coronary heart disease), the Netherlands consortium of 321 322 dementia cohorts and the Chronic Kidney Disease Prognosis Consortium[22]. 323 Dutch Foundation for Pharmaceutical Statistics 324 325 A future plan is to obtain information on medication use during follow-up by linking the UCC-326 SMART cohort to the Dutch Foundation for Pharmaceutical Statistics (Stichting Farmaceutische Kengetallen [SFK]). This foundation obtains data from over 97% of the community pharmacies in the 327 328 Netherlands.[23] 329 330 **Substudies** SMART-2 331 Patients with a history of CVD or diabetes are invited to participate in the SMART-2 substudy. In this 332 333 study, the baseline measurements of UCC-SMART are repeated in order to investigate the course of 334 atherosclerosis and vascular risk factors over time, and to evaluate the effects of treatment. Until May 2022, 2,313 patients have participated in SMART-2 after a median of 9.9 years (IQR 9.2 - 10.8) since 335 their inclusion in UCC-SMART. As with UCC-SMART, the findings of SMART-2 with an 336 337 accompanying treatment recommendation are communicated to the patient, his or her treating medical 338 specialist and general practitioner. 339 340 SMART-ORACLE SMART-ORACLE aims to determine the additional value of contrast-enhanced computed tomography 341

342 (CT) of the coronary and carotid arteries on top of traditional cardiovascular risk factors in patients with
a history of CVD, diabetes or hypertension.[24] The study is still ongoing and has currently been
conducted in 1,252 patients.

8 345

60

346 SMART-MR and SMART Medea

BMJ Open

SMART-MR and SMART Medea target the investigation of brain changes in patients with CVD using
1.5T magnetic resonance imaging (MRI) (and 7T MRI in a subset of patients).[25,26] This study was
conducted in 1,309 patients. Amongst others, measurements of the total cerebral blood flow have been
performed and characteristics of white matter lesions and microbleeds have been mapped.

Athero-Express

In May 2022, the Athero-Express biobank and study cohort have been incorporated into the UCC-SMART study.[27] The objective of Athero-Express is to investigate the value of plaque characteristics in relation to long term cardiovascular events. This ongoing prospective study, initiated in April 2002, includes patients undergoing femoral or carotid endarterectomy. During surgery, the atherosclerotic plaque is harvested and immunohistochemically stained in order to asses fat, collagen, macrophages and smooth muscle cells.

Other substudies

Several other substudies have been carried out within the UCC-SMART cohort, providing additional information and parameters for subsets of patients (Supplementary Table 6). As part of SMART-**Junior**, additional questionnaires have been sent to 4,270 patients in order to investigate the presence of cardiovascular risk factors and CVD in their offspring.[28] In **DISH**, diffuse idiopathic skeletal hyperostosis was scored on chest X-rays of 4,791 patients, performed in the context of health care, using the Resnick criteria. [29,30] SMART-HEART aimed to detect patient characteristics related to the development of left ventricle hypertrophy using 1.5T cardiac MRI in 536 patients with hypertension, but free of known coronary or valvular disease.[31] In order to determine whether intima and media calcification differ in their associated CVD risks and to elucidate which risk factors lead to the development of those types of calcification, CT-scans of the femoral head to the feet have been performed in 520 patients as part of ARTEMIS.[32] The aim of the Small aneurysms trial was to estimate the overall rupture rates of small AAAs and to investigate demographic characteristics and cardiovascular risk factors for association with AAA growth using ultrasound scanning of the aorta in 230 patients with an initial AAA diameter of 30-55 mm.[33] In Brown adipose tissue, supraclavicular

and subcutaneous adipose tissue fat-signal-fractions were assessed in 50 patients with CVD using 1.5T
water-fat MRI.[34] SPAIN evaluated the feasibility of a web-based coaching program for vascular risk
factor treatment, described the patterns of use of this program and measured changes in risk factors in
50 patients with CVD.[35] RULE investigated the impact of the UCC-SMART study compared to usual
care on cardiovascular risk factors in 604 patients with CVD or type 2 diabetes.[36]

A few clinical trials have been conducted within the UCC-SMART study. TEMPUS was a randomized crossover trial in 78 patients that investigated the effects of a cardiovascular polypill on LDL-C, ambulatory blood pressure and adherence as compared to the administration of the individual, identically dosed components of the polypill.[37] SMART-Inform was a three-armed randomized controlled trial (RCT) in 303 patients using a statin with CVD.[38] The aim was to determine whether communicating personalized statin therapy-effects leads to lower decisional conflicts associated with statin use compared with standardized (non-personalized) therapy-effects. **BEST** was an RCT investigating whether a clearly written agreement on risk factor management between general practitioners and hospitals improved the vascular risk profile of 197 patients compared with usual care.[39] Another RCT was VENUS, which included 236 patients with ≥ 2 modifiable risk factors, investigating whether risk factor management in the hospital improved with nurse practitioner care on top of usual care compared with usual care alone.[40] Lastly, IRIS was an RCT that evaluated whether an internet-based vascular risk factor management program promoting self-efficacy on top of usual care is more effective than usual care alone in reducing vascular risk factors in 330 patients with CVD.[41] A timeline showing the different substudies is presented in Supplementary Figure 1.

Characteristics of the study population

By May 2022, a total of 14,830 patients has been included (Figure 3). Of those, 3,294 patients died and 89% (n = 10,219) of the surviving patients are still being followed up. Reasons for follow-up to end in surviving patients include withdrawal of participation in further follow-up (80%) or being unreachable for further questionnaires (20%). The median follow-up time of these patients without complete followup data is 7.4 years (IQR 3.9 - 11.4). Figure 4 shows the numbers and distribution of the reasons for inclusion. The most common inclusion diagnosis was CAD (n = 4,729), followed by hypertension (n =

BMJ Open

2,344) and CeVD (n = 2,276). PAD was the enrolment diagnosis in 1,173 patients and AAA in 369
patients. Hyperlipidaemia was the inclusion diagnosis in 1,433 patients and diabetes mellitus in 730
patients.

Patient characteristics, medication use and measurements at baseline are listed in Table 1. This table is stratified for medical history at baseline, with the items of medical history either being the inclusion diagnosis or a comorbidity. This means that patients may fall within more than one category as listed in Table 1. The majority of patients included in the cohort is male (65%), especially among the subgroup of patients with established CVD (73% male). The mean age of the total population is 56.8 ± 12.5 years. In total, 2,608 individuals (18%) had diabetes and 9,633 individuals (65%) had established CVD at baseline. Of these CVD patients, 1,399 (15%) had polyvascular disease, i.e. multiple vascular beds (cerebral, coronary, abdominal aorta or lower extremity) being affected. The proportion of missing variables is less than 3% for all variables, except for adipose tissue measurements on ultrasound (3.6%), albuminuria (4.7%) and CRP level (9.0%). Vascular screening indicated significant carotid artery stenosis (>50% stenosis) in 526 (4%) patients, AAA in 188 (1%) patients and low ABI (≤ 0.9) in 829 (6%) patients who were not previously diagnosed with CeVD, AAA or PAD, respectively. Of the 3,095 patients with established CVD included between 2012 and 2022 (to account for applicable guidelines). 2,075 (67%) had a SBP <140 mmHg, 753 (25%) had an LDL-C ≤1.8 mmol/L and 2,737 patients (88%) were using antithrombotic agents at baseline. Baseline characteristics of patients with complete follow-up data available were comparable to the characteristics of patients who withdrew from or were unreachable for further follow-up (Supplementary Table 7).

	History of CVD			Cardiovascular risk factors					
	Cerebrovascular	Coronary artery	Abdominal aortic	Peripheral artery	Hypertension	Hyperlipidaemi	Diabetes mellitus	Renal insufficiency	
	disease	disease	aneurysm	disease		а	(type 1 + 2)		
Number of patients	2801	5999	767	1646	8228	12972	2608	1118	
Medical history ^a									
Cerebrovascular disease	2801 (100)	553 (9)	117 (15)	209 (13)	1655 (20)	2492 (19)	442 (17)	248 (22)	
Coronary artery disease	553 (20)	5999 (100)	322 (42)	433 (26) 134 (8)	3192 (39)	5762 (44)	1131 (43)	497 (44)	
Abdominal aortic aneurysm	117 (4)	322 (5)	767 (100)		466 (6)	693 (5) 1492 (12) 7285 (57) 12972 (100)	114 (4)	151 (14) 205 (18) 902 (82) 1016 (92)	
Peripheral artery disease	209 (7)	433 (7)	134 (17)	1646 (100)	906 (11)		328 (13)		
Hypertension	1655 (60)	3192 (54)	466 (62)	906 (57) 1492 (92)	8228 (100) 7285 (90)		1736 (68) 2275 (88)		
Hyperlipidaemia	2492 (90)	5762 (96)	693 (91)						
Diabetes mellitus	442 (16)	1131 (19)	114 (15)	328 (20)	1736 (21)	2275 (18)	2608 (100)	365 (33)	
Health questionnaire									
Age (years)	60 ± 11	$62 \pm 10 \qquad 62 \pm 10 \qquad 60 \\ 4849 (81) \qquad 60 \\ 4511 (75) \qquad 60 \\ 10 \qquad 20.7 (9.4 - 33.6) \qquad 20 \\ 3641 (61) \qquad 30 \\ 3641 (61) (61) (61) (61) (61) (61) (61) (61$	65 ± 9	60 ± 11	59 ± 12 5174 (63) 5697 (69) 18.9 (8.3 - 33.3) 4787 (58)	58 ± 12	59 ± 12	63 ± 11	
Male sex	1744 (62)		636 (83) 661 (86) 28.0 (13.8 - 42.3) 368 (48)	1100 (67)		8699 (67) 9265 (72) 18.9 (8.8 – 32.5) 7584 (59)	1815 (70) 1865 (72) 21.0 (9.5 - 36.2)	911 (82)	
Previous or current smoking	2106 (76)			1473 (90) 27.9 (14.6 – 40.6) 770 (47)				847 (76) 22.8 (10.5 – 37.8) 511 (46)	
Packyears in (former) smokers	20.2 (9.4 - 35.1)								
Current alcohol use	1484 (53)						1229 (47)		
Highest level of education									
- Primary/secondary school	554 (31)	1248 (29)	128 (34)	315 (40)	1764 (31)	2569 (29)	553 (35)	210 (32)	
- Vocational school	631 (35)	1466 (35)	117 (31)	236 (30)	1824 (32)	2891 (33)	519 (33)	223 (34)	
- University (of applied	560 (31)	1415 (33)	125 (33)	196 (25)	1914 (34)	3031 (35)	422 (27)	194 (30)	
science)									
Exercise (METh/week)	0.0 (0.0 - 10.5)	0.0 (0.0 - 12.0)	0 (0.0 - 6.0)	0 (0.0 – 5.5)	0 (0.0 - 11.0)	0 (0.0 – 12.0)	0 (0.0 – 6.0)	0 (0.0 – 5.5)	
Medication use									
Lipid-lowering therapy	1682 (60)	4995 (83)	417 (54)	849 (52)	4720 (57)	8253 (64)	1664 (64)	678 (61)	
Antihypertensive therapy	1724 (62)	5409 (90)	545 (71)	912 (55)	7130 (87)	9080 (70)	1980 (76)	965 (86)	

BMJ Open

Platelet inhibitors	2062 (74)	5263 (88)	450 (59)	987 (60)	4532 (55)	7694 (59)	1453 (56)	640 (57)
Oral anticoagulant therapy	311 (11)	821 (14)	123 (16)	234 (14)	743 (9)	1188 (9)	271 (10)	182 (16)
Glucose lowering therapy	287 (10)	757 (13)	67 (9)	189 (11)	1176 (14)	1475 (11)	1621 (62)	216 (19)
Anthropometric measurements								
Systolic blood pressure (mmHg)	141 ± 22	137 ± 20	142 ± 20	144 ± 21	150 ± 23	140 ± 22	144 ± 21	150 ± 24
Diastolic blood pressure (mmHg)	82 ± 12	80 ± 11	83 ± 12	81 ± 11	87 ± 14	83 ± 13	82 ± 12	85 ± 14
Ankle-brachial index ≤0.9	398 (14)	680 (11)	165 (22)	1063 (66)	1195 (15)	1751 (14)	434 (17)	283 (26)
Body mass index (kg/m ²)	26.6 ± 4.2	27.3 ± 4.0	26.4 ± 3.8	26.3 ± 4.3	27.6 ± 4.6	27.0 ± 4.3	28.7 ± 5.0	27 ± 4
Waist circumference (cm)	93.7 ± 12.9	97.4 ± 11.6	97.6 ± 12.1	95.0 ± 12.5	96.4 ± 13.3	95.1 ± 12.7	100.7 ± 13.7	98.9 ± 12.5
Hip circumference (cm)	103.6 ± 8.7	104.2 ± 7.6	103.8 ± 7.8	103.0 ± 8.7	105.1 ± 9.2	104.1 ± 8.5	106.3 ± 9.8	104.4 ± 8.4
Visceral fat (cm)	8.6 ± 2.6	9.3 ± 2.6	9.5 ± 2.6	9.2 ± 2.7	9.0 ± 2.8	8.8 ± 2.7	10.1 ± 2.9	9.9 ± 2.8
Subcutaneous fat (cm)	2.5 ± 1.2	2.4 ± 1.2	2.2 ± 1.1	2.4 ± 1.5	2.6 ± 1.4	2.5 ± 1.3	2.4 ± 1.4	2.2 ± 1.4
Carotid artery stenosis	652 (24)	443 (8)	84 (11)	255 (16)	77 (10)	1104 (9)	283 (11)	181 (16)
cIMT (mm)	0.9 (0.7 – 1.0)	0.9 (0.7 – 1.0)	0.9 (0.8 – 1.1)	0.9 (0.8 – 1.1)	0.8 (0.7 – 1.0)	0.8 (0.7 – 1.0)	0.9 (0.7 – 1.0)	0.9 (0.8 – 1.1)
Aortic aneurysm	81 (3)	244 (4)	307 (41)	72 (4)	289 (4)	458 (4)	61 (2)	108 (10)
Kidney size (cm)	11.1 ± 1.0	11.3 ± 1.0	11.3 ± 1.0	11.2 ± 1.1	11.2 ± 1.0	11.2 ± 1.0	11.5 ± 1.0	10.9 ± 1.3
Laboratory measurements								
Haemoglobin (mmol/L)	8.9 ± 0.8	8.9 ± 0.8	8.8 ± 0.9	8.9 ± 0.9	8.9 ± 0.8	8.9 ± 0.8	8.8 ± 0.9	8.5 ± 1.0
Total cholesterol (mmol/L)	4.9 ± 1.2	4.5 ± 1.1	5.1 ± 1.3	5.3 ± 1.3	5.0 ± 1.3	5.1 ± 1.4	4.7 ± 1.3	5.0 ± 1.4
LDL-C (mmol/L)	2.9 ± 1.1	2.6 ± 0.9	3.1 ± 1.1	3.2 ± 1.1	2.9 ± 1.1	3.1 ± 1.2	2.7 ± 1.0	2.9 ± 1.1
HDL-C (mmol/L)	1.3 ± 0.4	1.2 ± 0.3	1.2 ± 0.4	1.2 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.2 ± 0.3	1.2 ± 0.4
Apolipoprotein B (g/L)	0.8 ± 0.3	0.8 ± 0.2	0.9 ± 0.2	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3
Triglycerides (mmol/L)	1.3 (0.9 – 1.9)	1.4 (1.0 – 2.0)	1.5 (1.1 – 2.1)	1.5 (1.1 – 2.3)	1.4 (1.0 – 2.1)	1.4 (1.0 – 2.1)	1.6 (1.1 – 2.4)	1.7 (1.2 – 2.5)
HbA1c (mmol/mol)	38 (36 – 42)	39 (36 – 43)	39 (36 – 43)	40 (37 – 48)	39 (36 – 44)	38 (36 - 43)	52 (45 - 62)	41 (37 – 52)
Fasting glucose (mmol/L)	5.7 (5.3 – 6.3)	5.9 (5.4 - 6.6)	5.8 (5.4 - 6.5)	5.8 (5.3 - 6.7)	5.8 (5.4 - 6.6)	5.8 (5.3 - 6.4)	8.1 (6.9 – 10.0)	6.0 (5.5 – 7.2)
eGFR (mL/min/1.73 m ²)	48 ± 40	63 ± 34	58 ± 32	51 ± 40	49 ± 40	54 ± 40	55 ± 41	40 ± 26
Albuminuria (mg/L)	10.0 (6.0 – 24.1)	9.0 (6.0 - 20.0)	12.9 (8.0 - 39.9)	11.0 (7.0 - 32.0)	11.0 (7.0 – 29.0)	9.0 (6.0 - 22.0)	14.0 (8.0 - 41.0)	82.0 (16.0 - 257.6)
CRP (mg/L)	2.1 (1.0 - 4.5)	1.9 (1.0 – 4.0)	3.3 (1.6 - 6.9)	3.1 (1.4 – 6.3)	2.2 (1.0 - 4.7)	2.0 (1.0 - 4.2)	2.4 (1.1 – 5.1)	3.2 (1.5 - 7.2)
TSH (mU/L)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.8 (1.2 – 2.6)	1.8 (1.2 – 2.5)	1.9 (1.3 – 2.7)	1.8 (1.3 – 2.7)

1 2		
2 3 4	424	Data are presented as number (percentage), mean ± standard difference or median (interquartile range).
5	425	^a Based on inclusion diagnosis, items of the health questionnaire and/or measurements at baseline:
6 7	426	Cerebrovascular disease: history of stroke, carotid surgery or percutaneous transluminal angioplasty;
8	427	Coronary artery disease: history of myocardial infarction, cardiac arrest, coronary bypass surgery or percutaneous transluminal coronary angioplasty;
9 10	428	Abdominal aortic aneurysm: history of abdominal aortic aneurysm, transluminal or surgical treatment of abdominal aortic aneurysm;
11	429	Peripheral artery disease: history of amputation of (part of) lower limb, lower limb peripheral artery surgery or percutaneous transluminal angioplasty;
12	430	Hypertension: treatment with antihypertensive drugs or blood pressure \geq 160/95 mmHg at baseline measurement;
13 14	431	Hyperlipidaemia: treatment with lipid-lowering agents, total cholesterol \geq 5 mmol/L or LDL-cholesterol \geq 3.2 mmol/L at baseline measurement;
15	432	Diabetes mellitus: treatment with antidiabetic agents, fasting glucose \geq 7.0 mmol/L or non-fasting glucose \geq 11.1 mmol/L at baseline measurement;
16 17	433	Renal insufficiency: creatinine >120 mmol/L and/or microprotein/creatinine ratio in urine >20.
18	434	Cut-off values applied at the start of UCC-SMART study, please note target values have changed over time and continuous variable are available.
19 20 21	435	cIMT, carotid intima media thickness; CRP, C-reactive protein; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated haemoglobin
22 23	436	type A1C; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MET, metabolic equivalent of task; TSH: thyroid stimulation hormone.
24 25		
26 27		
28 29		
30 31		
32		
33 24		
54 35		
36		
37 38		
39		
40		
41 42		20
43		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
44 45		
46		

437 Findings to date

The findings of this section are reported for patients included up to January 2020 (n = 13,898), because the collection and processing of outcome events has been completed up until this date. These patients contributed to a total follow-up time of 134,439 person-years. Median follow-up time was 9.2 years (interquartile range 4.8 – 14.1 years). During follow-up, 2,259 (16%) patients suffered a first combined major cardiovascular endpoint (including non-fatal myocardial infarction, non-fatal stroke or cardiovascular death). Furthermore, there were 943 (7%) cases of incident diabetes, 105 (1%) cases of end-stage kidney disease, 161 (1%) cases of heart failure and 434 (3%) cases of major bleeding. A total of 3,264 (23%) patients underwent a vascular intervention during follow-up. Of patients with established CVD, 1,906 patients (21%) suffered the combined vascular endpoint mentioned above as subsequent event, whereas 353 patients (7%) with severe risk factors without prior CVD experienced this combined outcome as their first ever event. Of the 2,450 individuals with diabetes at baseline, 568 (23%) individuals suffered the combined vascular endpoint. Corresponding incidence rates are 21.2 per 1000 person years for patients with established CVD and 8.2 per 1000 person years for patients without a history of CVD. Numbers and observed incidence rates of all specific outcome events of interest are listed in Table 2. Through linkage with the Dutch National Cancer Registry, a total of 2,139 patients (15%) was diagnosed with cancer during follow-up. This includes 414 diagnoses of lung cancer, 354 of prostate cancer, 294 of intestinal cancer and 163 of breast cancer as most common diagnoses.

456 Table 2. Number and incidence rates of outcome events from 1996 to 2020

Outcome event	Number of first	Person-years of	Incidence rate per
	events	follow-up	1,000 person-years
Non-fatal stroke	613	131,684	4.66
Ischemic stroke	502	132,042	3.80
Haemorrhagic infarction	20	134,362	0.15
Intracerebral haemorrhage	66	134,285	0.49
Subarachnoid haemorrhage	17	134,322	0.13
Type not determined	8	134,430	0.06
Retinal syndromes	16	134,338	0.12
Infarction	13	134,353	0.10
Haemorrhage	3	134,424	0.02
Non-fatal myocardial infarction	793	130,065	6.10
Heart failure	161	134,075	1.20
Systolic heart failure, due to	115	134,203	0.86
coronary disease	85	134,266	0.63
valve disorders	11	134,425	0.08
other causes	19	134,390	0.14
HFpEF, due to	46	134,311	0.34
coronary disease	15	134,390	0.11
valve disorders	8	134,418	0.06
other causes	23	134,381	0.17
Non-fatal rupture AAA	5	139,895	0.04
End-stage kidney disease	105	134,118	0.78
Vascular intervention	3,264	110,154	29.6
Heart	1606	121,936	13.2
Carotid or intracranial arteries	240	132,611	1.81
Aorta	439	131,553	3.34
Peripheral arteries	953	127,914	7.45
Renal artery	62	133,970	0.46
Major bleeding			
ISTH major bleeding	434	129,804	3.34
BARC 3 or 5 bleeding	457	132,497	3.45
Incident diabetes	943	124,310	7.59
Type 1 diabetes	1	131,417	0.01
Type 2 diabetes	942	124,330	7.58

Vascular mortality	1,267	134,439	9.42
Fatal cerebral infarction	85		0.63
Fatal cerebral haemorrhage	65		0.48
Fatal stroke – type not determined	21		0.16
Fatal myocardial infarction	63		0.47
Fatal heart failure	198		1.47
Fatal rupture AAA	29		0.22
Sudden death	401		2.98
Other	405		3.01
Non-vascular mortality	1317	134,439	9.80
Fatal malignancy	800		5.95
Fatal infection	169		1.26
Unnatural death	58		0.43
Other	290		2.16
All-cause mortality	2,794	134,439	20.78
Malignancy ^a	2,139	127,514	16.77
Lung	414		3.25
Prostate	354		2.78
Breast	163		1.28
Intestinal	294		2.31
Other	914		7.17

457 ^a Other subtypes of cancer in the dataset include cancer of the lip, oral cavity or pharynx; oesophagus; stomach;
458 liver, intrahepatic bile ducts, or gallbladder; pancreas; respiratory tract; thymus; bone or articular cartilage of
459 limb; melanoma; mesothelial or soft tissue; vulva or vagina; cervix uteri or corpus uteri; ovary; penis or testes;
460 kidney, renal pelvis or ureter; bladder; eye, brain, and other parts of the central nervous system; thyroid gland;
461 lymphatic/hematopoietic.

preserved ejection fraction; ISTH, International Society on Thrombosis and Haemostasis.

AAA, abdominal aortic aneurysm; BARC, Bleeding Academic Research Consortium; HFpEF, heart failure with

The large database of observational data has been used for over 350 etiological and prognostic studies so far, and the coverage of a wide age range and long follow-up provides opportunity to develop and validate prediction models. This has been done with the SMART risk score[42,43], the SMART-REACH lifetime model for patients with previous CVD[3] and the DIAL lifetime model[44] for patients with type 2 diabetes (to be found at https://u-prevent.com and the ESC 'CVD risk calculation'-app). These estimates serve clinical practice by providing insight into risk and thus supporting patient education and shared decision making. Moreover, routinely collection of patient data allows for embedding clinical trials within the cohort, as has been done with, amongst others, TEMPUS[37] and SMART-Inform[38].

The vascular screening in the UCC-SMART study is a structured uniform program to detect risk factors and asymptomatic atherosclerosis and provides a basis for optimizing treatment of high-risk patients. In a previous study comparing the UCC-SMART screening program to usual care in another university hospital in the Netherlands, a beneficial effect of the screening program on SBP and LDL-C was seen.[36] Previous research on screening programs in the general population shows improvement of cardiovascular risk factors and detection of patients at risk, but conflicting results are found on mortality and cardiovascular events. [2,45] In a population at risk (e.g. with hypertension or diabetes), the beneficial effect of cardiovascular screening is more pronounced. [2,46] In addition, a higher baseline achievement of secondary prevention targets is associated with improved cardiovascular health outcomes in patients with established CVD and type 2 diabetes.[47]

3 484

485 Strengths and limitations

The UCC-SMART study is a unique ongoing prospective cohort study in over 14,000 patients with a history of various manifestations of CVD or severe cardiovascular risk factors, providing a large up-todate cohort of a population at high cardiovascular risk. Collecting diverse outcome events in this population allows for research on risk factors for different manifestations of CVD and incident diabetes. Linkage to multiple registries facilitates the investigation of relationships between cardiovascular risk factors and diseases and other conditions such as cancer and dementia. By the integration of health care and scientific research, patient care becomes more complete and data already to be collected for patient

BMJ Open

493 care is used to increase knowledge of CVD, whilst the additive burden for participating patients is494 limited.

The main strengths of the UCC-SMART cohort include the large size, its capture of a high-risk population with various CVD manifestations and risk factors with few exclusion criteria, the use of a standardized diagnostic protocol, the long follow-up duration and the comprehensive capture of a wide range of data. Because inclusion of patients is still ongoing, the UCC-SMART cohort provides a good representation of the past and current population of patients at high cardiovascular risk. Due to the high risk study population, the prevalence and incidence of the main outcome variables are higher than in the general population, thereby increasing the power to study these outcomes. Furthermore, all outcome events are adjudicated independently by three physicians of the endpoint committee, reducing the risk of misclassification. The proportion of missing data is small, possibly explained by the protocolized screening program taking place in one day. The substudies provide additional information on specific cardiovascular risk factors (e.g. parental history of CVD[48], characteristics related to left ventricle hypertrophia[31], and the presence of diffuse idiopathic skeletal hyperostosis[49]), manifestations of atherosclerosis (e.g. brain changes on MRI[25] and cognitive decline[26]), and other important aspects in cardiovascular risk management (e.g. the effect of a cardiovascular polypill[50]).

Limitations also need to be considered. Due to the prospective observational design, for the majority of the patients, risk factors and medication use are only recorded at baseline and may have changed during follow-up. This could be reflected by the finding of this article that not all patients with CVD meet treatment goals for modifiable risk factors at baseline. Since patients are included several weeks to months after an index CVD event, risk factors are likely to be further optimized during this period after baseline examination. For a subset of patients with CVD or diabetes, a repeat of the baseline measurements after a median of 9.9 years is indeed available, allowing for investigating the course of atherosclerosis over time. Furthermore, in 10.6% of the included patients, follow-up ended due to either withdrawal of participation in further follow-up (8.5%) or being unreachable for further questionnaires (2.1%). Yet, the median follow-up time for these patients is 7.4 years, so those patients still contribute to a fair amount of patient-years. In addition, because UCC-SMART is a single-center study in a university hospital, it can be disputed whether it represents the general high risk population and patients

with established CVD. The UMC Utrecht provides care to nationwide patients referred for complex and specialized care, but also to patients referred by general practitioners from the region. Patients included in UCC-SMART correspond to patients with severe cardiovascular risk factors or established CVD from the general population. As reflected by the inclusion criteria, the UCC-SMART study does not include patients requiring highly specialized care (including heart transplantation and rare causes of vascular disease). Lastly, except for information on education level, the database does not contain extensive information on socioeconomic status.

In conclusion, we have provided an updated extensive overview of the design of the UCC-SMART study as well as an overview of the findings to date. This underlines the value of the UCC-SMART study as a basis for contemporary and future epidemiologic research in CVD using a well-characterized high risk cardiovascular population with long-term follow-up. A future goal is to make the UCC-SMART data Findable, Accessible, Interoperable and Reusable (FAIR).[51]

Acknowledgements

We gratefully acknowledge the contribution of the participants, the research nurses, R. van Petersen (data-manager), A. Vandersteen (study manager), the founders of the SMART-study in 1996: A. Algra, J.D. Banga, B.C. Eikelboom and Y. van der Graaf, and the members of the UCC-SMART study group: M.J. Cramer, H.M. Nathoe and M.G. van der Meer (co-PI), Department of Cardiology; G.J. de Borst and M. Teraa (co-PI), Department of Vascular Surgery; M.L. Bots and M. van Smeden, Julius Center for Health Sciences and Primary Care; M.H. Emmelot-Vonk, Department of Geriatrics; P.A. de Jong, Department of Radiology; A.T. Lely, Department of Gynaecology and Obstetrics; N.P. van der Kaaij, Department of Cardiothoracic Surgery; L.J. Kappelle and Y.M. Ruigrok, Department of Neurology; M.C. Verhaar, Department of Nephrology & Hypertension; J.A.N. Dorresteijn (co-PI) and F.L.J. Visseren (PI), Department of Vascular Medicine, UMC Utrecht.

Contributors

F.L.J.V., J.W., S.H.J.H., M.C.C. and M.A.G.H. contributed to the conception and design of the work. M.A.G.H. and M.C.C. drafted the manuscript and contributed equally to this paper. M.C.C., M.A.G.H.,

2	- 10	AND FWA CID MID MIC LAND MURY MIC DAL NY IV ATI
4	549	S.H.J.H., F.W.A., G.J.B., M.L.B., M.J.C., J.A.N.D., M.H.E-V., M.I.G., P.A.J., N.K., J.K., A.T.L.,
5 6	550	M.G.M., B.M.M., H.M.N., C.OM., R.B.P., Y.M.R., M.S., M.T., A.V., M.C.V., J.W. and F.L.J.V
7 8	551	contributed to the interpretation of data and critically revised the manuscript. All gave final approval
9 10	552	and agreed to be accountable for all aspects of work ensuring integrity and accuracy.
11 12	553	
13 14	554	Funding
15 16	555	The UCC-SMART study was financially supported by the UMC Utrecht, the Netherlands. The
17 18 10	556	supporting sources had no involvement in study design, analysis, interpretation, writing of the results,
19 20 21	557	or the decision to submit for publication.
21 22 23	558	
24 25	559	Competing interests
26 27	560	None declared.
28 29	561	
30 31	562	Patient consent for publication
32 33	563	Not applicable.
34 35	564	
36 37	565	Ethics approval
38 39 40	566	The study is in accordance with the Helsinki declaration and the Good Clinical Practice guidelines,
40 41 42	567	and is approved by the ethics committee of the UMC Utrecht in 1996, 2014 and 2022 (reference
43 44	568	number 22-088).
45 46	569	
47 48	570	Data availability statement
49 50	571	The UCC-SMART study group directs the academic focus of research using the UCC-SMART data and
51 52	572	consists of members from both epidemiological and clinical cardiovascular research. Datasets are
53 54	573	provided to interested researchers after approval of request by the UCC-SMART study group. Access
55 56	574	to the data request module can be applied for via <u>ucc-smart@umcutrecht.nl</u> .
57 58 59 60	575	

3 4	576	Refer	ences
5 6	577	[1]	Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global
7 8	578		Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019
9 10	579		Study. J Am Coll Cardiol. 2020;76(25):2982-3021.
11 12	580	[2]	Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC
13 14	581		Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol.
15 16	582		2022;29(1):5–115.
17 18 10	583	[3]	Kaasenbrood L, Bhatt DL, Dorresteijn JAN, Wilson PWF, D'Agostino RB, Massaro JM, et al.
20 21	584		Estimated life expectancy without recurrent cardiovascular events in patients with vascular
22 23	585		disease: The SMART-REACH model. J Am Heart Assoc. 2018;7(16).
24 25	586	[4]	Adler A, Agodoa L, Algra A, Asselbergs FW, Beckett NS, Berge E, et al. Pharmacological
26 27	587		blood pressure lowering for primary and secondary prevention of cardiovascular disease across
28 29	588		different levels of blood pressure: an individual participant-level data meta-analysis. Lancet.
30 31	589		2021;397(10285):1625–36.
32 33	590	[5]	Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the
34 35 26	591		evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532-61.
36 37 28	592	[6]	Simons PCG, Algra A, Van De Laak MF, Grobbee DE, Van Der Graaf Y. Second
30 39 40	593		manifestations of ARTerial disease (SMART) study: Rationale and design. Eur J Epidemiol.
40 41 42	594		1999;15(9):773–81.
43 44	595	[7]	Rose GA, Blackburn H. Cardiovascular survey methods. Monogr Ser World Health Organ.
45 46	596		1968;56:1–188.
47 48	597	[8]	Sluik D, Geelen A, De Vries JHM, Eussen SJPM, Brants HAM, Meijboom S, et al. A national
49 50	598		FFQ for the Netherlands (the FFQ-NL 1.0): Validation of a comprehensive FFQ for adults. Br J
51 52	599		Nutr. 2016;116(5):913–23.
53 54	600	[9]	Tremblay AJ, Morrissette H, Gagné JM, Bergeron J, Gagné C, Couture P. Validation of the
55 56	601		Friedewald formula for the determination of low-density lipoprotein cholesterol compared with
57 58	602		β -quantification in a large population. Clin Biochem. 2004;37(9):785–90.
60	603	[10]	Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, et al. A new equation

Page 31 of 64

BMJ Open

1 2			
3 4	604		to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12.
5 6	605	[11]	Kusnierz-Cabala B, Gernand W, Zabek-Adamska A, Tokarz A, Naskalski JW. Comparison of
7 8	606		high-sensitivity C-reactive protein serum assay results obtained using Dade-Behring BNII
9 10	607		nephelometer and Ortho Vitros FS 5.1 clinical analyzer in respect of CRP-related risk
11 12	608		assessment of chronic metabolic diseases. Clin Lab. 2008;54(9-10):341-6.
13 14 15	609	[12]	Stolk R, Wink O, Zelissen P, Meijer R, van Gils A, Grobbee D. Validity and reproducibility of
15 16	610		ultrasonography for the measurement of intra-abdominal adipose tissue. Int J Obes. 2001 Sep
17 18	611		12;25(9):1346–51.
19 20	612	[13]	Bazzocchi A, Filonzi G, Ponti F, Albisinni U, Guglielmi G, Battista G. Ultrasound: Which role
21 22 22	613		in body composition? Eur J Radiol. 2016 Aug;85(8):1469-80.
23 24 25	614	[14]	Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al.
26 27	615		Recommendations for cardiac chamber quantification by echocardiography in adults: an
28 29 30 31	616		update from the American Society of Echocardiography and the European Association of
	617		Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015
32 33	618		Jan;28(1):1-39.e14.
34 35	619	[15]	Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic
36 37	620		assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol.
38 39	621		1986 Feb;57(6):450–8.
40 41 42	622	[16]	Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al.
42 43 44	623		Recommendations for the Evaluation of Left Ventricular Diastolic Function by
45 46	624		Echocardiography: An Update from the American Society of Echocardiography and the
47 48	625		European Association of Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc
49 50	626		Echocardiogr. 2016 Apr;29(4):277-314.
51 52	627	[17]	Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and
53 54	628		cancer. Circulation. 2016;133(11):1104–14.
55 56	629	[18]	DHD. Ontdek de mogelijkheden van de LBZ [Internet]. 2022. Available from:
57 58	630		https://www.dhd.nl/producten-diensten/registratie-data/ontdek-de-mogelijkheden-van-de-lbz
60	631	[19]	Nivel. Methode vaststellen cijfers zorgverlening huisartsen [Internet]. 2022. Available from:

1

2 3	632		https://www.nivel.nl/nl/nivel_zorgregistraties_eerste_liin/methoden/methoden_vaststellen_
4 5	622		aiifars zorgyarlaning/mathada vaststallan aiifars zorgyarlaning huisartsan
6 7	035		cifiers-zorgvenening/methode-vasistenen-cifiers-zorgvenening-nuisartsen
8	634	[20]	ten Berg MJ, Huisman A, van den Bemt PMLA, Schobben AFAM, Egberts ACG, van Solinge
9 10	635		WW. Linking laboratory and medication data: new opportunities for pharmacoepidemiological
11 12	636		research. Clin Chem Lab Med. 2007;45(1):13–9.
13 14	637	[21]	Patel RS, Asselbergs FW. The GENIUS-CHD consortium. Eur Heart J. 2015 Oct;36(40):2674–
15 16	638		6.
17 18	639	[22]	Matsushita K, Ballew SH, Astor BC, Jong PE de, Gansevoort RT, Hemmelgarn BR, et al.
19 20 21	640		Cohort profile: the chronic kidney disease prognosis consortium. Int J Epidemiol. 2013
21 22 23	641		Dec;42(6):1660–8.
24 25	642	[23]	SFK. Foundation for Pharmaceutical Statistics [Internet]. [cited 2022 Dec 15]. Available from:
26 27	643		https://www.sfk.nl/english
28 29	644	[24]	Franssens BT, Nathoe HM, Leiner T, Van Der Graaf Y, Visseren FLJ. Relation between
30 31 32 33	645		cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed
	646		tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol.
34 35	647		2017;24(6):660–70.
36 37	648	[25]	Geerlings MI, Appelman APA, Vincken KL, Algra A, Witkamp TD, Mali WPTM, et al. Brain
38 39	649		volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The
40 41 42	650		SMART-MR study. Atherosclerosis. 2010;210(1):130–6.
42 43 44	651	[26]	Grool AM, Van Der Graaf Y, Mali WPTM, Geerlings MI. Location of cerebrovascular and
45 46	652		degenerative changes, depressive symptoms and cognitive functioning in later life: The
47 48	653		SMART-Medea study. J Neurol Neurosurg Psychiatry. 2011;82(10):1093-100.
49 50	654	[27]	Verhoeven BAN, Velema E, Schoneveld AH, de Vries JPPM, de Bruin P, Seldenrijk CA, et al.
51 52	655		Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation
53 54	656		to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol.
55 56	657		2004;19(12):1127–33.
57 58	658	[28]	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al.
59 60	659		Prevalence and risk of cardiovascular risk factors and events in offspring of patients at high

1 2			
- 3 4	660		vascular risk and effect of location of parental vascular disease. Int J Cardiol. 2015;195:195-
5 6	661		202.
7 8	662	[29]	Harlianto NI, Oosterhof N, Foppen W, Hol ME, Wittenberg R, van der Veen PH, et al. Diffuse
9 10	663		idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased
11 12	664		cardiovascular risk. Rheumatology. 2021;1-8.
13 14	665	[30]	Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in
15 16	666		diffuse idiopathic skeletal hyperostosis (DISH). Radiology. 1976 Jun;119(3):559-68.
17 18	667	[31]	Meijs MFL, Bots ML, Vonken EJA, Cramer MJM, Melman PG, Velthuis BK, et al. Rationale
19 20	668		and design of the SMART Heart study. Netherlands Hear J. 2007;15(9):295-8.
21 22 22	669	[32]	Zwakenberg SR, De Jong PA, Hendriks EJ, Westerink J, Spiering W, De Borst GJ, et al.
25 24 25	670		Intimal and medial calcification in relation to cardiovascular risk factors. PLoS One. 2020;15(7
25 26 27	671		July):1–14.
28 29 30 31	672	[33]	Schlösser FJV, Tangelder MJD, Verhagen HJM, van der Heijden GJMG, Muhs BE, van der
	673		Graaf Y, et al. Growth predictors and prognosis of small abdominal aortic aneurysms. J Vasc
32 33	674		Surg. 2008;47(6):1127–33.
34 35	675	[34]	Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FLJ, Hoogduin JM.
36 37	676		Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in
38 39	677		patients with manifest cardiovascular disease. NMR Biomed. 2016;29(1):48-56.
40 41 42	678	[35]	Goessens BMB, Visseren FLJ, de Nooijer J, van den Borne HW, Algra A, Wierdsma J, et al. A
42 43 44	679		pilot-study to identify the feasibility of an Internet-based coaching programme for changing the
45 46	680		vascular risk profile of high-risk patients. Patient Educ Couns. 2008;73(1):67-72.
47 48	681	[36]	Brouwer BG, Visseren FLJ, Algra A, Van Bockel JH, Bollen ELEM, Doevendans PA, et al.
49 50	682		Effectiveness of a hospital-based vascular screening programme (SMART) for risk factor
51 52	683		management in patients with established vascular disease or type 2 diabetes: A parallel-group
53 54	684		comparative study. J Intern Med. 2010;268(1):83-93.
55 56	685	[37]	Lafeber M, Grobbee DE, Bots ML, Thom S, Webster R, Rodgers A, et al. The Evening versus
57 58	686		Morning Polypill Utilization Study: The TEMPUS rationale and design. Eur J Prev Cardiol.
60	687		2014;21(4):425–33.

3 4	688	[38]	Jaspers NEM, Visseren FLJ, Van Der Graaf Y, Smulders YM, Damman OC, Brouwers C, et al.
5 6	689		Communicating personalised statin therapy-effects as 10-year CVD-risk or CVD-free life-
7 8 9 10	690		expectancy: Does it improve decisional conflict? Three-armed, blinded, randomised controlled
	691		trial. BMJ Open. 2021;11(7):1-8.
11 12	692	[39]	Brouwer BG. SMART risk factor screening in patients at high vascular risk [dissertation].
13 14	693		Utrecht University; 2008.
15 16	694	[40]	Goessens BMB, Visseren FLJ, Sol BGM, de Man-Van Ginkel JM, Van Der Graaf Y. A
17 18	695		randomized, controlled trial for risk factor reduction in patients with symptomatic vascular
19 20 21	696		disease: The multidisciplinary Vascular Prevention by Nurses Study (VENUS). Eur J Prev
21 22 23	697		Cardiol. 2006;13(6):996–1003.
23 24 25	698	[41]	Vernooij WP, Kaasjager HAH, Van Der Graaf Y, Wierdsma J, Grandjean HMH, Hovens
26 27	699		MMC, et al. Internet based vascular risk factor management for patients with clinically
28 29	700		manifest vascular disease: Randomised controlled trial. BMJ. 2012;344(7863):1-13.
30 31	701	[42]	Dorresteijn JAN, Visseren FLJ, Wassink AMJ, Gondrie MJA, Steyerberg EW, Ridker PM, et
32 33	702		al. Development and validation of a prediction rule for recurrent vascular events based on a
34 35	703		cohort study of patients with arterial disease: The SMART risk score. Heart. 2013;99(12):866-
36 37	704		72.
38 39	705	[43]	Hageman SHJ, McKay AJ, Ueda P, Gunn LH, Jernberg T, Hagström E, et al. Estimation of
40 41 42	706		recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular
43 44	707		disease: the updated SMART2 algorithm. Eur Heart J. 2022;
45 46	708	[44]	Berkelmans GFN, Gudbjörnsdottir S, Visseren FLJ, Wild SH, Franzen S, Chalmers J, et al.
47 48	709		Prediction of individual life-years gained without cardiovascular events from lipid, blood
49 50	710		pressure, glucose, and aspirin treatment based on data of more than 500 000 patients with Type
51 52	711		2 diabetes mellitus. Eur Heart J. 2019;40(34):2899–906.
53 54	712	[45]	Cho JH, Han KD, Jung H-Y, Bond A. National health screening may reduce cardiovascular
55 56	713		morbidity and mortality among the elderly. Public Health. 2020 Oct;187:172-6.
57 58	714	[46]	Antoku Y, Takemoto M, Mito T, Shiiyama R, Otsuka-Morisaki H, Tanaka A, et al. Impact of
60	715		Annual Cardiovascular Screening Tests in Patients with Type 2 Diabetes Mellitus without

Page 35 of 64

1

BMJ Open

2			
3 4	716		Previous Histories of Cardiovascular Disease: Four-year Clinical Outcomes. Intern Med. 2021
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	717		Sep;60(17):2725–32.
	718	[47]	Pagidipati NJ, Navar AM, Pieper KS, Green JB, Bethel MA, Armstrong PW, et al. Secondary
	719		Prevention of Cardiovascular Disease in Patients With Type 2 Diabetes Mellitus. Circulation.
	720		2017 Sep 26;136(13):1193–203.
	721	[48]	Weijmans M, van der Graaf Y, de Borst GJ, Nathoe HM, Algra A, Visseren FLJ, et al. Parental
	722		history and the risk of subsequent vascular events in patients with clinically manifest vascular
	723		disease: The effects of sex of the parent and vascular disease location. Atherosclerosis.
	724		2014;234(1):129–35.
21 22 23	725	[49]	Harlianto NI, Westerink J, Foppen W, Hol ME, Wittenberg R, Van Der Veen PH, et al.
24 25	726		Visceral adipose tissue and different measures of adiposity in different severities of diffuse
26 27 28 29 30 31 32 33 34 35 36 37	727		idiopathic skeletal hyperostosis. J Pers Med. 2021;11(7):1–11.
	728	[50]	Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a
	729		morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood
	730		pressure and adherence in high-risk patients; A randomized crossover trial. Int J Cardiol.
	731		2015;181:193–9.
	732	[51]	Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR
38 39 40	733		Guiding Principles for scientific data management and stewardship. Sci Data.
40 41 42	734		2016;3(1):160018.
42			
44 45			
46 47			
48			
49 50			
51			
52			
53 54			
55			
56			
57			
58			
59 60			

Figure legends

Figure 1. Course of the UCC-SMART study

ECG, electrocardiogram; UCC-SMART, Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease; UMC Utrecht, University Medical Centre Utrecht

Figure 2. Timeline of measurements collected for or starting from a certain period

ACE, angiotensin converting enzyme; apoB, apolipoprotein B; CAC, coronary artery calcium; CRP, C-reactive protein; CT, computerized tomography; CV, cardiovascular; CVD, cardiovascular disease; HbA1c, glycated haemoglobin; Lp(a), lipoprotein a; MRI, magnetic resonance imaging; T, Tesla; TSH, thyroid stimulating hormone

Figure 3. Cumulative number of patients over time

Inclusion in the UCC-SMART study started in September 1996.

Figure 4. Distribution of inclusion diagnoses

CVD, cardiovascular disease; HIV, human immunodeficiency virus

1996	2000		2005	2010	2015	BMJ Open 2020	Page 38 of 64
1		H I					Questionnaire about social support VENUS
2	1						Questionnaire about CV risk factors and CVD in children of participants SMART Junior
3						>	Questionnaire about obstetric history
5							Questionnaire about level of education; native country
6 7							Questionnaire about quality of life SMART-2
8			_				
9 10							Questionnaire about depression (symptoms and/or diagnosis SMAR1-MR & SMAR1-2
11							Neuropsychological assessment SMART-MR
12 12	—						Waist and hip circumference
14							Serum ACE, adipokines, extracellular vesicles
15 16							Circadian cortisol using saliva
17							Serum uric acid
18 19							Bone metabolism regulators
20							
21							Genetics
22						\mapsto	Sodium and potassium urinary excretion
24						\mapsto	Lp(a)
25 26							Homocysteine
27							HbA1c, ApoB
28 29			_				
30							
31	I						Ultrasound Vascular wall stiffness
32 33							Ultrasound Flow-mediated vasodilatation
34					—		1.5T MRI Subcutaneous and supraclavicular brown adipose tissue Brown adipose tissue
35 36					—		CT Calcification in femoral and crural arteries <i>ARTEMIS</i>
37							1 5T MRL Mass and volume of left ventricle: volume of left atrium L SMART HEART
38							
39 40							CT Epicardial adipose tissue, CAC-score, calcification on heart valves and in aorta SMART-ORACLE
41							Ultrasound Abdominal markers of adiposity
42 43							1.5T MRI Various manifestations of brain changes caused by CVD or CV risk factors SMART-MR
45 44				Fo	r peer review only - http	o://bmjopen.bmj.c	com/site/about/guidelines.xhtml 7T MRL Various manifestations of brain changes caused by CVD or CV risk factors LSMART-MR & SMART Medea
45							
46							

Supplementary material

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular

risk in the Netherlands

Content list

Supplementary Table 1. Inclusion criteria and exclusion criteria	
Supplementary Table 2. Variables available in UCC-SMART	5
Supplementary Table 3. Measurements that have been performed in the past	7
Supplementary Table 4. Definitions of established cardiovascular disease	
Supplementary Table 5. Definitions of outcome events	9
Supplementary Table 6. Substudies of UCC-SMART	12
Supplementary Table 7. Baseline characteristics of participants with complete follow-up and participants who were lost to follow-up	19
Supplemental Figure 1. Timeline of substudies of UCC-SMART	20
References	22

Inclusion criteria	Definition
One or more of the following cardiovasc	ular diseases or risk factors:
Car	diovascular disease
Transient ischemic attack	Sudden onset, ≤24 hours of:
	carotid: temporary motor weakness in one half of
	the body, language disorder, blindness in one eye
	<i>vertebrobasilar</i> : ≥ 2 simultaneously: bilateral
	motor weakness or paraesthesia, dizziness,
	diplopia, dysphagia, ataxia, dysarthria
	unknown vascular region: hemianopia, dysarthria
Cerebral infarction	Criteria as for TIA, but duration of >24 hours
Subarachnoid haemorrhage	Sudden headache and (temporary) loss of
	consciousness, often accompanied by neck stiffness,
	nausea and vomiting, with blood in basal cisterns
	confirmed by CT or xantochromia in cerebrospinal
	fluid
Carotid artery stenosis	Duplex ultrasound confirmed stenosis or occlusion o
	≥ 1 carotid artery with diameter reduction $\geq 50\%$
Ischemic retinal syndrome	Visual field defect diagnosed as retinal syndrome by
	Vophthalmologist
Angina pectoris	Chest pain with proven stenosis on coronary
	angiogram
Myocardial infarction	≥ 2 of following:
	- Chest pain >20 minutes, not relieved by nitrates;
	- ST elevation >1 mm in 2 contiguous ECG leads,
	or left bundle branch block;
	- Troponin levels >60 ng/L with rise and fall
	pattern*
Coronary syndrome requiring PCI or CABG	
Abdominal aortic aneurysm	Ultrasound confirmed local dilatation of abdominal
2	aorta with anterior-posterior diameter ≥ 3 cm and/or
	distal-proximal ratio of >1,5
Renal artery stenosis	Stenosis of ≥ 1 renal artery with lumen narrowing
2	\geq 50%, caused by atherosclerosis
Peripheral artery disease of the lower	Fontaine classification:
limbs	- Fontaine II: intermittent claudication: pain (or
	other symptoms) in one or both legs after certain
	walking distance, disappearing at rest;
	- Fontaine III: rest/nocturnal pain;
	- Fontaine IV: ischemic ulceration, necrosis or
	gangrene; confirmed by ABI ≤0.90 at rest and/or
	≥20% post-exercise decrease
Cardi	iovascular risk factors
Hypertension	Estimated as severe risk factor by physician, based
	on e.g. difficult-to-control hypertension, target organ
	damage, medical or family history
Hyperlipidaemia	Estimated as severe risk factor by physician, based
~	on e.g. difficult-to-control hyperlipidaemia,
	suspected lipid metabolism disorder medical or
	suspected lipid metabolism disorder, medical of

Supplementary Table 1. Inclusion criteria and exclusion criteria

Diabetes mellitus	Fasting glucose \geq 7.0 mmol/L, non-fasting glucose
	\geq 11.1 mmol/L or use of oral antidiabetic agents or
	insulin
Renal insufficiency	Serum creatinine >120 µmol/L
HIV infection	Chronic infection with human immunodeficiency
	virus
Family medical history	Positive family history for premature cardiovascular
	disease in 1 st degree relatives
Pre-eclampsia†	Gestational hypertension accompanied by
	proteinuria, other maternal organ dysfunction or
	uteroplacental dysfunction
HELLP syndrome†	Haemolysis, elevated liver enzymes, low platelets as
	a manifestation of pre-eclampsia
Placental abruption [†]	Gestational hypertension accompanied by placental
	abruption as an effect of uteroplacental insufficiency
Intrauterine growth restriction [†]	Gestational hypertension accompanied by fetal
	growth restriction as an effect of uteroplacental
	insufficiency
Rema	ining inclusion criteria
18-90 years of age	
Independent in most daily activities	Rankin scale $\leq 3^1$
Exclusion criteria	
Pregnancy	
Short life expectancy (per judgement of	the treating physician)
Insufficient understanding and expression	on of the Dutch language
No informed consent	
Follow-up impossible	\mathbf{N}

* In earlier years of the UCC-SMART study, this laboratory item was defined as CK elevation of $\geq 2x$ upper limit and MB-fraction >5% of total CK level.

[†] Hypertensive pregnancy complications are based on the ISSHP criteria²

ABI, ankle-brachial index; CABG, coronary artery bypass grafting; CK, creatine kinase; CT, computed tomography; ECG, electrocardiogram; HELLP, haemolysis, elevated liver enzymes and low platelets; HIV, human immunodeficiency virus; ISSHP, International Society for the Study of Hypertension in Pregnancy; PCI, percutaneous coronary intervention; TIA, transient ischemic attack.

BMJ Open

Health questionnaire	Medication use	Physical examination	Radiology measurements	Laboratory measurements
Medical history	Statins	Weight (kg)	Visceral fat (cm)	Haemoglobin (mmol/L)
Age (years)	Ezetimibe	Height (m)	Subcutaneous fat (cm)	Haematocrit (%)
Sex	Fibrates	Blood pressure (mmHg)	Carotid artery stenosis (%)	Total cholesterol (mmol/L)
Smoking and pack years	Thiazide diuretics	Ankle-brachial index	Carotid intima thickness (mm)	LDL-C (mmol/L)
Alcohol use and number of units	Loop diuretics	Body mass index (kg/m ²)	Aortic artery diameter (cm)	HDL-C (mmol/L)
Level of education	Potassium saving diuretics	Waist circumference (cm)	Kidney size and volume (cm; mL)	Apolipoprotein B (g/L)
Country of birth	ACE-inhibitors	Hip circumference (cm)	Electrocardiography	Triglycerides (mmol/L)
Quality of life*	Angiotensin II-receptor blockers		Echocardiography†	HbA1c (%)
Exercise (MET-hours per week)	Aldosterone antagonists			Fasting glucose (mmol/L)
	Beta-blockers			Fasting insulin (mU/L)
	Calcium antagonists			Creatinine (µmol/L)
	Alpha blockers			eGFR (ml/min/1.73 m ²)
	Central acting antihypertensives			Albuminuria (mg/L)
	Direct vasodilators			Albumin-to-creatinine ratio
	Aspirin			CRP (mg/L)
	Clopidogrel			TSH (mU/L)
	Dipyridamole			Lp(a)
	DOAC			Urine sodium
	Vitamin K antagonists			Urine potassium
	LMWH			
	Oral glucose-lowering therapy			
	Insulin			
	Antidepressants			
	Benzodiazepines			

† Echocardiography will be added to the UCC-SMART program in the near future

ACE, angiotensin converting enzyme; CRP, C-reactive protein; DOAC, direct oral anticoagulant; eGFR, estimated glomerular filtration rate; HbA1c,

glycosylated haemoglobin type A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LMWH, low molecular

weight heparin; Lp(a), lipoprotein(a); MET, metabolic equivalent of task; TSH, thyroid stimulating hormone; UCC-SMART, Utrecht Cardiovascular Cohort -

Second Manifestations of Arterial Diseas

BMJ Open

Supplementary Table 3. Measurements that have been performed in the past

Vascular wall stiffness was determined from 2001 until 2003 using the Wall Track System that captures vascular diameter changes using radio-frequent signals. At the first signal, the position of the anterior and posterior vascular wall of the common carotid artery are marked at 2 cm proximal to the carotid bulb. Then, for five times on both the left and right side, changes in arterial diameter (ΔD) and end-diastolic diameter (D_d) are registered during four seconds, and the mean is calculated. Carotid distension is defined as the change in artery diameter in systole relative to diastolic diameter. Other stiffness include β stiffness index (ln(SBP/DBP)/($\Delta D/D_d$)), compliance coefficient (($\pi \times D_d \times \Delta D$)/2×pulse pressure), distensibility coefficient (($2 \times \Delta D/D_d$)/pulse pressure), Peterson's modulus (pressure change required for theoretical 100% increase in diameter) and Young's elastic modulus (pressure per mm² required for theoretical 100% extension).

Flow-mediated vasodilatation (FMD) was assessed temporarily starting from March 1999. Here, the Wall Track System described above was used to capture the diameter of the brachial artery in the elbow crease. Following 3 baseline readings, new measurements were taken every 30 seconds for 5 minutes: first after a blood pressure cuff at the forearm was inflated to 100 mmHg above SBP for 4 minutes, and then after sublingual administration of 400 µg of nitroglycerin. Endothelial function was defined as the proportional increase of diameter after nitrate and the baseline-adjusted maximal diameter following ischemia. This examination was stopped in June 2001, since analysis in the first 400 patients showed this measurement was not related to other known measures of atherosclerosis.

Quality of life information was collected through questionnaires based on the 36-Item Short Form Health Survey (SF-36)³, sent to participants from 2001 until 2019. This quality of life assessment contains scales for 1) limitations in physical activities; 2) limitations in social activities; 3) limitations in usual role activities because of physical health problems; 4) bodily pain; 5) mental health; 6) limitations in usual role activities because of emotional problems; 7) vitality and 8) general health perceptions.

Homocysteine was measured from 1998 until 2011 in fasting blood samples by high performance liquid chromatography with fluorescence detection. Up until 2000, a methionine loading test was performed in patients younger than 50 years. Plasma homocysteine was measured six hours after oral administration of 100mg methionine per kilogram bodyweight.

DBP, diastolic blood pressure; SBP; systolic blood pressure

Supplementary Table 4. Definitions of established cardiovascular disease

Cardiovascular disease	Definition of cardiovascular disease*
Cerebrovascular disease	TIA, cerebral infarction, ischemic retinal syndrome, carotid surgery or angioplasty in medical history
Coronary artery disease	Myocardial infarction, angina pectoris, ≥ 1 vessel disease on coronary angiography, PCI or CABG in medical history
Abdominal aortic aneurysm	Abdominal aortic aneurysm, surgical or endovascular treatment of abdominal aortic aneurysm in medical history
Peripheral artery disease	Fontaine classification \geq II, amputation, vascular surgery or angioplasty in medical history

* Definitions of these items are listed in Supplementary Table 1.

CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; TIA, transient ischemic attack.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
10	
20	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49	
50 E1	
כו בי	
52 52	
52 51	
54	
55	
50	
57	
59	
60	
00	

Supplementary Table 5. Definitions of outcome events

Outcome event	Definition of outcome event
	Primary endpoints
Stroke Ischemic stroke / haemorrhagic infarction	>24 hours of associated clinical signs causing increased disability of ≥ 1 grade on modified Rankin scale ¹ , and new (haemorrhagic) infarction on CT or MRI <2 weeks after stroke
Cerebral haemorrhage	Cerebral haemorrhage confirmed with CT, MRI or surgery
Subarachnoid haemorrhage	Subarachnoid haemorrhage confirmed with CT, MRI or surgery
Type not determined	>24 hours of associated clinical signs causing increased disability of ≥ 1 grade on modified Rankin scale, but no brain imaging performed
Retinal syndromes	
Infarction	Associated clinical symptoms, typical fundus changes and/or vision loss, scotoma on perimetry
Haemorrhage	Associated clinical symptoms, typical fundus changes and vision loss
Myocardial infarction	The assessment includes: chest pain >30 minutes, elevated cardiac enzymes, characteristic ECG-changes
STEMI	Acute chest pain with persistent (>20 minutes) ST-elevation
NSTEMI	Acute chest pain without ST-elevation, with elevated troponin
Intervention-related myocardial infarction	New Q wave and elevated troponin <7 days after any intervention (for PCI >3x, for CABG >5x)
Probable myocardial infarction	Typical pain, persistent STT-changes, no documented course of cardiac enzymes
Heart failure	≥2 of the following: dyspnoea, dyspnoea on exertion, paroxysmal nocturnal dyspnoea, orthopnoea, exercise intolerance, pulmonary oedema, increased central venous pressure, third heart tone, hepatojugular reflux, altered hemodynamics, peripheral oedema, cardiomegaly; and (intensified) treatment with loop diuretics or intravenous vasoactive inotropic agents
	Classified as: systolic heart failure (at least moderate left ventricle dysfunction or LVEF <40%) or heart failure with preserved ejection fraction, due to coronary disease, valve disease or other causes
Rupture of abdominal aortic aneurysm	Rupture abdominal aortic aneurysm, proven by ultrasound, CT or laparotomy
Renal disease	· ·
End-stage renal disease	CKD stage 5 (i.e. persisting eGFR <15ml/min/1.73 m ² for >3 months and/or need for renal replacement therapy (chronic dialysis or renal transplantation))

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
י 20
20 ⊇1
∠ I 22
22
23
24
25
26
27
28
29
30
31
37
J∠ 22
22 24
34
35
36
37
38
39
40
41
42
43
44
45
46
40
47
48
49
50
51
52
53
54
55
56
57
58
50
72

Acute renal insufficiency – temporary renal replacement therapy	Acute kidney injury requiring temporary renal replacement therapy
Acute renal insufficiency – no renal replacement therapy	Acute kidney injury KDIGO stage 3 (i.e. serum creatinine 3 times baseline creatinine and/or serum creatinine \geq 354 µmol/L)
Bleeding	Bleeding requiring outpatient treatment or (prolonged) hospitalization
Major bleeding	<i>ISTH definition:</i> fatal bleeding and/or bleeding in critical area or organ (such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular, pericardial, intramuscular causing compartment syndrome), bleeding causing Hb level drop of \geq 1.24 mmol/L or leading to transfusion of \geq 2 units of blood ⁴
	<i>BARC type 3:</i> overt bleeding with Hb level drop of ≥ 1.86 mmol/L, leading to transfusion, cardiac tamponade, surgical intervention for control or intravenous vasoactive agents, or located intracranial or intraocular compromising vision <i>BARC type 5:</i> fatal bleeding ⁵
Diabetes	Self-reported diagnosis, confirmed and classified based on a questionnaire. If necessary, additional information is requested from the general practitioner or looked up in the electronic health record.
DM type 1	Insulin needed immediately at onset and absence of oral glucose lowering medication. Supportive but not mandatory: ≤25 years of age, BMI <25 kg/m ² , presence of anti-GAD antibodies
DM type 2	Diagnosed between age 35 and 40 and BMI >33 kg/m ² or diagnosed after age 40 and BMI >27 kg/m ²
Dementia	Self-reported diagnosis, confirmed and classified based on a questionnaire. Classified as: Alzheimer's disease; vascular dementia; a mix of Alzheimer's disease and vascular dementia; Lewy Body dementia; or frontotemporal dementia.
Vascular mortality Fatal cerebral infarction	Cerebral infarction leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without infarction)
Fatal cerebral haemorrhage	Cerebral haemorrhage leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without infarction)
Fatal stroke - type not determined	Stroke without radiological confirmation leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without stroke)
Fatal myocardial infarction	Documented myocardial infarction followed by death (>1 hour after onset of symptoms)

Fatal heart failure	Heart failure leading to death
Fatal rupture abdominal aortic aneurysm	Rupture abdominal aortic aneurysm followed by death
Fatal bleeding	Major bleeding leading to death
Sudden death	Witnessed death occurring within 1 hour after onset of symptoms, or within 24 hours given convincing circumstantial evidence
Other	Death without apparent cause in case of cardiovascular history, terminal renal insufficiency, dementia (unless clearly non-vascular), pulmonary haemorrhage*
Non-vascular mortality	Death caused by malignancy, infection, unnatural death or other
All-cause mortality	Death from any cause
	Secondary endpoints
Amputation	Any amputation of a toe or part of the foot or leg due to chronic ischemia. <i>Excluding:</i> traumatic amputations, amputation due to sepsis, amputation of fingers.
Vascular intervention†	Percutaneous coronary intervention; coronary artery bypass grafting; carotid endarterectomy, angioplasty or stenting; vertebral artery angioplasty or stenting; vascular surgery or percutaneous transluminal angioplasty of the aorta(bifurcation), iliac arteries, femoral and crural arteries; vascular intervention because of abdominal angina; LVAD. Angioplasty and stenting of other arteries are registered as well.
Vascular intervention of an	Coiling or clipping of an intracranial aneurysm
intracranial aneurysm	

* In accordance with Antiplatelets Trialists' Collaboration, Lancet 2002

[†] Excluding interventions already planned before or at inclusion, but including re-interventions and complications of an intervention already planned before or at inclusion.

Anti-GAD, antibodies to glutamic acid decarboxylase; BARC; Bleeding Academic Research Consortium; BMI, body mass index; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; CT, computed tomography; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; Hb, haemoglobin; KDIGO, Kidney Disease Improving Global Outcomes; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MRI, magnetic resonance imaging; NSTEMI, non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; STEMI, STelevation myocardial infarction

Supplementary Table 6. Substudies of UCC-SMART

Substudy	Period in which the patients were included	N	Aim	Key publications	Additional measurements within substudy
ARTEMIS (ARTErial calcifications of the Media and Intima in SMART)	2015 - 2017	520	1) To determine whether intima and media calcification differ in their respective associated CVD risks. 2) To elucidate which risk factors and mechanisms lead to the development of these respective types of calcification and in turn to cardiovascular disease	 Zwakenberg, 2020, PloS One⁶ Hoek, 2021, Atherosclerosis⁷ 	<u>Technique</u> : unenhanced thin-slice CT-scan of the legs (femoral head to feet) <u>Measurement</u> : calcification in the femoral and crural arteries scored as absent, predominant intimal arterial calcification, predominant medial arterial calcification or indistinguishable; calcification volume.
Athero-Express Added to UCC- SMART study in June 2022	2002 - present	Patients undergoing a femoral or carotid endarterectomy	To investigate the value of plaque characteristics in relation to cardiovascular outcomes	Verhoeven, 2004, Eur J Epidemiology ⁸	During surgery, the atherosclerotic plaque is collected and immunohistochemically stained in order to asses fat, collagen, macrophages and smooth muscle cells
BEST (BEtter risk factor treatment with STructured agreement) RCT	2004 - 2006	197 patients with at least 2 modifiable risk factors	To investigate whether a clearly written agreement on risk factor management between general practitioners and hospital improved the vascular risk profile of high-risk patients compared with usual care after 1 year	Brouwer, B.G. 2008. SMART risk factor screening in patients at high vascular risk. Utrecht University, Utrecht ⁹	NA
Brown adipose tissue	2014 – 2016	50 patients with clinically manifest CVD	1) To evaluate and optimize a protocol for quantifying brown adipose tissue with MRI and to assess BAT volume per patient. 2) To evaluate the reproducibility of MRI by determining inter-scan, intra-observer and inter-observer variability in BAT volume	 Franssens, 2016, NMR Biomed¹⁰ Franssens, 2017, J Magn. Reson. Imaging¹¹ 	Technique:1.5T water-fat MRI ofsupraclavicular and subcutaneous adiposetissueMeasurement:fat signal fraction value,representative of the amount of triglycerides,intracellular water content and capillary

Page	53	of	64
------	----	----	----

					density, of supraclavicular and subcutaneou adipose tissue
DISH (Diffuse idiopathic skeletal hyperostosis)	1996 – 2018	4,791 (all patients from SMART with chest X-ray within 3	N.A.	 Harlianto, 2021, Rheumatology¹² Harlianto, 2021, J. Pers. Med.¹³ 	<u>Technique:</u> Chest X-ray within three month of inclusions (if available in routine clinica care)
		months of inclusion)	Deer ro.		<u>Measurement:</u> X-rays were scored for DIS using the Resnick criteria. ¹⁴ DISH is classified following the presence of ossification of at least four contiguous vertebrae; (relative) preservation of the intervertebral disc height; and the absence apophyseal joint bony ankylosis or sacroili joint erosion. Thoracic aortic calcification subjective score as absent, mild, moderate and severe.
IRIS (Internet-based vascular Risk factor Intervention and Self-management) RCT	2008 - 2010	330 patients with a recent clinical manifestation of atherosclerosis of CAD, CeVD or PAD and with ≥ 2 treatable risk factors not at goal (from UMC Utrecht + Rijnstate)	 To evaluate whether an internet- based vascular risk factor management program promoting self-efficacy on top of usual care is more effective than usual care alone in reducing vascular risk factors in patients with a recent clinical manifestation of a vascular disease. To evaluate whether an internet- based vascular risk factor management program for reducing vascular risk factors in patients with a recent clinical manifestation of a vascular disease is cost- effective 	- Vernooij, 2012, BMJ ¹⁵ - Greving, 2015, BMJ Open ¹⁶	NA

Page 54	of 64
---------	-------

RULE	2005 - 2007	604 patients	To assess risk factor status after	Brouwer, 2010, J of Int	NA
(Risk management		with CAD,	referral in patients with established	Med ¹⁷	
in Utrecht and		CeVD, PAD or	vascular disease or type 2 diabetes		
Leiden Evaluation		T2DM from	who took part in the		
study)		UMC Utrecht	multidisciplinary hospital-based		
		(+ 566 patients	vascular screening program		
Two-centre parallel-		from LUMC)	SMART, compared with a group		
group comparative			who did not participate in such a		
investigation			program		
Small aneurysms	1996 - 2005	230 patients	To estimate overall rupture rates of	Schlosser, 2008, J Vasc	Technique: Ultrasound scanning of the aorta
trial (AAA)		with an initial	small AAAs and to investigate a	Surg ¹⁸	
()		AAA diameter	predefined set of demographic	C	
		of 30-55mm,	characteristics and cardiovascular		
		who were	risk factors for association with		Measurement: AAA diameter and change
		examined by >	AAA growth		with initial AAA diameter
		2 AAA	5		
		diameter			
		measurements			
		and with > 6			
		months of FU			
SMART-2	2007 - present	1794 patients	To study the course of		NA
		with a history	atherosclerosis and vascular risk		
		of CVD or	factors over time, and to evaluate		
		diabetes, a	the effects of treatment in the past		
		median of 9.9	1		
		years after			
		inclusion in			
		UCC-SMART			
SMART HEART	1996 - 2006	536 patients	To detect patient characteristics	- Meijs, 2007, Neth Heart	Technique: 1.5T cardiac MRI and delayed-
		with ≥ 3 years	related to the development of LVH	J ¹⁹	enhancement cardiac MRI
		hypertension,	with special focus on the detection	- Meijs, 2009, Eur J Prev	
		but free of	of SNPs that confer an increased	Cardiol ²⁰	
		known	susceptibility for the development	- Vernooii, 2012, Am J	Measurement: LV mass, LV-end diastolic
		coronary or	of LVH, and thus, heart failure	Cardiol ²¹	and end-systolic volumes and left atrial
		·	,,,		volumes; areas of hyperintense myocardium

Page 55 of 64

2						
3 4 5 6			valvular disease		- De Beus, 2015, Eur J Clin Invest ²²	classified as myocardial scar tissue (used to assess the presence of unrecognized myocardial infarction). Infarct size was quantified as scar mass relative to LV mass.
7 8 9 10 11 12 13 14 15 16	SMART Inform Three-armed hypothesis-blinded RCT	2017 - 2018	303 patients with stable CVD and using a statin	To determine whether communicating personalized statin therapy-effects obtained by prognostic algorithm leads to lower decisional conflict associated with statin use in patients with stable CVD compared with standard (non-personalized) therapy-effects	Jaspers, 2021, BMJ Open ²³	NA
17 18 19 20 21 22 23 24 25 26 27	SMART-Junior	Questionnaires sent between 2009-2013 to patients who were included between 2001 and 2012	4,270 (10,564 children)	1) To investigate the presence of cardiovascular risk factors and vascular disease in offspring of patients participating in the SMART cohort. 2) To identify a risk profile of the parent prognostic for the development of traditional cardiovascular risk factors or cardiovascular events in their children.	- Weijmans, 2015, Int J Cardiol ²⁴ - Weijmans, 2015, Am Heart J ²⁵	 Questions about CV risk factors (incl. dates of risk factor diagnoses): presence of diabetes, hypertension, hypercholesterolemia, smoking behaviour and present weight of the offspring Questions about CVD (incl. dates of occurrence): whether offspring had experienced MI, PCI, CABG, stroke, PAD, or AAA.
27 28 29 30 31 32 33 34 35 36 37 38 20	SMART-MR and SMART Medea	2001 - 2005 1 st follow-up: 2006-2009 2 nd follow-up: 2013-2017	1,309	To investigate brain changes using 1.5T MRI in patients with symptomatic atherosclerotic disease (and 7T MRI in follow-up from 2013-2017)	 Geerlings, 2010, Atherosclerosis²⁶ Muller, 2011, Ann Neurol²⁷ Conijn, 2011, Stroke²⁸ Kloppenborg, 2012, Neurology²⁹ Jochemsen 2013, JAMA Neurology³⁰ Van der Veen, 2015, Stroke³¹ 	Technique: - 1.5T brain MRI - 7T brain MRI Measurement: - Total cerebral blood flow (mL/min per 100 mL brain parenchymal volume) - White matter lesions: volume (mL), shape (using the concavity index and fractal dimension ³⁵) and location were scored

2						
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20			6		- Zwartbol, 2019, Stroke ³² - Ghaznawi 2021, Neurology ³³ - Rissanen, 2021, Neurology ³⁴	 Brain parenchymal fraction (% of intracranial volume (ICV) that is occupied by brain tissue), an indicator for global brain atrophy Ventricular enlargement (% of ventricular volume of the total ICV), an indicator for subcortical brain atrophy Cortical gray matter fraction (% cortical gray matter volume of the total ICV), an indicator of cortical brain atrophy Infarcts: location, affected flow territory and type were scored Neuropsychological assessment (from 2003): 15-learning word test³⁶ Rey-Osterrieth Complex Figure test³⁷ Visual Elevator test³⁸ Brixton Spatial Anticipation test³⁹ Verbal Fluency test (letter)⁴⁰ Dutch version of the National Adult Reading test⁴¹ From 2006: MMSE⁴² Verbal Fluency test (animals)⁴⁰ Digit Symbol Substitution Test⁴³ Forward Digit Span and Backward Digit Span⁴⁴
31 32 33 34 35 36 37	SMART-ORACLE (Optimizing Risk Assessment with CT- angiography or Calcium score in patients at high risk	2012 - present	1.182 (until Dec 2021; ongoing) patients with a history of symptomatic vascular	1) To determine whether there is additional value of performing CAC score, CTCA, total aorta calcification, burden as compared to traditional risk factors in the risk stratification in predicting any cardiovascular event. 2) To	 Franssens, 2017, Eur J of Prev Cardiol⁴⁵ Van 't Klooster, 2020, IJC Heart & Vasculature⁴⁶ 	<u>Technique</u> : Cardiac non-contrast enhanced CT and CTA of the heart and the carotids to the circle of Willis
38 39 40 41 42				·		16

Page 57 of 64

for a cardiovascular		disease, T2DM	estimate the additional value of		Measurement:
event)		or hypertension	CTCA and CAC score on top of		- Radiodensity and volume of epicardial
			traditional risk factors in predicting		adipose tissue
			cardiac events. 3) To determine the		- Coronary artery calcium (scored using t
			value of soft plaque burden in the		Agatston method ⁴⁷)
			carotid and coronary arteries in		- Calcifications on heart valves and in th
			predicting acute vascular events		thoracic aorta (quantified using a pseudo
					mass score: mean calcium houndsfield u
					× region of interest volume)
					- CAD-RADS ⁴⁸
			-		- Carotid stenosis
SPAIN	2005	50 patients	1) To evaluate the feasibility of an	Goessens, 2008, Patient	NA
(Selfmanagement of		with computer	Internet-based vascular risk	education and	
vascular Patients		facilities	reduction program in terms of	counseling ⁴⁹	
Activated by			accessibility, frequency and pattern		
Internet and Nurses)			of use of an individualized website		
			for patients with a		
			recent clinical manifestation of		
			arterial disease. 2) To evaluate		
			whether the use was related to a		
			change in vascular risk factors after		
			6 months		
TEMPUS	1996 - 2009.	78 patients	1) To assess whether there is a	- Lafeber, 2014, Eur J	At baseline and at the end of each treatm
(The Evening versus	Patients were	with	difference in the morning or	Prev Cardiol ³⁰	period: medical history, anthropometric
Morning Polypill	screened	established	evening administration of a	- Lafeber, 2014, Int J	parameters, laboratory blood tests, office
Utilization Study)	between 2012 -	CVD or those	cardiovascular polypill, an FDC	Cardiol	24-hour ambulatory BP monitoring, plat
D 1 1 1	2013	at intermediate	formulation containing aspirin,		function, pulse wave analysis, adherence
Randomized open		to high risk of	simvastatin, lisinopril and		therapy, and questionnaires
blinded endpoint		CVD with	hydrochlorothiazide, on LDL-C and		
crossover trial		indication for	mean 24-hour systolic BP levels in		
		the use of	individuals at high risk of		
		cardiovascular	cardiovascular disease. 2) To assess		
		medication,	the effect of the polypill on LDL-C,		
		according to	amoulatory BP, anti-platelet		
		the current	I tunction adherence and natients'		

		Dutch	preference as compared to the		
		guidelines	administration of the individual,		
			identically dosed components of the		
			polypill administered at different		
			times of the day, as is currently		
			recommended in clinical care.		
VENUS	Patients	236 patients	To investigate whether risk factor	- Goessens, 2006, Eur J	Questionnaire about social support using a
(Vascular	included	with ≥ 2	management in the hospital	Cardiovasc Prev Rehabil ⁵²	social support questionnaire for Dutch CHD
prEvention by	between May	modifiable risk	improved with nurse practitioner	- Sol, 2009, Eur J C	patients:
NUrses Study)	2002 and	factors	care plus usual care compared with	Nurse ⁵³	- Structural support: whether they have a
	October 2003		usual care		spouse and whether they have someone they
RCT			6		could turn to about their health problems
					- Functional support: statements about active
					involvement, protective buffering and
					overprotection.

AAA, aortic abdominal aneurysm; BAT, brown adipose tissue; BP, blood pressure; CABG, coronary artery bypass grafting; CAC, coronary artery calcium; CAD, coronary artery disease, CAD-RADS, CAD-reporting and data system, CeVD, cerebrovascular disease; CHD, coronary heart disease; CT, computed tomography; CTA, CT angiography; CTCA, CT coronary angiography; CV, cardiovascular; CVD, cardiovascular disease; DISH, diffuse idiopathic skeletal hyperostosis; FDC, fixed dose combination; FU, follow-up; LDL-c, low-density lipoprotein cholesterol; LUMC, Leiden University Medical Center; LV, left ventricle; LVH, left ventricle hypertrophy; MI, myocardial infarction; MRI, magnetic resonance imaging; NA, not applicable; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; SMART, Second Manifestations of Arterial Disease; SNP; single nucleotide polymorphism; T2DM, type 2 diabetes mellitus; UCC-SMART, Utrecht Cardiovascular Cohort–SMART; UMC, University Medical Center

2	
З	
1	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
11	
12	
13	
14	
15	
15	
16	
17	
18	
10	
19	
20	
21	
27	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
22	
22	
33	
34	
35	
26	
30	
37	
38	
20	
22	
40	
41	
42	
12	
45	
44	
45	
46	
47	
4/	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
5/	
58	

59 60

Supplementary Table 7. Baseline characteristics of participants with complete follow-up and
participants without complete follow-up

	Participants with complete follow-up (n = 13,284)	Participants without complete follow-up (n = 1,546)
Age (years)	57 ± 12	55 ± 14
Male sex	8,736 (66)	894 (57)
Previous or current smoking	9,285 (70)	1,065 (69)
Established cardiovascular disease	8,270 (65)	913 (59)
Diabetes mellitus	2,272 (17)	336 (22)
Lipid-lowering therapy	7,529 (57)	724 (47)
Antihypertensive therapy	9,053 (68)	977 (63)
Oral anticoagulant therapy	1,145 (9)	121 (8)
Systolic blood pressure (mmHg)	140 ± 22	144 ± 23
Diastolic blood pressure (mmHg)	83 ± 13	84 ± 13
Body mass index (kg/m^2)	26.9 ± 4.4	27.1 ± 4.8
Non-HDL-cholesterol (mmol/L)	3.8 ± 1.3	4.0 ± 1.5
eGFR (ml/min/1.73 m ²)	53 ± 41	48 ± 43
HbA1c (mmol/mol)	38 (36 - 42)	40 (36 - 48)
CRP (mg/L)	2.0 (1.0 - 4.3)	2.2 (1.0 - 4.4)

Data are presented as number (percentage), mean ± standard difference or median (interquartile range).

relievoni

BMJ Open

Supplemental Figure 1. Timeline of substudies of UCC-SMART

1.5T brain MRIs have been performed between 2001 and 2005. Follow-up of 1.5T MRI was performed between 2006 and 2009 and from 2013 to 2017. During the second follow-up, a 7T brain MRI was added in a subsample. A detailed overview of the substudies is provided in Supplementary Table 5.

ARTEMIS, ARTErial calcifications of the Media and Intima in SMART (Second Manifestations of Arterial Disease)⁶; BEST, BEtter risk factor treatment with STructured agreement⁹; Brown Adipose Tissue¹⁰; DISH, Diffuse idiopathic skeletal hyperostosis¹²; IRIS, Internet-based vascular Risk factor Intervention and Self-management¹⁵; RULE, Risk management in Utrecht and Leiden Evaluation study¹⁷; SMART HEART¹⁹; SMART Inform²³; SMART-JUNIOR²⁴; SMART-MR²⁶; ORACLE; Optimizing Risk Assessment with CT-angiography or Calcium score in patients at high risk for a cardiovascular event⁴⁵; SPAIN,

 BMJ Open

Self-management of vascular Patients Activated by Internet and Nurses⁴⁹; TEMPUS, The Evening versus Morning Polypill Utilization Study⁵⁰; VENUS, Vascular prEvention by NUrses Study⁵².

For peer review only

References

- 1. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988 May;19(5):604–7.
- 2. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive Disorders of Pregnancy. Hypertension. 2018 Jul;72(1):24–43.
- 3. Ware JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–83.
- 4. Schulman S, Kearon C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005 Apr 4;3(4):692–4.
- 5. Mehran R, Rao S V, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. Circulation. 2011 Jun;123(23):2736–47.
- Zwakenberg SR, De Jong PA, Hendriks EJ, Westerink J, Spiering W, De Borst GJ, et al. Intimal and medial calcification in relation to cardiovascular risk factors. PLoS One. 2020;15(7 July):1–14.
- 7. Hoek AG, Zwakenberg SR, Elders PJM, de Jong PA, Spiering W, Bartstra JW, et al. An elevated ankle-brachial index is not a valid proxy for peripheral medial arterial calcification. Atherosclerosis. 2021;323(March):13–9.
- 8. Verhoeven BAN, Velema E, Schoneveld AH, de Vries JPPM, de Bruin P, Seldenrijk CA, et al. Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol. 2004;19(12):1127–33.
- 9. Brouwer BG. SMART risk factor screening in patients at high vascular risk [dissertation]. Utrecht University; 2008.
- 10. Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FLJ, Hoogduin JM. Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in patients with manifest cardiovascular disease. NMR Biomed. 2016;29(1):48–56.
- 11. Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FLJ. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging. 2017;46(2):497–504.
- 12. Harlianto NI, Oosterhof N, Foppen W, Hol ME, Wittenberg R, van der Veen PH, et al. Diffuse idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased cardiovascular risk. Rheumatology. 2021;1–8.
- 13. Harlianto NI, Westerink J, Foppen W, Hol ME, Wittenberg R, Van Der Veen PH, et al. Visceral adipose tissue and different measures of adiposity in different severities of diffuse idiopathic skeletal hyperostosis. J Pers Med. 2021;11(7):1–11.
- 14. Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH). Radiology. 1976 Jun;119(3):559–68.
- 15. Vernooij WP, Kaasjager HAH, Van Der Graaf Y, Wierdsma J, Grandjean HMH, Hovens MMC, et al. Internet based vascular risk factor management for patients with clinically manifest vascular disease: Randomised controlled trial. BMJ. 2012;344(7863):1–13.
- Greving JP, Kaasjager HAH, Vernooij JWP, Hovens MMC, Wierdsma J, Grandjean HMH, et al. Cost-effectiveness of a nurse-led internet-based vascular risk factor management programme: Economic evaluation alongside a randomised controlled clinical trial. BMJ Open. 2015;5(5):1–8.
- 17. Brouwer BG, Visseren FLJ, Algra A, Van Bockel JH, Bollen ELEM, Doevendans PA, et al. Effectiveness of a hospital-based vascular screening programme (SMART) for risk factor management in patients with established vascular disease or type 2 diabetes: A parallel-group comparative study. J Intern Med. 2010;268(1):83–93.
- Schlösser FJV, Tangelder MJD, Verhagen HJM, van der Heijden GJMG, Muhs BE, van der Graaf Y, et al. Growth predictors and prognosis of small abdominal aortic aneurysms. J Vasc Surg. 2008;47(6):1127–33.
- 19. Meijs MFL, Bots ML, Vonken EJA, Cramer MJM, Melman PG, Velthuis BK, et al. Rationale and design of the SMART Heart study. Netherlands Hear J. 2007;15(9):295–8.

1		
2	20	Mail ME1 Wassers V. Common Miller Valley FIA Valley's DV Waster DI et al. A
4	20.	Meijs MF I., vergouwe Y, Cramer MJ m., vonken EJA, veitnuis BK, verton DJ, et al. A
5		Cardiol 2010:17(6):621–7
6	21.	Vernooii JWP, Cramer MJM, Visseren FLJ, Korndewal MJ, Bots ML, Meijs MFL, et al.
7		Relation between abdominal obesity, insulin resistance and left ventricular hypertrophy
8		diagnosed by electrocardiogram and magnetic resonance imaging in hypertensive patients. Am
9 10		J Cardiol. 2012;110(2):227–33.
11	22.	de Beus E, Meijs MFL, Bots ML, Visseren FLJ, Blankestijn PJ, Algra A, et al. Presence of
12		albuminuria predicts left ventricular mass in patients with chronic systemic arterial
13	22	hypertension. Eur J Clin Invest. 2015;45(6):550–6.
14	23.	Jaspers NEM, Visseren FLJ, Van Der Graaf Y, Smulders YM, Damman OC, Brouwers C, et al.
15		expectancy: Does it improve decisional conflict? Three-armed blinded randomised controlled
10		trial. BMJ Open. 2021:11(7):1–8.
18	24.	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al.
19		Prevalence and risk of cardiovascular risk factors and events in offspring of patients at high
20		vascular risk and effect of location of parental vascular disease. Int J Cardiol. 2015;195:195-
21		202.
22	25.	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al. The
23 24		relation between the presence of cardiovascular disease and vascular risk factors in offspring
25		and the occurrence of new vascular events in their parents already at high vascular risk. Am
26	26	Geerlings MI Appelman APA Vincken KI Algra A Witkamp TD Mali WPTM et al Brain
27	20.	volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The
28		SMART-MR study. Atherosclerosis. 2010;210(1):130–6.
29	27.	Muller M, Van Der Graaf Y, Algra A, Hendrikse J, Mali WP, Geerlings MI. Carotid
30		atherosclerosis and progression of brain atrophy: The SMART-MR Study. Ann Neurol.
32		2011;70(2):237–44.
33	28.	Conijn MMA, Kloppenborg RP, Algra A, Mali WPTM, Kappelle LJ, Vincken KL, et al.
34		Cerebral small vessel disease and risk of death, ischemic stroke, and cardiac complications in
35		patients with atheroscierotic disease: The second manifestations of arterial disease-magnetic
36 27	29	Kloppenborg RP Geerlings MI Visseren FL Mali WPTM Vermeulen M Van Der Graaf V
38	2).	et al. Homocysteine and progression of generalized small-vessel disease 'The SMART-MR
39		study. Neurology. 2014;82(9):777–83.
40	30.	Jochemsen HM, Muller M, Visseren FL, Scheltens P, Vincken KL, Mali WP, et al. Blood
41		pressure and progression of brain atrophy the SMART-MR study. JAMA Neurol.
42		2013;70(8):1046–53.
43	31.	Van Der Veen PH, Muller M, Vincken KL, Hendrikse J, Mali WPTM, Van Der Graaf Y, et al.
45		Longitudinal Relationship between Cerebral Small-Vessel Disease and Cerebral Blood Flow.
46	22	Stroke. 2015;40(5):1255-8. Zwarthal MHT, Van Der Kalk AG, Ghaznawi P, Van Der Graaf V, Handriksa I, Gaerlings MI.
47	52.	et al. Intracranial Vessel Wall Lesions on 7T MRI (Magnetic Resonance Imaging): Occurrence
48		and Vascular Risk Factors: The SMART-MR Study. Stroke. 2019:50(1):88–94.
49	33.	Ghaznawi R, Geerlings MI, Jaarsma-Coes M, Hendrikse J, de Bresser J. Association of White
50 51		Matter Hyperintensity Markers on MRI and Long-term Risk of Mortality and Ischemic Stroke:
52		The SMART-MR Study. Neurology. 2021;96(17):e2172-83.
53	34.	Rissanen I, Lucci C, Ghaznawi R, Hendrikse J, Kappelle LJ, Geerlings MI. Association of
54		Ischemic Imaging Phenotype With Progression of Brain Atrophy and Cerebrovascular Lesions
55	25	on MKI: The SMART-MR Study. Neurology. 2021;9/(11):e1063–74.
56 57	<i>33</i> .	al The association between lacunes and white matter hyperintensity features on MPI. The
58		SMART-MR study. J Cereb Blood Flow Metab. 2019:39(12):2486–96
59	36.	Brand N, Jolles J. Learning and Retrieval Rate of Words Presented Auditorily and Visually. J
60		Gen Psychol. 1985 Apr 1;112(2):201–10.

- 37. Osterrieth PA. Le test de copie d'une figure complexe; contribution à l'étude de la perception et de la mémoire. [Test of copying a complex figure; contribution to the study of perception and memory.]. Arch Psychol (Geneve). 1944;30:206–356.
 - 38. Robertson IH, Ward T, Ridgeway V, Nimmo-Smith I. The structure of normal human attention: The Test of Everyday Attention. J Int Neuropsychol Soc. 1996 Nov;2(6):525–34.
 - 39. Burgess PW, Shallice T. Bizarre responses, rule detection and frontal lobe lesions. Cortex. 1996 Jun;32(2):241–59.
 - 40. Wilkins AJ, Shallice T, McCarthy R. Frontal lesions and sustained attention. Neuropsychologia. 1987;25(2):359–65.
 - Schmand B, Geerlings MI, Jonker C, Lindeboom J. Reading ability as an estimator of premorbid intelligence: does it remain stable in emergent dementia? J Clin Exp Neuropsychol. 1998 Feb;20(1):42–51.
 - 42. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98.
 - 43. Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. Oxford University Press, USA; 2004.
- 44. Wechsler D. Wechsler adult intelligence scale. Arch Clin Neuropsychol. 1955;
- 45. Franssens BT, Nathoe HM, Leiner T, Van Der Graaf Y, Visseren FLJ. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol. 2017;24(6):660–70.
- 46. van 't Klooster CC, Nathoe HM, Hjortnaes J, Bots ML, Isgum I, Lessmann N, et al. Multifocal cardiovascular calcification in patients with established cardiovascular disease; prevalence, risk factors, and relation with recurrent cardiovascular disease. IJC Hear Vasc. 2020;27:100499.
- 47. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte MJ, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990 Mar;15(4):827–32.
- 48. Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. Coronary Artery Disease Reporting and Data System (CAD-RADS): An Expert Consensus Document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc Imaging. 2016 Sep;9(9):1099–113.
- 49. Goessens BMB, Visseren FLJ, de Nooijer J, van den Borne HW, Algra A, Wierdsma J, et al. A pilot-study to identify the feasibility of an Internet-based coaching programme for changing the vascular risk profile of high-risk patients. Patient Educ Couns. 2008;73(1):67–72.
- 50. Lafeber M, Grobbee DE, Bots ML, Thom S, Webster R, Rodgers A, et al. The Evening versus Morning Polypill Utilization Study: The TEMPUS rationale and design. Eur J Prev Cardiol. 2014;21(4):425–33.
- 51. Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood pressure and adherence in high-risk patients; A randomized crossover trial. Int J Cardiol. 2015;181:193–9.
- 52. Goessens BMB, Visseren FLJ, Sol BGM, de Man-Van Ginkel JM, Van Der Graaf Y. A randomized, controlled trial for risk factor reduction in patients with symptomatic vascular disease: The multidisciplinary Vascular Prevention by Nurses Study (VENUS). Eur J Prev Cardiol. 2006;13(6):996–1003.
- 53. Sol BGM, van der Graaf Y, Goessens BMB, Visseren FLJ. Social support and change in vascular risk factors in patients with clinical manifestations of vascular diseases. Eur J Cardiovasc Nurs [Internet]. 2009;8(2):137–43. Available from: http://dx.doi.org/10.1016/j.ejcnurse.2008.10.005

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1+3
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5+6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6+11-
		participants. Describe methods of follow-up	12
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6-12
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-12
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-12
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	16-17
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	n.a.
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	16-17
		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	16-17
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	17-18

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16- 18
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	n.a.
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	25- 26
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	25- 26
Generalisability	21	Discuss the generalisability (external validity) of the study results	25
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	27
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular risk in the Netherlands

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066952.R2
Article Type:	Cohort profile
Date Submitted by the Author:	03-Feb-2023
Complete List of Authors:	Castelijns, Maria; University Medical Centre Utrecht, Department of Vascular Medicine Helmink, Marga; University Medical Centre Utrecht, Department of Vascular Medicine Asselbergs, Folkert; University Medical Centre Utrecht, Department of Cardiology de Borst, Gert-Jan; University Medical Centre Utrecht, Department of Vascular Surgery Bots, Michiel; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care cramer, maarten jan; University Medical Centre Utrecht, Department of Vascular Medicine Emmelot-Vonk, Marielle; University Medical Centre Utrecht, Department of Geriatrics Geerlings, Mirjam I; University Medical Centre Utrecht, Department of Geriatrics Geerlings, Mirjam I; University Medical Centre Utrecht, Department of Radiology van der Kaaij, Niels; University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care de Jong, P. A.; University Medical Centre Utrecht, Department of Cardiology van der Kaaij, Niels; University Medical Centre Utrecht, Department of Cardiotoracic Surgery Kappelle, Jaap; University Medical Centre Utrecht, Department of Cardiotoracic Surgery Kappelle, Jaap; University Medical Centre Utrecht, Department of Gynaecology and Obstetrics van der Meer, Manon; University Medical Centre Utrecht, Department of Gynaecology and Obstetrics van der Meer, Manon; University Medical Centre Utrecht, Department of Cardiology Mol, Barend; University Medical Centre Utrecht, Department of Cardiology Onland-Moret, N. Charlotte; University Medical Centre Utrecht, Department of Cardiology Onland-Moret, N. Charlotte; University Medical Centre Utrecht, Department of Cardiology Onland-Moret, N. Charlotte; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care van Petersen, Rutger ; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care

	Ruigrok, Ynte; University Medical Centre Utrecht, Department of Neurology van Smeden, Maarten; University Medical Centre Utrecht Teraa, Martin; University Medical Centre Utrecht, Department of Vascular Surgery Vandersteen, Angela; University Medical Centre Utrecht, Department of Vascular Medicine Verhaar , Marianne; University Medical Centre Utrecht, Department of Nephrology and Hypertension Westerink, Jan; University Medical Centre Utrecht, Department of Vascular Medicine Visseren, Frank; University Medical Centre Utrecht, Department of Vascular Medicine
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine, Diabetes and endocrinology, Epidemiology
Keywords:	Vascular medicine < INTERNAL MEDICINE, EPIDEMIOLOGY, PREVENTIVE MEDICINE, General diabetes < DIABETES & ENDOCRINOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

BMJ Open

ر ۸
4
5
0 7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ ı วว
22
23
24
25
26
27
28
29
30
31
32
33
34
25
26
20
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
57
J∠ ⊑D
53
54
55
56
57
58
59

60

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease 1 2 (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular 3 risk in the Netherlands 4 Maria C. Castelijns*^a, Marga A.G. Helmink*^a, Steven H.J. Hageman^a, Folkert W. Asselbergs^b, Gert J. 5 6 de Borst^c, Michiel L. Bots^d, Maarten J. Cramer^b, Jannick A.N. Dorresteijn^a, Marielle H. Emmelot-7 Vonk^e, Mirjam I. Geerlings^d, Pim A. de Jong^f, Niels van der Kaaij^g, L. Jaap Kappelle^h, A. Titia Lelyⁱ, Manon G. van der Meer^b, Barend M. Mol^c, Hendrik M. Nathoe^b, N. Charlotte Onland-Moret^d, Rutger 8 9 B. van Petersen^d, Ynte M. Ruigrok^h, Maarten van Smeden^d, Martin Teraa^c, Angela Vandersteen^a, Marianne C. Verhaar^j, Jan Westerink^a, Frank L.J. Visseren^a 10 11 12 * Contributed equally ^a Department of Vascular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX 13 14 Utrecht, the Netherlands ^b Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands 15 ^c Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands 16 ^d Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht 17 18 University, Utrecht, the Netherlands ^e Department of Geriatrics, University Medical Center Utrecht, the Netherlands 19 20 ^f Department of Radiology, University Medical Center Utrecht, the Netherlands 21 ^g Department of Cardiothoracic Surgery, University Medical Center Utrecht, the Netherlands 22 ^h Department of Neurology, University Medical Center Utrecht, the Netherlands ⁱ Department of Gynaecology and Obstetrics, University Medical Center Utrecht, the Netherlands 23 24 ^j Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands 25 Corresponding author: F.L.J. Visseren, e-mail address: F.L.J. Visseren@umcutrecht.nl 26

2 3 1	28
4 5 6	29
7	30
8 9	
10 11	
12 13	
14 15	
16 17	
18	
20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46	
47	
49 50	
51 52	
53 54	
55 56	
57 59	
20	

28 Keywords: cardiovascular disease, risk factor, diabetes mellitus, cohort study, follow up study

30 Word count: 5,569

to beet teriew only

Page 5 of 64

BMJ Open

 31 Abstract

Purpose: The Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC SMART) study is an ongoing prospective single-center cohort study with the aim to assess important
 determinants and the prognosis of cardiovascular disease progression. This article provides an update of
 the rationale, design, included patients, measurements and findings from the start in 1996 to date.

Participants: The UCC-SMART study includes patients aged 18-90 years referred to the University Medical Center (UMC) Utrecht, the Netherlands, for management of cardiovascular disease (CVD) or severe cardiovascular risk factors. Since September 1996, a total of 14,830 patients has been included. Upon inclusion, patients undergo a standardized screening program, including questionnaires, vital signs, laboratory measurements, an electrocardiogram, vascular ultrasound of carotid arteries and aorta, ankle-brachial index and ultrasound measurements of adipose tissue, kidney size and intima media thickness. Outcomes of interest are collected through annual questionnaires and adjudicated by an endpoint committee.

Findings to date: By May 2022, the included patients contributed to a total follow-up time of over 134,000 person-years. During follow-up, 2,259 patients suffered a vascular endpoint (including nonfatal myocardial infarction, non-fatal stroke and vascular death) and 2,794 all-cause deaths, 943 incident cases of diabetes and 2,139 incident cases of cancer were observed up until January 2020. The UCC-SMART cohort contributed to over 350 articles published in peer-reviewed journals, including prediction models recommended by the 2021 ESC CVD prevention guidelines.

Future plans: The UCC-SMART study guarantees an infrastructure for research in patients at high cardiovascular risk. The cohort will continue to include about 600 patients yearly and follow-up will be ongoing to ensure an up-to-date cohort in accordance with current health care and scientific knowledge. In the near future, UCC-SMART will be enriched by echocardiography, and a food frequency questionnaire at baseline enabling the assessment of associations between nutrition and CVD and diabetes.

BMJ Open

56 Strengths and limitations

- The Utrecht Cardiovascular Cohort Second Manifestations of Arterial disease (UCC-SMART) study is an ongoing cohort of almost 15,000 patients with various manifestations of CVD and cardiovascular risk factors
- The UCC-SMART study covers a long follow-up duration and prospectively captures extensive outcome data in a high cardiovascular risk population
- The use of a standardized screening program that includes baseline characteristics, physical examination, laboratory testing and non-invasive imaging provides an extended resource of data for research on cardiovascular disease epidemiology
 - Limitations of the cohort include measurement of the determinants only at baseline for the majority of patients, and the sparse information on socioeconomic status

67 Introduction

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, causing around one-third of all deaths globally in 2019.[1] Atherosclerosis, the dominant cause of CVD, is fuelled by multiple mutually reinforcing and co-existing risk factors. Because of the progressive nature of atherosclerosis, patients with established CVD are at high risk of recurrent CVD and mortality.[2,3] Treatment of cardiovascular risk factors is known to markedly reduce the risk of new cardiovascular events.[4,5] Slowing down the process of atherosclerosis by timely identification and treatment of cardiovascular risk factors is therefore of the utmost importance.

In 1996, the Second Manifestations of Arterial Disease (SMART) cohort study was set up enrolling patients newly referred to the University Medical Center (UMC) Utrecht with clinically manifest CVD or marked risk factors for atherosclerosis. The study was designed with the aim of determining the prevalence of concomitant atherosclerotic disease and risk factors, as well as studying the incidence of future cardiovascular events and its predictors. Furthermore, the SMART study contributes to the complete and protocolized multidisciplinary care of these high risk patients by integrating a standardized set of measurements into usual patient care. The rationale and design of the study were previously published in 1999[6], with the study containing around 600 patients at that time. In 2018, the name of SMART changed to Utrecht Cardiovascular Cohort (UCC)-SMART. By now, 26 years after enrolment of the first patient, many baseline measurements have been added, substudies have been initiated, the study has been linked to national registries and the data have been used in several large (inter)national collaborations. At the same time, demographic and guideline changes have led to differences in the baseline characteristics and absolute risk of the patients included in the cohort. The aim of the current article is to provide an update on the rationale, design, included patients, baseline measurements and follow-up to date.

91 Cohort description

92 The UCC-SMART-study is a single-centre prospective cohort study, ongoing in both inclusion and 93 follow-up, in which patient care and scientific research concerning cardiovascular risk factors and 94 disease are integrated. This is depicted in Figure 1 and discussed in more detail in the sections below.

Study population

Starting from September 1996, patients aged 18 to 80 years referred to the UMC Utrecht, the Netherlands, for management of CVD or severe risk factors for CVD, have been recruited. Patients with cerebrovascular disease (CeVD), coronary artery disease (CAD), abdominal aortic aneurysm (AAA), peripheral artery disease (PAD), renal artery stenosis or one or more of the following cardiovascular risk factors, if rated as severe, are eligible to be included: hypertension, hyperlipidaemia, diabetes mellitus, renal insufficiency and a positive family medical history. Patients with a chronic human immunodeficiency virus infection as a cardiovascular risk-increasing condition or with hypertensive pregnancy disorders have been included since 2007 and 2012, respectively. Definitions of the inclusion criteria are listed in Supplementary Table 1. If patients have a history of multiple vascular events or risk factors, the referral reason (usually the most recent event) is listed as the qualifying inclusion diagnosis and any comorbidities are also registered. Pregnant women, patients with a short life expectancy and those insufficiently fluent in Dutch are not eligible.

Qualifying patients with CVD and/or risk factors listed above are recruited upon their first visit to the outpatient clinics and hospital wards of the departments of vascular medicine, internal medicine, nephrology, neurology, cardiology, cardiac surgery, obstetrics and vascular surgery. From 2021 onwards, the outpatient clinic of the department of geriatric medicine has been added to this list and the maximum age to be eligible for inclusion has been raised from 80 to 90 years old. In case of a recent cardiovascular event or intervention as the reason for inclusion, patients are invited after discharge from the hospital. In such cases, baseline measurements are generally performed more than 30 days after the acute event. All qualifying patients receive written and oral information about study goals and methods and are included only after written informed consent to use their data for study goals, the reporting of incidental findings to their treating physician, indefinite period storage of blood samples for future research and follow-up through annual questionnaires. In addition, participants can opt in or out to the following items: retrieval of data from regional and national registries, use of their data in research collaborations with for-profit organizations, use of coded data and laboratory samples for research outside the European Union and possible future requests to participate in follow-up studies of UCC-

BMJ Open

SMART. When patients do not consent to any of these additional items, they can still partake in theUCC-SMART study.

126 Baseline data collection

127 The screening program consists of questionnaires, physical examination, an electrocardiogram (ECG), 128 blood, urine and radiology testing. Except for the questionnaires, to be filled out before the hospital visit, 129 the diagnostic components of the program take place during a one-day visit. An overview of all the 130 variables available in UCC-SMART is provided in Supplementary Table 2. Some measurements have 131 only been collected for or starting from a certain time period (Figure 2 and Supplementary Table 3).

Health questionnaires

The questionnaires collect data on medical history including established CVD (CeVD, CAD, AAA and PAD as described in Supplementary Table 4), cardiovascular risk factors, symptoms of CVD (based on the Rose Angina Questionnaire[7]), medication use, family history and lifestyle. For women, a question on the age at menopause (if applicable) is included as well. From 2002 onward, information on obstetric history has been collected including the number of full-term pregnancies, miscarriages (<14 weeks of gestation), preterm deliveries (14 - 32 weeks of gestation), birth weight and pregnancy complications. As of August 2022, a 160-item food frequency questionnaire (FFQ), validated in the Dutch population, has been added to the questionnaires.[8] Recently, these questionnaires have also been sent to people who were included in the UCC-SMART study before August 2022. The results of the questionnaires will follow in 2023.

Physical examination

Anthropometric measurements are taken by trained (research) nurses and include body height in centimetres, weight in kilograms and waist and hip circumference in centimetres with patients wearing light clothing and no shoes. Weight and length are used to calculate body mass index in kg/m². Waist circumference is measured horizontally at the midpoint between the iliac crest and lower costal margin and hip circumference is taken at the maximum horizontal circumference around the gluteal muscles.
151 The mean of two measurements is calculated. If the two measurements differ by >2 cm, a third is taken 152 and the mean of the closest two is calculated.

From 1996 up until 1999, office blood pressure was measured using a semiautomatic oscillometric device (Omega 1400; Invivo Research Laboratories Inc., Broken Arrow, OK, USA) every 4 minutes for a total of 25 minutes at the right brachial artery in supine position and the mean systolic (SBP) and diastolic blood pressure (DBP) were calculated. From April 1999 until 2015, using a non-random sphygmomanometer (Iso-Stabil 5; Speidel & Keller, Jungingen, Germany), 3 simultaneous measurements with an interval of 30 seconds were taken at both upper arms in upright position and the SBP and DBP of the last two measurements were calculated from the arm yielding the highest values. From 2015 onward, office blood pressure has been measured using an automatic oscillometric device (Microlife WatchBP Office AFIB; Microlife Corp, Widnau, Switzerland). The measurement is performed unattended, in triplicate with an interval of 30 seconds, at both upper arms in supine position after the patient has rested for 30 seconds. The measurements on the arm with the highest blood pressure are recorded and the mean SBP and DBP are calculated.

In order to calculate the ankle-brachial index (ABI), blood pressure measurements are taken at rest at both upper arms every two minutes whilst the blood pressure is measured at both lower legs. For this, a Falcon Quad 8 MHz Doppler probe (Viasonix, Ra'anana, Israel) is used at a 60° angle at the dorsal pedal and posterior tibial arteries. The ABI is defined for each leg as the highest SBP at the ankle divided by the highest brachial SBP.

Laboratory testing

On the day of screening, a venous blood sample is drawn after at least eight hours of fasting to measure glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides, creatinine, and haemoglobin. Laboratory measurements of fasting insulin, C-reactive protein (CRP) and thyroid stimulating hormone (TSH) were added in 2003 and glycated haemoglobin (HbA1c) and apolipoprotein B (apoB) were added in 2006. Lastly, measurement of lipoprotein(a) was added in June 2020.

Glucose is measured using an enzymatic colorimetric assay (Beckman Coulter, Brea, CA,
USA). Total cholesterol and triglycerides are measured using a commercial enzymatic dry chemistry kit

Page 11 of 64

BMJ Open

(Johnson & Johnson, New Brunswick, NJ, USA) and HDL-C with a commercial enzymatic kit (Boehringer, Mannheim, Germany). Low-density lipoprotein cholesterol (LDL-C) is calculated using the Friedewald formula up to a plasma triglyceride level of 9 mmol/L.[9] Estimated glomerular filtration rate (eGFR) is calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula.[10] Spectrophotometry (Abbott Diagnostics, Santa Clara, CA, USA) is used to determine haemoglobin levels. CRP in plasma was initially determined using immunonephelometry (Nephelometer Analyzer BN II, Siemens, The Hague, The Netherlands) and from 2013 in heparin plasma on an AU5811 routine chemistry analyser using turbidimetry (Beckman Coulter, Brea, CA, USA). These types of measurements are strongly correlated (r = 0.99) and can therefore be pooled for analyses.[11] Before November 2006, TSH was quantified using a third-generation assay on a Centaur analyser (Bayer, Germany). Since December 2006, TSH has been measured by a third-generation assay on a DXi analyser (Beckman Coulter, Woerden, The Netherlands). Correlation between the two analysers is r = 0.9991 (n = 69), with an intercept of -0.05 mU/L (95%CI -0.22-0.12) and a slope of 1.04 (95%CI 1.029–1.052) (range 0–95 mU/L). ApoB and lipoprotein(a) are measured using nephelometry (Atellica Neph 630, Siemens, The Hague, The Netherlands). A morning-void urine sample is collected to determine urine albumin, creatinine, sodium and potassium levels. Urine albumin is measured using immunoturbidimetric assays. Ion selective electrode (Beckman Coulter, Brea, CA, USA) is used to determine urine sodium and potassium levels. DNA can be isolated from 10 mL of EDTA-augmented blood stored at -80° for genotyping.

Radiology testing

Non-invasive vascular imaging testing is performed by specially trained ultrasound technicians. Duplex examination of the carotid arteries is conducted to assess possible stenosis using peak systolic velocity measurements at the brachiocephalic trunk, carotid arteries (mid- and distal common, external and proximal and distal internal) and vertebral arteries (proximal and distal). Measurements are performed using an EPIQ-7 ultrasound machine (Philips Medical Systems, Eindhoven, The Netherlands). In case of abnormal signals and/or retrograde flow in the vertebral arteries, the proximal subclavian arteries are evaluated in search of severe stenosis or occlusion. For research purposes, intima-media-thickness

(IMT) of the carotid arteries is measured using a linear array transducer. With the patient lying down and the head turned 45° away from the side investigated, the ultrasound frame yielding an optimal longitudinal picture of the common carotid arterial wall is frozen at the time of the R-peak of ECG recording. Over a length of 1 cm starting from the carotid bulb towards proximal direction, the arterial wall thickness is measured from the lumen-intima interface to the media-adventitia interface. The mean of measurements in anterolateral, lateral and posterolateral direction is calculated.

Abdominal ultrasound examination is performed using the same ultrasound machine to obtain the maximal anterior-posterior diameter of the juxtarenal and infrarenal abdominal aorta and kidney length and volume. As of January 2000, visceral and subcutaneous adipose tissue measurements were added. The amount of subcutaneous fat is estimated by the distance from the linea alba to the skin. Visceral adipose tissue thickness is measured as the distance between the lumbar spine and the peritoneum. Measurements are taken at the end of a quiet expiration on a frozen ultrasound frame at three points on the imaginary transversal line halfway between the iliac crest and lower costal margin: at the midsternal line and 10 cm to the left and right on the transversal line. Each measurement is taken three times and then the mean of the measurements is recorded as the actual thickness. Ultrasonography has been proven a suitable technique to measure intra-abdominal adipose tissue with good reproducibility.[12,13] Moreover, from September 1998 on, a protocolized 12-lead resting ECG has been recorded.

In the near future, echocardiography will be added to the UCC-SMART program to facilitate research on the presence of heart failure at baseline. Echocardiography will be performed using a Philips Affiniti 70 ultrasound machine (Philips Medical Systems, Andover, MA, USA) by using a specific protocol involving 2-dimensional (2D), M-mode, Doppler, tissue Doppler and 2D speckle tracking (STE) imaging in accordance with the European Association of Cardiovascular Imaging 2016 recommendations for chamber quantification.[14] In particular, left ventricular dimensions will be measured in order to calculate the left ventricular mass index.[15] Left ventricular ejection fraction will be assessed quantitatively, preferably with automated three-dimensional imaging or alternatively with the Simpsons biplane method. Left atrial maximal volume and right ventricular dimensions and function will be measured as recommended.[14] Multiple parameters of left ventricular diastolic function will be Page 13 of 64

BMJ Open

assessed, including pulsed-wave Doppler of the mitral inflow and tissue Doppler imaging of the mitral annulus motion. Left ventricular diastolic function will be evaluated according to current diagnostic algorithms.[16] A minimal of three sequential complexes will be recorded. Standard image analysis will then be performed off-line in accordance with clinical guidelines using Philips IntelliSpace Cardiovascular software and will include 2D STE analysis of the left ventricle and left atrium.

Treatment recommendation

After completion of the screening, the findings are assessed by a multidisciplinary team of two medical specialists (internist, cardiologist, neurologist or vascular surgeon). A treatment recommendation is formulated based on current applicable guidelines, according to which patients are already treated by their general practitioner or medical specialist. The screening results and treatment recommendation are reported in a medical letter which is sent to the treating specialist and general practitioner. Patients receive a summary of relevant findings and recommendations.

Incidental medical findings during the screening are reported to one of the study physicians and if needed, discussed with specialists from the multidisciplinary team. The findings are added to the medical record and sent to the treating specialist or general practitioner for further action.

Follow-up

Patients receive annual questionnaires with questions on hospital admissions and outpatient clinic visits, regardless of whether they are still under the care of the UMC Utrecht. In case patients no longer wish to complete the questionnaires, they are asked if they consent to collection of information from their general practitioner. When the replies indicate possible outcome events, additional information is collected through hospital discharge letters and relevant laboratory and radiology examinations. Clinical events of interest include stroke, myocardial infarction, heart failure, AAA rupture, renal insufficiency, vascular interventions, bleeding, diabetes and vascular and non-vascular mortality as defined in Supplementary Table 5. Incident type 2 diabetes has been assessed since July 2006. To assess incident diabetes between 1996 and 2006, a questionnaire was sent to all patients without diabetes at baseline who were included before July 2006. Incident heart failure has been assessed since October 2011. Three

members from the endpoint committee independently judge reported events. The endpoint committee consists of medical specialists from the recruiting departments. If all three physicians judge differently, the event is discussed with two other physicians from the committee to reach consensus. Secondary outcomes are adjudicated by trained research nurses. As of 2021, diagnoses of dementia and mild cognitive impairment have been added to the annual questionnaire as self-reported diagnoses.

Data quality and management

Data collected in the UCC-SMART program is stored in the electronic medical record of the UMC Utrecht. Blood samples (serum, citrate plasma, EDTA plasma and erythrocytes concentrate aliquots) are stored at -80°C according to the Biobanks Regulations to be found at the UMC Utrecht website (https://www.umcutrecht.nl/nl/centrale-biobank). The central biobank of the UMC Utrecht is ISO9001 certified (certificate number 2175592). Release of material for future research is reviewed by the UMC Utrecht Biobanks Review Committee.

Recorded data is downloaded from the electronic medical record and pseudonymized by the data manager who holds the encryption key, only to be accessed after permission of the principal investigator. The UCC-SMART study group periodically performs quality checks for missing values and inconsistencies compared to source documents, or values outside of the range deemed likely.

- - Patient and public involvement

Patients were not involved in the study design. Their experiences of burden and required time are considered in the implementation of new components in the program. Relevant findings of the UCC-SMART screening program and corresponding recommendations are sent to the patients. In addition, patients regularly receive a newsletter containing up-to-date facts and figures of the UCC-SMART study and substudies and findings of publications using UCC-SMART data. The UMC Utrecht policies are in line with open science, for opening up the research agenda to societal stakeholders, open research data and open access publications.

BMJ Open

Linkage to other registries

Data in the UCC-SMART study can be enriched by collecting data from various registries and organizations, for example to obtain additional information on outcomes and medication use. Some examples of these linkages are described below.

Netherlands Cancer Registry

297 CVD and cancer share many risk factors and pathophysiological mechanisms, including body fat 298 distribution, diet, physical inactivity, smoking, chronic inflammation burden, and oxidative stress.[17] 299 To evaluate the relation between several cardiovascular risk factors and the risk of cancer, the UCC-300 SMART cohort has been linked to the *Netherlands Comprehensive Cancer Organisation* (IKNL), a 301 nationwide registry receiving notifications of all new cancer diagnoses. By linking the cohort to the 302 national cancer registry repeatedly, with the most recent linkage taking place in 2022, information on 303 cancer incidence and details of cancer types and histopathology was obtained.

305 Central Agency for Statistics (CBS) Netherlands

The UCC-SMART cohort can be linked to the *Central Agency for Statistics* (CBS), also known as *Statistic Netherlands*, which contains data on ICD-10 coded diagnoses and hospital admissions since 1996. This allows for, amongst others, collection of endpoints that are not regularly collected in UCC-SMART or have been collected from a later time point, such as heart failure diagnoses. The CBS collects data from all hospitals in the Netherlands and from general practitioner practices affiliated with 'Nivel' healthcare registration, which are a good reflection of the Dutch population.[18,19]

313 Utrecht Patient Oriented Database (UPOD)

The UCC-SMART cohort can be linked to UPOD[20], a database containing electronic patient data from routine clinical care in the UMC Utrecht. This database has been collecting patient characteristics, medication orders, laboratory test results, hospital discharge diagnoses and medical procedures since 2000, enabling the addition of baseline and follow-up information to the UCC-SMART study.

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
27	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
55	
50	
5/	
58	
59	

319 Consortia 320 The data collected in UCC-SMART is added to several consortia such as a genetics consortium (GENIUS-CHD[21] on genetics of subsequent coronary heart disease), the Netherlands consortium of 321 322 dementia cohorts and the Chronic Kidney Disease Prognosis Consortium[22]. 323 Dutch Foundation for Pharmaceutical Statistics 324 325 A future plan is to obtain information on medication use during follow-up by linking the UCC-326 SMART cohort to the Dutch Foundation for Pharmaceutical Statistics (Stichting Farmaceutische Kengetallen [SFK]). This foundation obtains data from over 97% of the community pharmacies in the 327 328 Netherlands.[23] 329 330 **Substudies** SMART-2 331 Patients with a history of CVD or diabetes are invited to participate in the SMART-2 substudy. In this 332 333 study, the baseline measurements of UCC-SMART are repeated in order to investigate the course of 334 atherosclerosis and vascular risk factors over time, and to evaluate the effects of treatment. Until May 2022, 2,313 patients have participated in SMART-2 after a median of 9.9 years (IQR 9.2 - 10.8) since 335 their inclusion in UCC-SMART. As with UCC-SMART, the findings of SMART-2 with an 336 337 accompanying treatment recommendation are communicated to the patient, his or her treating medical 338 specialist and general practitioner. 339 340 SMART-ORACLE SMART-ORACLE aims to determine the additional value of contrast-enhanced computed tomography 341

342 (CT) of the coronary and carotid arteries on top of traditional cardiovascular risk factors in patients with
a history of CVD, diabetes or hypertension.[24] The study is still ongoing and has currently been
conducted in 1,252 patients.

8 345

60

346 SMART-MR and SMART Medea

BMJ Open

SMART-MR and SMART Medea target the investigation of brain changes in patients with CVD using
1.5T magnetic resonance imaging (MRI) (and 7T MRI in a subset of patients).[25,26] This study was
conducted in 1,309 patients. Amongst others, measurements of the total cerebral blood flow have been
performed and characteristics of white matter lesions and microbleeds have been mapped.

Athero-Express

In May 2022, the Athero-Express biobank and study cohort have been incorporated into the UCC-SMART study.[27] The objective of Athero-Express is to investigate the value of plaque characteristics in relation to long term cardiovascular events. This ongoing prospective study, initiated in April 2002, includes patients undergoing femoral or carotid endarterectomy. During surgery, the atherosclerotic plaque is harvested and immunohistochemically stained in order to asses fat, collagen, macrophages and smooth muscle cells.

Other substudies

Several other substudies have been carried out within the UCC-SMART cohort, providing additional information and parameters for subsets of patients (Supplementary Table 6). As part of SMART-**Junior**, additional questionnaires have been sent to 4,270 patients in order to investigate the presence of cardiovascular risk factors and CVD in their offspring.[28] In **DISH**, diffuse idiopathic skeletal hyperostosis was scored on chest X-rays of 4,791 patients, performed in the context of health care, using the Resnick criteria. [29,30] SMART-HEART aimed to detect patient characteristics related to the development of left ventricle hypertrophy using 1.5T cardiac MRI in 536 patients with hypertension, but free of known coronary or valvular disease.[31] In order to determine whether intima and media calcification differ in their associated CVD risks and to elucidate which risk factors lead to the development of those types of calcification, CT-scans of the femoral head to the feet have been performed in 520 patients as part of ARTEMIS.[32] The aim of the Small aneurysms trial was to estimate the overall rupture rates of small AAAs and to investigate demographic characteristics and cardiovascular risk factors for association with AAA growth using ultrasound scanning of the aorta in 230 patients with an initial AAA diameter of 30-55 mm.[33] In Brown adipose tissue, supraclavicular

and subcutaneous adipose tissue fat-signal-fractions were assessed in 50 patients with CVD using 1.5T
water-fat MRI.[34] SPAIN evaluated the feasibility of a web-based coaching program for vascular risk
factor treatment, described the patterns of use of this program and measured changes in risk factors in
50 patients with CVD.[35] RULE investigated the impact of the UCC-SMART study compared to usual
care on cardiovascular risk factors in 604 patients with CVD or type 2 diabetes.[36]

A few clinical trials have been conducted within the UCC-SMART study. TEMPUS was a randomized crossover trial in 78 patients that investigated the effects of a cardiovascular polypill on LDL-C, ambulatory blood pressure and adherence as compared to the administration of the individual, identically dosed components of the polypill.[37] SMART-Inform was a three-armed randomized controlled trial (RCT) in 303 patients using a statin with CVD.[38] The aim was to determine whether communicating personalized statin therapy-effects leads to lower decisional conflicts associated with statin use compared with standardized (non-personalized) therapy-effects. **BEST** was an RCT investigating whether a clearly written agreement on risk factor management between general practitioners and hospitals improved the vascular risk profile of 197 patients compared with usual care.[39] Another RCT was VENUS, which included 236 patients with ≥ 2 modifiable risk factors, investigating whether risk factor management in the hospital improved with nurse practitioner care on top of usual care compared with usual care alone.[40] Lastly, IRIS was an RCT that evaluated whether an internet-based vascular risk factor management program promoting self-efficacy on top of usual care is more effective than usual care alone in reducing vascular risk factors in 330 patients with CVD.[41] A timeline showing the different substudies is presented in Supplementary Figure 1.

Characteristics of the study population

By May 2022, a total of 14,830 patients has been included (Figure 3). Of those, 3,294 patients died and 89% (n = 10,219) of the surviving patients are still being followed up. Reasons for follow-up to end in surviving patients include withdrawal of participation in further follow-up (80%) or being unreachable for further questionnaires (20%). The median follow-up time of these patients without complete followup data is 7.4 years (IQR 3.9 - 11.4). Figure 4 shows the numbers and distribution of the reasons for inclusion. The most common inclusion diagnosis was CAD (n = 4,729), followed by hypertension (n =

BMJ Open

2,344) and CeVD (n = 2,276). PAD was the enrolment diagnosis in 1,173 patients and AAA in 369
patients. Hyperlipidaemia was the inclusion diagnosis in 1,433 patients and diabetes mellitus in 730
patients.

Patient characteristics, medication use and measurements at baseline are listed in Table 1. This table is stratified for medical history at baseline, with the items of medical history either being the inclusion diagnosis or a comorbidity. This means that patients may fall within more than one category as listed in Table 1. The majority of patients included in the cohort is male (65%), especially among the subgroup of patients with established CVD (73% male). The mean age of the total population is 56.8 ± 12.5 years. In total, 2,608 individuals (18%) had diabetes and 9,633 individuals (65%) had established CVD at baseline. Of these CVD patients, 1,399 (15%) had polyvascular disease, i.e. multiple vascular beds (cerebral, coronary, abdominal aorta or lower extremity) being affected. The proportion of missing variables is less than 3% for all variables, except for adipose tissue measurements on ultrasound (3.6%), albuminuria (4.7%) and CRP level (9.0%). Vascular screening indicated significant carotid artery stenosis (>50% stenosis) in 526 (4%) patients, AAA in 188 (1%) patients and low ABI (≤ 0.9) in 829 (6%) patients who were not previously diagnosed with CeVD, AAA or PAD, respectively. Of the 3,095 patients with established CVD included between 2012 and 2022 (to account for applicable guidelines). 2,075 (67%) had a SBP <140 mmHg, 753 (25%) had an LDL-C ≤1.8 mmol/L and 2,737 patients (88%) were using antithrombotic agents at baseline. Baseline characteristics of patients with complete follow-up data available were comparable to the characteristics of patients who withdrew from or were unreachable for further follow-up (Supplementary Table 7).

	History of CVD			Cardiovascular risk factors					
	Cerebrovascular	Coronary artery	Abdominal aortic	Peripheral artery	Hypertension	Hyperlipidaemi	Diabetes mellitus	Renal insufficiency	
	disease	disease	aneurysm	disease		а	(type 1 + 2)		
Number of patients	2801	5999	767	1646	8228	12972	2608	1118	
Medical history ^a									
Cerebrovascular disease	2801 (100)	553 (9)	117 (15)	209 (13) 433 (26) 134 (8) 1646 (100) 906 (57) 1492 (92) 328 (20)	1655 (20)	2492 (19)	442 (17)	248 (22)	
Coronary artery disease	553 (20)	5999 (100)	322 (42) 767 (100)		3192 (39)	5762 (44)	1131 (43)	497 (44) 151 (14) 205 (18) 902 (82) 1016 (92)	
Abdominal aortic aneurysm	117 (4)	322 (5)			466 (6)	693 (5)	114 (4)		
Peripheral artery disease	209 (7)	433 (7)	134 (17)		906 (11) 8228 (100) 7285 (90) 1736 (21)	1492 (12) 7285 (57) 12972 (100) 2275 (18)	328 (13)		
Hypertension	1655 (60)	3192 (54)	466 (62) 693 (91) 114 (15)				1736 (68) 2275 (88) 2608 (100)		
Hyperlipidaemia	2492 (90)	5762 (96)							
Diabetes mellitus	442 (16)	1131 (19)						365 (33)	
Health questionnaire									
Age (years)	60 ± 11 1744 (62)	62 ± 10 4849 (81)	65 ± 9 636 (83)	60 ± 11 1100 (67)	59 ± 12	58 ± 12 8699 (67)	59 ± 12 1815 (70)	63 ± 11 911 (82)	
Male sex					5174 (63)				
Previous or current smoking	2106 (76)	4511 (75)	661 (86)	1473 (90)	5697 (69)	9265 (72)	1865 (72)	847 (76)	
Packyears in (former) smokers	20.2 (9.4 - 35.1)	20.7 (9.4 - 33.6)	28.0 (13.8 - 42.3)	27.9 (14.6 - 40.6)	18.9 (8.3 - 33.3)	18.9 (8.8 - 32.5)	21.0 (9.5 - 36.2)	22.8 (10.5 - 37.8)	
Current alcohol use	1484 (53)	3641 (61)	368 (48)	770 (47)	4787 (58)	7584 (59)	1229 (47)	511 (46)	
Highest level of education									
- Primary/secondary school	554 (31)	1248 (29)	128 (34)	315 (40)	1764 (31)	2569 (29)	553 (35)	210 (32)	
- Vocational school	631 (35)	1466 (35)	117 (31)	236 (30)	1824 (32)	2891 (33)	519 (33)	223 (34)	
- University (of applied	560 (31)	1415 (33)	125 (33)	196 (25)	1914 (34)	3031 (35)	422 (27)	194 (30)	
science)									
Exercise (METh/week)	0.0 (0.0 - 10.5)	0.0 (0.0 - 12.0)	0 (0.0 - 6.0)	0 (0.0 – 5.5)	0 (0.0 - 11.0)	0 (0.0 – 12.0)	0 (0.0 – 6.0)	0 (0.0 – 5.5)	
Medication use									
Lipid-lowering therapy	1682 (60)	4995 (83)	417 (54)	849 (52)	4720 (57)	8253 (64)	1664 (64)	678 (61)	
Antihypertensive therapy	1724 (62)	5409 (90)	545 (71)	912 (55)	7130 (87)	9080 (70)	1980 (76)	965 (86)	

BMJ Open

Platelet inhibitors	2062 (74)	5263 (88)	450 (59)	987 (60)	4532 (55)	7694 (59)	1453 (56)	640 (57)
Oral anticoagulant therapy	311 (11)	821 (14)	123 (16)	234 (14)	743 (9)	1188 (9)	271 (10)	182 (16)
Glucose lowering therapy	287 (10)	757 (13)	67 (9)	189 (11)	1176 (14)	1475 (11)	1621 (62)	216 (19)
Anthropometric measurements								
Systolic blood pressure (mmHg)	141 ± 22	137 ± 20	142 ± 20	144 ± 21	150 ± 23	140 ± 22	144 ± 21	150 ± 24
Diastolic blood pressure (mmHg)	82 ± 12	80 ± 11	83 ± 12	81 ± 11	87 ± 14	83 ± 13	82 ± 12	85 ± 14
Ankle-brachial index ≤0.9	398 (14)	680 (11)	165 (22)	1063 (66)	1195 (15)	1751 (14)	434 (17)	283 (26)
Body mass index (kg/m ²)	26.6 ± 4.2	27.3 ± 4.0	26.4 ± 3.8	26.3 ± 4.3	27.6 ± 4.6	27.0 ± 4.3	28.7 ± 5.0	27 ± 4
Waist circumference (cm)	93.7 ± 12.9	97.4 ± 11.6	97.6 ± 12.1	95.0 ± 12.5	96.4 ± 13.3	95.1 ± 12.7	100.7 ± 13.7	98.9 ± 12.5
Hip circumference (cm)	103.6 ± 8.7	104.2 ± 7.6	103.8 ± 7.8	103.0 ± 8.7	105.1 ± 9.2	104.1 ± 8.5	106.3 ± 9.8	104.4 ± 8.4
Visceral fat (cm)	8.6 ± 2.6	9.3 ± 2.6	9.5 ± 2.6	9.2 ± 2.7	9.0 ± 2.8	8.8 ± 2.7	10.1 ± 2.9	9.9 ± 2.8
Subcutaneous fat (cm)	2.5 ± 1.2	2.4 ± 1.2	2.2 ± 1.1	2.4 ± 1.5	2.6 ± 1.4	2.5 ± 1.3	2.4 ± 1.4	2.2 ± 1.4
Carotid artery stenosis	652 (24)	443 (8)	84 (11)	255 (16)	77 (10)	1104 (9)	283 (11)	181 (16)
cIMT (mm)	0.9 (0.7 – 1.0)	0.9 (0.7 – 1.0)	0.9 (0.8 – 1.1)	0.9 (0.8 – 1.1)	0.8 (0.7 – 1.0)	0.8 (0.7 – 1.0)	0.9 (0.7 – 1.0)	0.9 (0.8 – 1.1)
Aortic aneurysm	81 (3)	244 (4)	307 (41)	72 (4)	289 (4)	458 (4)	61 (2)	108 (10)
Kidney size (cm)	11.1 ± 1.0	11.3 ± 1.0	11.3 ± 1.0	11.2 ± 1.1	11.2 ± 1.0	11.2 ± 1.0	11.5 ± 1.0	10.9 ± 1.3
Laboratory measurements								
Haemoglobin (mmol/L)	8.9 ± 0.8	8.9 ± 0.8	8.8 ± 0.9	8.9 ± 0.9	8.9 ± 0.8	8.9 ± 0.8	8.8 ± 0.9	8.5 ± 1.0
Total cholesterol (mmol/L)	4.9 ± 1.2	4.5 ± 1.1	5.1 ± 1.3	5.3 ± 1.3	5.0 ± 1.3	5.1 ± 1.4	4.7 ± 1.3	5.0 ± 1.4
LDL-C (mmol/L)	2.9 ± 1.1	2.6 ± 0.9	3.1 ± 1.1	3.2 ± 1.1	2.9 ± 1.1	3.1 ± 1.2	2.7 ± 1.0	2.9 ± 1.1
HDL-C (mmol/L)	1.3 ± 0.4	1.2 ± 0.3	1.2 ± 0.4	1.2 ± 0.4	1.3 ± 0.4	1.3 ± 0.4	1.2 ± 0.3	1.2 ± 0.4
Apolipoprotein B (g/L)	0.8 ± 0.3	0.8 ± 0.2	0.9 ± 0.2	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3	0.9 ± 0.3
Triglycerides (mmol/L)	1.3 (0.9 – 1.9)	1.4 (1.0 – 2.0)	1.5 (1.1 – 2.1)	1.5 (1.1 – 2.3)	1.4 (1.0 – 2.1)	1.4 (1.0 – 2.1)	1.6 (1.1 – 2.4)	1.7 (1.2 – 2.5)
HbA1c (mmol/mol)	38 (36 – 42)	39 (36 – 43)	39 (36 – 43)	40 (37 – 48)	39 (36 – 44)	38 (36 - 43)	52 (45 - 62)	41 (37 – 52)
Fasting glucose (mmol/L)	5.7 (5.3 – 6.3)	5.9 (5.4 - 6.6)	5.8 (5.4 - 6.5)	5.8 (5.3 - 6.7)	5.8 (5.4 - 6.6)	5.8 (5.3 - 6.4)	8.1 (6.9 – 10.0)	6.0 (5.5 – 7.2)
eGFR (mL/min/1.73 m ²)	48 ± 40	63 ± 34	58 ± 32	51 ± 40	49 ± 40	54 ± 40	55 ± 41	40 ± 26
Albuminuria (mg/L)	10.0 (6.0 – 24.1)	9.0 (6.0 - 20.0)	12.9 (8.0 - 39.9)	11.0 (7.0 - 32.0)	11.0 (7.0 – 29.0)	9.0 (6.0 - 22.0)	14.0 (8.0 - 41.0)	82.0 (16.0 - 257.6)
CRP (mg/L)	2.1 (1.0 - 4.5)	1.9 (1.0 – 4.0)	3.3 (1.6 - 6.9)	3.1 (1.4 – 6.3)	2.2 (1.0 - 4.7)	2.0 (1.0 - 4.2)	2.4 (1.1 – 5.1)	3.2 (1.5 - 7.2)
TSH (mU/L)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.7 (1.2 – 2.5)	1.8 (1.2 – 2.6)	1.8 (1.2 – 2.5)	1.9 (1.3 – 2.7)	1.8 (1.3 – 2.7)

1 2		
2 3 4	424	Data are presented as number (percentage), mean ± standard difference or median (interquartile range).
5	425	^a Based on inclusion diagnosis, items of the health questionnaire and/or measurements at baseline:
6 7	426	Cerebrovascular disease: history of stroke, carotid surgery or percutaneous transluminal angioplasty;
8	427	Coronary artery disease: history of myocardial infarction, cardiac arrest, coronary bypass surgery or percutaneous transluminal coronary angioplasty;
9 10	428	Abdominal aortic aneurysm: history of abdominal aortic aneurysm, transluminal or surgical treatment of abdominal aortic aneurysm;
11	429	Peripheral artery disease: history of amputation of (part of) lower limb, lower limb peripheral artery surgery or percutaneous transluminal angioplasty;
12	430	Hypertension: treatment with antihypertensive drugs or blood pressure \geq 160/95 mmHg at baseline measurement;
13 14	431	Hyperlipidaemia: treatment with lipid-lowering agents, total cholesterol \geq 5 mmol/L or LDL-cholesterol \geq 3.2 mmol/L at baseline measurement;
15	432	Diabetes mellitus: treatment with antidiabetic agents, fasting glucose \geq 7.0 mmol/L or non-fasting glucose \geq 11.1 mmol/L at baseline measurement;
16 17	433	Renal insufficiency: creatinine >120 mmol/L and/or microprotein/creatinine ratio in urine >20.
18	434	Cut-off values applied at the start of UCC-SMART study, please note target values have changed over time and continuous variable are available.
19 20 21	435	cIMT, carotid intima media thickness; CRP, C-reactive protein; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated haemoglobin
22 23	436	type A1C; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MET, metabolic equivalent of task; TSH: thyroid stimulation hormone.
24 25		
26 27		
28 29		
30 31		
32		
33 24		
54 35		
36		
37 38		
39		
40		
41 42		20
43		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
44 45		
46		

437 Findings to date

The findings of this section are reported for patients included up to January 2020 (n = 13,898), because the collection and processing of outcome events has been completed up until this date. These patients contributed to a total follow-up time of 134,439 person-years. Median follow-up time was 9.2 years (interquartile range 4.8 – 14.1 years). During follow-up, 2,259 (16%) patients suffered a first combined major cardiovascular endpoint (including non-fatal myocardial infarction, non-fatal stroke or cardiovascular death). Furthermore, there were 943 (7%) cases of incident diabetes, 105 (1%) cases of end-stage kidney disease, 161 (1%) cases of heart failure and 434 (3%) cases of major bleeding. A total of 3,264 (23%) patients underwent a vascular intervention during follow-up. Of patients with established CVD, 1,906 patients (21%) suffered the combined vascular endpoint mentioned above as subsequent event, whereas 353 patients (7%) with severe risk factors without prior CVD experienced this combined outcome as their first ever event. Of the 2,450 individuals with diabetes at baseline, 568 (23%) individuals suffered the combined vascular endpoint. Corresponding incidence rates are 21.2 per 1000 person years for patients with established CVD and 8.2 per 1000 person years for patients without a history of CVD. Numbers and observed incidence rates of all specific outcome events of interest are listed in Table 2. Through linkage with the Dutch National Cancer Registry, a total of 2,139 patients (15%) was diagnosed with cancer during follow-up. This includes 414 diagnoses of lung cancer, 354 of prostate cancer, 294 of intestinal cancer and 163 of breast cancer as most common diagnoses.

456 Table 2. Number and incidence rates of outcome events from 1996 to 2020

Outcome event	Number of first	Person-years of	Incidence rate per
	events	follow-up	1,000 person-years
Non-fatal stroke	613	131,684	4.66
Ischemic stroke	502	132,042	3.80
Haemorrhagic infarction	20	134,362	0.15
Intracerebral haemorrhage	66	134,285	0.49
Subarachnoid haemorrhage	17	134,322	0.13
Type not determined	8	134,430	0.06
Retinal syndromes	16	134,338	0.12
Infarction	13	134,353	0.10
Haemorrhage	3	134,424	0.02
Non-fatal myocardial infarction	793	130,065	6.10
Heart failure	161	134,075	1.20
Systolic heart failure, due to	115	134,203	0.86
coronary disease	85	134,266	0.63
valve disorders	11	134,425	0.08
other causes	19	134,390	0.14
HFpEF, due to	46	134,311	0.34
coronary disease	15	134,390	0.11
valve disorders	8	134,418	0.06
other causes	23	134,381	0.17
Non-fatal rupture AAA	5	139,895	0.04
End-stage kidney disease	105	134,118	0.78
Vascular intervention	3,264	110,154	29.6
Heart	1606	121,936	13.2
Carotid or intracranial arteries	240	132,611	1.81
Aorta	439	131,553	3.34
Peripheral arteries	953	127,914	7.45
Renal artery	62	133,970	0.46
Major bleeding			
ISTH major bleeding	434	129,804	3.34
BARC 3 or 5 bleeding	457	132,497	3.45
Incident diabetes	943	124,310	7.59
Type 1 diabetes	1	131,417	0.01
Type 2 diabetes	942	124,330	7.58

Vascular mortality	1,267	134,439	9.42
Fatal cerebral infarction	85		0.63
Fatal cerebral haemorrhage	65		0.48
Fatal stroke – type not determined	21		0.16
Fatal myocardial infarction	63		0.47
Fatal heart failure	198		1.47
Fatal rupture AAA	29		0.22
Sudden death	401		2.98
Other	405		3.01
Non-vascular mortality	1317	134,439	9.80
Fatal malignancy	800		5.95
Fatal infection	169		1.26
Unnatural death	58		0.43
Other	290		2.16
All-cause mortality	2,794	134,439	20.78
Malignancy ^a	2,139	127,514	16.77
Lung	414		3.25
Prostate	354		2.78
Breast	163		1.28
Intestinal	294		2.31
Other	914		7.17

457 ^a Other subtypes of cancer in the dataset include cancer of the lip, oral cavity or pharynx; oesophagus; stomach;
458 liver, intrahepatic bile ducts, or gallbladder; pancreas; respiratory tract; thymus; bone or articular cartilage of
459 limb; melanoma; mesothelial or soft tissue; vulva or vagina; cervix uteri or corpus uteri; ovary; penis or testes;
460 kidney, renal pelvis or ureter; bladder; eye, brain, and other parts of the central nervous system; thyroid gland;
461 lymphatic/hematopoietic.

preserved ejection fraction; ISTH, International Society on Thrombosis and Haemostasis.

AAA, abdominal aortic aneurysm; BARC, Bleeding Academic Research Consortium; HFpEF, heart failure with

The large database of observational data has been used for over 350 etiological and prognostic studies so far, and the coverage of a wide age range and long follow-up provides opportunity to develop and validate prediction models. This has been done with the SMART risk score[42,43], the SMART-REACH lifetime model for patients with previous CVD[3] and the DIAL lifetime model[44] for patients with type 2 diabetes (to be found at https://u-prevent.com and the ESC 'CVD risk calculation'-app). These estimates serve clinical practice by providing insight into risk and thus supporting patient education and shared decision making. Moreover, routinely collection of patient data allows for embedding clinical trials within the cohort, as has been done with, amongst others, TEMPUS[37] and SMART-Inform[38].

The vascular screening in the UCC-SMART study is a structured uniform program to detect risk factors and asymptomatic atherosclerosis and provides a basis for optimizing treatment of high-risk patients. In a previous study comparing the UCC-SMART screening program to usual care in another university hospital in the Netherlands, a beneficial effect of the screening program on SBP and LDL-C was seen.[36] Previous research on screening programs in the general population shows improvement of cardiovascular risk factors and detection of patients at risk, but conflicting results are found on mortality and cardiovascular events. [2,45] In a population at risk (e.g. with hypertension or diabetes), the beneficial effect of cardiovascular screening is more pronounced. [2,46] In addition, a higher baseline achievement of secondary prevention targets is associated with improved cardiovascular health outcomes in patients with established CVD and type 2 diabetes.[47]

3 484

485 Strengths and limitations

The UCC-SMART study is a unique ongoing prospective cohort study in over 14,000 patients with a history of various manifestations of CVD or severe cardiovascular risk factors, providing a large up-todate cohort of a population at high cardiovascular risk. Collecting diverse outcome events in this population allows for research on risk factors for different manifestations of CVD and incident diabetes. Linkage to multiple registries facilitates the investigation of relationships between cardiovascular risk factors and diseases and other conditions such as cancer and dementia. By the integration of health care and scientific research, patient care becomes more complete and data already to be collected for patient

BMJ Open

493 care is used to increase knowledge of CVD, whilst the additive burden for participating patients is494 limited.

The main strengths of the UCC-SMART cohort include the large size, its capture of a high-risk population with various CVD manifestations and risk factors with few exclusion criteria, the use of a standardized diagnostic protocol, the long follow-up duration and the comprehensive capture of a wide range of data. Because inclusion of patients is still ongoing, the UCC-SMART cohort provides a good representation of the past and current population of patients at high cardiovascular risk. Due to the high risk study population, the prevalence and incidence of the main outcome variables are higher than in the general population, thereby increasing the power to study these outcomes. Furthermore, all outcome events are adjudicated independently by three physicians of the endpoint committee, reducing the risk of misclassification. The proportion of missing data is small, possibly explained by the protocolized screening program taking place in one day. The substudies provide additional information on specific cardiovascular risk factors (e.g. parental history of CVD[48], characteristics related to left ventricle hypertrophia[31], and the presence of diffuse idiopathic skeletal hyperostosis[49]), manifestations of atherosclerosis (e.g. brain changes on MRI[25] and cognitive decline[26]), and other important aspects in cardiovascular risk management (e.g. the effect of a cardiovascular polypill[50]).

Limitations also need to be considered. Due to the prospective observational design, for the majority of the patients, risk factors and medication use are only recorded at baseline and may have changed during follow-up. This could be reflected by the finding of this article that not all patients with CVD meet treatment goals for modifiable risk factors at baseline. Since patients are included several weeks to months after an index CVD event, risk factors are likely to be further optimized during this period after baseline examination. For a subset of patients with CVD or diabetes, a repeat of the baseline measurements after a median of 9.9 years is indeed available, allowing for investigating the course of atherosclerosis over time. Furthermore, in 10.6% of the included patients, follow-up ended due to either withdrawal of participation in further follow-up (8.5%) or being unreachable for further questionnaires (2.1%). Yet, the median follow-up time for these patients is 7.4 years, so those patients still contribute to a fair amount of patient-years. In addition, because UCC-SMART is a single-center study in a university hospital, it can be disputed whether it represents the general high risk population and patients

with established CVD. The UMC Utrecht provides care to nationwide patients referred for complex and specialized care, but also to patients referred by general practitioners from the region. Patients included in UCC-SMART_correspond to patients with severe cardiovascular risk factors or established CVD from the general population. As reflected by the inclusion criteria, the UCC-SMART study does not include patients requiring highly specialized care (including heart transplantation and rare causes of vascular disease). Lastly, except for information on education level, the database does not contain extensive information on socioeconomic status.

In conclusion, we have provided an updated extensive overview of the design of the UCC-SMART study as well as an overview of the findings to date. This underlines the value of the UCC-SMART study as a basis for contemporary and future epidemiologic research in CVD using a wellcharacterized high risk cardiovascular population with long-term follow-up. A future goal is to make the UCC-SMART data Findable, Accessible, Interoperable and Reusable (FAIR).[51]

534 Collaboration

The UCC-SMART study group directs the academic focus of research using the UCC-SMART data and consists of staff members from both epidemiological and clinical departments. All data presented in this manuscript will be available upon reasonable request, and specific datasets will be compiled based on the research proposal. The data is to be used only for the purposes as described in the research proposal. Datasets are provided to interested researchers after approval of request by the UCC-SMART study group. Access to the data request module can be applied for via ucc-smart@umcutrecht.nl. We encourage collaborations within overarching cardiovascular topics in which datasets are combined.

543 Acknowledgements

We gratefully acknowledge the contribution of the participants, the research nurses, R. van Petersen (data-manager), A. Vandersteen (study manager), the founders of the SMART-study in 1996: A. Algra, J.D. Banga, B.C. Eikelboom and Y. van der Graaf, and the members of the UCC-SMART study group: M.J. Cramer, H.M. Nathoe and M.G. van der Meer (co-PI), Department of Cardiology; G.J. de Borst and M. Teraa (co-PI), Department of Vascular Surgery; M.L. Bots and M. van Smeden, Julius Center Page 29 of 64

1 2

BMJ Open

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I つつ	
22	
∠3	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
31	
25	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

for Health Sciences and Primary Care; M.H. Emmelot-Vonk, Department of Geriatrics; P.A. de Jong,
Department of Radiology; A.T. Lely, Department of Gynaecology and Obstetrics; N.P. van der Kaaij,
Department of Cardiothoracic Surgery; L.J. Kappelle and Y.M. Ruigrok, Department of Neurology;
M.C. Verhaar, Department of Nephrology & Hypertension; J.A.N. Dorresteijn (co-PI) and F.L.J.
Visseren (PI), Department of Vascular Medicine, UMC Utrecht.

555 Contributors

554

F.L.J.V., J.W., S.H.J.H., M.C.C. and M.A.G.H. contributed to the conception and design of the work.
M.A.G.H. and M.C.C. drafted the manuscript and contributed equally to this paper. M.C.C., M.A.G.H.,
S.H.J.H., F.W.A., G.J.B., M.L.B., M.J.C., J.A.N.D., M.H.E-V., M.I.G., P.A.J., N.K., J.K., A.T.L.,
M.G.M., B.M.M., H.M.N., C.O.-M., R.B.P., Y.M.R., M.S., M.T., A.V., M.C.V., J.W. and F.L.J.V
contributed to the interpretation of data and critically revised the manuscript. All gave final approval
and agreed to be accountable for all aspects of work ensuring integrity and accuracy.

563 Funding

562

567

The UCC-SMART study was financially supported by the UMC Utrecht, the Netherlands. The supporting sources had no involvement in study design, analysis, interpretation, writing of the results, or the decision to submit for publication.

- 568 Competing interests
- 569 None declared.
- 570
- 571 Patient consent for publication
- 572 Not applicable.
- ے 1 573

2	
3 4	574
5 6	575
7 8	576
9	577
10	F 70
12 13	578
14	579
15 16 17	580
17	581
20 21	582
21 22 22	583
23 24 25	584
25 26 27	585
27 28 20	586
29 30	587
31 32	507
33 34	588
35	589
30 37	590
38 39	591
40 41 42	592
42 43	593
44 45	594
40 47	595
48 49	555
50 51	596
52	597
53 54	598
55 56	599
57 58	600
59 60	601

The study is in accordance with the Helsinki declaration and the Good Clinical Practice guidelines,

- and is approved by the ethics committee of the UMC Utrecht in 1996, 2014 and 2022 (reference
- 577 number 22-088).

Ethics approval

580 **References**

- 581 [1] Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global
 582 Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019
 583 Study. J Am Coll Cardiol. 2020;76(25):2982–3021.
- 584 [2] Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC
 585 Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol.
 586 2022;29(1):5–115.
- 587 [3] Kaasenbrood L, Bhatt DL, Dorresteijn JAN, Wilson PWF, D'Agostino RB, Massaro JM, et al.
 588 Estimated life expectancy without recurrent cardiovascular events in patients with vascular
 589 disease: The SMART-REACH model. J Am Heart Assoc. 2018;7(16).
- 37590[4]Adler A, Agodoa L, Algra A, Asselbergs FW, Beckett NS, Berge E, et al. Pharmacological38591blood pressure lowering for primary and secondary prevention of cardiovascular disease across40592different levels of blood pressure: an individual participant-level data meta-analysis. Lancet.415932021;397(10285):1625–36.
- ⁴⁵ 594 [5] Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the
 ⁴⁷ evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532–61.
- 50 596 [6] Simons PCG, Algra A, Van De Laak MF, Grobbee DE, Van Der Graaf Y. Second
- 2 597 manifestations of ARTerial disease (SMART) study: Rationale and design. Eur J Epidemiol.
 3 4 598 1999;15(9):773-81.
- 56 599 [7] Rose GA, Blackburn H. Cardiovascular survey methods. Monogr Ser World Health Organ.
 57
 58 600 1968;56:1–188.
- 601 [8] Sluik D, Geelen A, De Vries JHM, Eussen SJPM, Brants HAM, Meijboom S, et al. A national

Page 31 of 64

BMJ Open

1 2			
3 4	602		FFQ for the Netherlands (the FFQ-NL 1.0): Validation of a comprehensive FFQ for adults. Br J
5 6	603		Nutr. 2016;116(5):913–23.
7 8	604	[9]	Tremblay AJ, Morrissette H, Gagné JM, Bergeron J, Gagné C, Couture P. Validation of the
9 10	605		Friedewald formula for the determination of low-density lipoprotein cholesterol compared with
11 12	606		β -quantification in a large population. Clin Biochem. 2004;37(9):785–90.
13 14	607	[10]	Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, et al. A new equation
15 16	608		to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12.
17 18	609	[11]	Kusnierz-Cabala B, Gernand W, Zabek-Adamska A, Tokarz A, Naskalski JW. Comparison of
19 20	610		high-sensitivity C-reactive protein serum assay results obtained using Dade-Behring BNII
21 22 22	611		nephelometer and Ortho Vitros FS 5.1 clinical analyzer in respect of CRP-related risk
23 24 25	612		assessment of chronic metabolic diseases. Clin Lab. 2008;54(9-10):341-6.
26 27	613	[12]	Stolk R, Wink O, Zelissen P, Meijer R, van Gils A, Grobbee D. Validity and reproducibility of
28 29 30 31	614		ultrasonography for the measurement of intra-abdominal adipose tissue. Int J Obes. 2001 Sep
	615		12;25(9):1346–51.
32 33	616	[13]	Bazzocchi A, Filonzi G, Ponti F, Albisinni U, Guglielmi G, Battista G. Ultrasound: Which role
34 35	617		in body composition? Eur J Radiol. 2016 Aug;85(8):1469-80.
36 37	618	[14]	Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al.
38 39 40	619		Recommendations for cardiac chamber quantification by echocardiography in adults: an
40 41 42	620		update from the American Society of Echocardiography and the European Association of
42 43 44	621		Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015
45 46	622		Jan;28(1):1-39.e14.
47 48	623	[15]	Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic
49 50	624		assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol.
51 52	625		1986 Feb;57(6):450–8.
53 54	626	[16]	Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al.
55 56	627		Recommendations for the Evaluation of Left Ventricular Diastolic Function by
57 58	628		Echocardiography: An Update from the American Society of Echocardiography and the
60	629		European Association of Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc

1

2 3	630		Echocardiogr 2016 Apr 29(4):277-314
4 5	631	[17]	Koene RJ Prizment AE Blaes A Konety SH Shared risk factors in cardiovascular disease and
6 7 8 9	622	[-,]	concer Circulation 2016:122(11):1104_14
	052		
10 11	633	[18]	DHD. Ontdek de mogelijkheden van de LBZ [Internet]. 2022. Available from:
12 13 14 15 16 17 18	634		https://www.dhd.nl/producten-diensten/registratie-data/ontdek-de-mogelijkheden-van-de-lbz
	635	[19]	Nivel. Methode vaststellen cijfers zorgverlening huisartsen [Internet]. 2022. Available from:
	636		https://www.nivel.nl/nl/nivel-zorgregistraties-eerste-lijn/methoden/methoden-vaststellen-
	637		cijfers-zorgverlening/methode-vaststellen-cijfers-zorgverlening-huisartsen
19 20 21	638	[20]	ten Berg MJ, Huisman A, van den Bemt PMLA, Schobben AFAM, Egberts ACG, van Solinge
21 22 23	639		WW. Linking laboratory and medication data: new opportunities for pharmacoepidemiological
24 25	640		research. Clin Chem Lab Med. 2007;45(1):13–9.
26 27	641	[21]	Patel RS, Asselbergs FW. The GENIUS-CHD consortium. Eur Heart J. 2015 Oct;36(40):2674-
28 29 30 31 32 33	642		6.
	643	[22]	Matsushita K, Ballew SH, Astor BC, Jong PE de, Gansevoort RT, Hemmelgarn BR, et al.
	644		Cohort profile: the chronic kidney disease prognosis consortium. Int J Epidemiol. 2013
34 35	645		Dec;42(6):1660–8.
36 37	646	[23]	SFK. Foundation for Pharmaceutical Statistics [Internet]. [cited 2022 Dec 15]. Available from:
38 39 40	647		https://www.sfk.nl/english
40 41 42	648	[24]	Franssens BT, Nathoe HM, Leiner T, Van Der Graaf Y, Visseren FLJ. Relation between
43 44	649		cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed
45 46	650		tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol.
47 48	651		2017;24(6):660–70.
49 50	652	[25]	Geerlings MI, Appelman APA, Vincken KL, Algra A, Witkamp TD, Mali WPTM, et al. Brain
51 52	653		volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The
53 54	654		SMART-MR study. Atherosclerosis. 2010;210(1):130-6.
55 56	655	[26]	Grool AM, Van Der Graaf Y, Mali WPTM, Geerlings MI. Location of cerebrovascular and
57 58	656		degenerative changes, depressive symptoms and cognitive functioning in later life: The
59 60	657		SMART-Medea study. J Neurol Neurosurg Psychiatry. 2011;82(10):1093-100.

Page 33 of 64

1

BMJ Open

2			
3 4	658	[27]	Verhoeven BAN, Velema E, Schoneveld AH, de Vries JPPM, de Bruin P, Seldenrijk CA, et al.
5 6 7 8 9 10 11 12	659		Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation
	660		to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol.
	661		2004;19(12):1127–33.
	662	[28]	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al.
13 14	663		Prevalence and risk of cardiovascular risk factors and events in offspring of patients at high
15 16 17	664		vascular risk and effect of location of parental vascular disease. Int J Cardiol. 2015;195:195-
17 18	665		202.
19 20 21	666	[29]	Harlianto NI, Oosterhof N, Foppen W, Hol ME, Wittenberg R, van der Veen PH, et al. Diffuse
21 22 23	667		idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased
23 24 25	668		cardiovascular risk. Rheumatology. 2021;1–8.
26 27	669	[30]	Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in
28 29 30 31 32 33 34 35	670		diffuse idiopathic skeletal hyperostosis (DISH). Radiology. 1976 Jun;119(3):559-68.
	671	[31]	Meijs MFL, Bots ML, Vonken EJA, Cramer MJM, Melman PG, Velthuis BK, et al. Rationale
	672		and design of the SMART Heart study. Netherlands Hear J. 2007;15(9):295-8.
	673	[32]	Zwakenberg SR, De Jong PA, Hendriks EJ, Westerink J, Spiering W, De Borst GJ, et al.
36 37	674		Intimal and medial calcification in relation to cardiovascular risk factors. PLoS One. 2020;15(7
38 39 40	675		July):1–14.
40 41 42	676	[33]	Schlösser FJV, Tangelder MJD, Verhagen HJM, van der Heijden GJMG, Muhs BE, van der
43 44	677		Graaf Y, et al. Growth predictors and prognosis of small abdominal aortic aneurysms. J Vasc
45 46	678		Surg. 2008;47(6):1127–33.
47 48	679	[34]	Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FLJ, Hoogduin JM.
49 50	680		Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in
51 52	681		patients with manifest cardiovascular disease. NMR Biomed. 2016;29(1):48-56.
53 54	682	[35]	Goessens BMB, Visseren FLJ, de Nooijer J, van den Borne HW, Algra A, Wierdsma J, et al. A
55 56	683		pilot-study to identify the feasibility of an Internet-based coaching programme for changing the
57 58	684		vascular risk profile of high-risk patients. Patient Educ Couns. 2008;73(1):67-72.
59 60	685	[36]	Brouwer BG, Visseren FLJ, Algra A, Van Bockel JH, Bollen ELEM, Doevendans PA, et al.

1

2 3	686		Effectiveness of a hospital-based vascular screening programme (SMART) for risk factor
4 5	687		management in patients with established vascular disease or type 2 diabetes: A parallel-group
6 7 8 9 10	688		comparative study. J Intern Med. 2010;268(1):83-93.
	689	[37]	Lafeber M, Grobbee DE, Bots ML, Thom S, Webster R, Rodgers A, et al. The Evening versus
11 12	690		Morning Polypill Utilization Study: The TEMPUS rationale and design. Eur J Prev Cardiol.
13 14	691		2014;21(4):425–33.
15 16	692	[38]	Jaspers NEM, Visseren FLJ, Van Der Graaf Y, Smulders YM, Damman OC, Brouwers C, et al.
17 18 19 20 21	693		Communicating personalised statin therapy-effects as 10-year CVD-risk or CVD-free life-
	694		expectancy: Does it improve decisional conflict? Three-armed, blinded, randomised controlled
21 22 23	695		trial. BMJ Open. 2021;11(7):1-8.
24 25	696	[39]	Brouwer BG. SMART risk factor screening in patients at high vascular risk [dissertation].
26 27	697		Utrecht University; 2008.
28 29 30 31 32 33 34 35 26	698	[40]	Goessens BMB, Visseren FLJ, Sol BGM, de Man-Van Ginkel JM, Van Der Graaf Y. A
	699		randomized, controlled trial for risk factor reduction in patients with symptomatic vascular
	700		disease: The multidisciplinary Vascular Prevention by Nurses Study (VENUS). Eur J Prev
	701		Cardiol. 2006;13(6):996–1003.
30 37 38	702	[41]	Vernooij WP, Kaasjager HAH, Van Der Graaf Y, Wierdsma J, Grandjean HMH, Hovens
39 40	703		MMC, et al. Internet based vascular risk factor management for patients with clinically
41 42	704		manifest vascular disease: Randomised controlled trial. BMJ. 2012;344(7863):1-13.
43 44	705	[42]	Dorresteijn JAN, Visseren FLJ, Wassink AMJ, Gondrie MJA, Steyerberg EW, Ridker PM, et
45 46	706		al. Development and validation of a prediction rule for recurrent vascular events based on a
47 48	707		cohort study of patients with arterial disease: The SMART risk score. Heart. 2013;99(12):866-
49 50	708		72.
51 52	709	[43]	Hageman SHJ, McKay AJ, Ueda P, Gunn LH, Jernberg T, Hagström E, et al. Estimation of
55 55	710		recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular
55 56 57	711		disease: the updated SMART2 algorithm. Eur Heart J. 2022;
58 59	712	[44]	Berkelmans GFN, Gudbjörnsdottir S, Visseren FLJ, Wild SH, Franzen S, Chalmers J, et al.
60	713		Prediction of individual life-years gained without cardiovascular events from lipid, blood

Page 35 of 64

BMJ Open

1 2			
- 3 4	714		pressure, glucose, and aspirin treatment based on data of more than 500 000 patients with Type
5 6	715		2 diabetes mellitus. Eur Heart J. 2019;40(34):2899–906.
7 8	716	[45]	Cho JH, Han KD, Jung H-Y, Bond A. National health screening may reduce cardiovascular
9 10 11 12 13 14	717		morbidity and mortality among the elderly. Public Health. 2020 Oct;187:172-6.
	718	[46]	Antoku Y, Takemoto M, Mito T, Shiiyama R, Otsuka-Morisaki H, Tanaka A, et al. Impact of
	719		Annual Cardiovascular Screening Tests in Patients with Type 2 Diabetes Mellitus without
15 16	720		Previous Histories of Cardiovascular Disease: Four-year Clinical Outcomes. Intern Med. 2021
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	721		Sep;60(17):2725–32.
	722	[47]	Pagidipati NJ, Navar AM, Pieper KS, Green JB, Bethel MA, Armstrong PW, et al. Secondary
	723		Prevention of Cardiovascular Disease in Patients With Type 2 Diabetes Mellitus. Circulation.
	724		2017 Sep 26;136(13):1193–203.
	725	[48]	Weijmans M, van der Graaf Y, de Borst GJ, Nathoe HM, Algra A, Visseren FLJ, et al. Parental
	726		history and the risk of subsequent vascular events in patients with clinically manifest vascular
	727		disease: The effects of sex of the parent and vascular disease location. Atherosclerosis.
	728		2014;234(1):129–35.
34 35	729	[49]	Harlianto NI, Westerink J, Foppen W, Hol ME, Wittenberg R, Van Der Veen PH, et al.
36 37	730		Visceral adipose tissue and different measures of adiposity in different severities of diffuse
38 39	731		idiopathic skeletal hyperostosis. J Pers Med. 2021;11(7):1-11.
40 41 42	732	[50]	Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a
42 43 44 45 46	733		morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood
	734		pressure and adherence in high-risk patients; A randomized crossover trial. Int J Cardiol.
47 48	735		2015;181:193–9.
49 50	736	[51]	Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR
51 52	737		Guiding Principles for scientific data management and stewardship. Sci Data.
53 54 55 56 57 58	738		2016;3(1):160018.
59 60			

Figure legends

Figure 1. Course of the UCC-SMART study

ECG, electrocardiogram; UCC-SMART, Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease; UMC Utrecht, University Medical Centre Utrecht

Figure 2. Timeline of measurements collected for or starting from a certain period

ACE, angiotensin converting enzyme; apoB, apolipoprotein B; CAC, coronary artery calcium; CRP, C-reactive protein; CT, computerized tomography; CV, cardiovascular; CVD, cardiovascular disease; HbA1c, glycated haemoglobin; Lp(a), lipoprotein a; MRI, magnetic resonance imaging; T, Tesla; TSH, thyroid stimulating hormone

Figure 3. Cumulative number of patients over time

Inclusion in the UCC-SMART study started in September 1996.

Figure 4. Distribution of inclusion diagnoses

CVD, cardiovascular disease; HIV, human immunodeficiency virus

1996	2000		2005	2010	2015	BMJ Open 2020	Page 38 of 64
1		H I					Questionnaire about social support VENUS
2	1						Questionnaire about CV risk factors and CVD in children of participants SMART Junior
3						>	Questionnaire about obstetric history
5							Questionnaire about level of education; native country
6 7							Questionnaire about quality of life SMART-2
8			_				
9 10							Questionnaire about depression (symptoms and/or diagnosis SMAR1-MR & SMAR1-2
11							Neuropsychological assessment SMART-MR
12 12	—						Waist and hip circumference
14							Serum ACE, adipokines, extracellular vesicles
15 16							Circadian cortisol using saliva
17							Serum uric acid
18 19							Bone metabolism regulators
20							
21							Genetics
22						\mapsto	Sodium and potassium urinary excretion
24						\mapsto	Lp(a)
25 26							Homocysteine
27							HbA1c, ApoB
28 29			_				
30							
31	I						Ultrasound Vascular wall stiffness
32 33							Ultrasound Flow-mediated vasodilatation
34					—		1.5T MRI Subcutaneous and supraclavicular brown adipose tissue Brown adipose tissue
35 36					—		CT Calcification in femoral and crural arteries <i>ARTEMIS</i>
37							1 5T MRL Mass and volume of left ventricle: volume of left atrium L SMART HEART
38							
39 40							CT Epicardial adipose tissue, CAC-score, calcification on heart valves and in aorta SMART-ORACLE
41							Ultrasound Abdominal markers of adiposity
42 43							1.5T MRI Various manifestations of brain changes caused by CVD or CV risk factors SMART-MR
45 44				Fo	r peer review only - http	o://bmjopen.bmj.c	com/site/about/guidelines.xhtml 7T MRL Various manifestations of brain changes caused by CVD or CV risk factors LSMART-MR & SMART Medea
45							
46							

Supplementary material

Cohort profile: the Utrecht Cardiovascular Cohort – Second Manifestations of Arterial Disease (UCC-SMART) study – an ongoing prospective cohort study of patients at high cardiovascular

risk in the Netherlands

Content list

Supplementary Table 1. Inclusion criteria and exclusion criteria	3
Supplementary Table 2. Variables available in UCC-SMART	5
Supplementary Table 3. Measurements that have been performed in the past	7
Supplementary Table 4. Definitions of established cardiovascular disease	8
Supplementary Table 5. Definitions of outcome events	9
Supplementary Table 6. Substudies of UCC-SMART	12
Supplementary Table 7. Baseline characteristics of participants with complete follow-up and participants who were lost to follow-up	19
Supplemental Figure 1. Timeline of substudies of UCC-SMART	20
References	22

Inclusion criteria	Definition
One or more of the following cardiovasc	cular diseases or risk factors:
Ca	rdiovascular disease
Transient ischemic attack	Sudden onset, ≤24 hours of:
	carotid: temporary motor weakness in one half of
	the body, language disorder, blindness in one eye
	<i>vertebrobasilar</i> : ≥ 2 simultaneously: bilateral
	motor weakness or paraesthesia, dizziness,
	dıplopıa, dysphagıa, ataxıa, dysarthrıa
	unknown vascular region: hemianopia, dysarthria
Cerebral infarction	Criteria as for TIA, but duration of >24 hours
Subarachnoid haemorrhage	Sudden headache and (temporary) loss of
	consciousness, often accompanied by neck stiffness,
	nausea and vomiting, with blood in basal cisterns
	confirmed by CT or xantochromia in cerebrospinal
	fluid
Carotid artery stenosis	Duplex ultrasound confirmed stenosis or occlusion o
	≥ 1 carotid artery with diameter reduction $\geq 50\%$
Ischemic retinal syndrome	Visual field defect diagnosed as retinal syndrome by
	ophthalmologist
Angina pectoris	Chest pain with proven stenosis on coronary
	angiogram
Myocardial infarction	≥ 2 of following:
	- Chest pain >20 minutes, not relieved by nitrates;
	- ST elevation >1 mm in 2 contiguous ECG leads,
	or left bundle branch block;
	- Troponin levels >60 ng/L with rise and fall
	pattern*
Coronary syndrome requiring PCI or CABG	2
Abdominal aortic aneurysm	Ultrasound confirmed local dilatation of abdominal
	aorta with anterior-posterior diameter \geq 3 cm and/or
	distal-proximal ratio of >1,5
Renal artery stenosis	Stenosis of ≥1 renal artery with lumen narrowing
	\geq 50%, caused by atherosclerosis
Peripheral artery disease of the lower	Fontaine classification:
limbs	- Fontaine II: intermittent claudication: pain (or
	other symptoms) in one or both legs after certain
	walking distance, disappearing at rest;
	- Fontaine III: rest/nocturnal pain;
	- Fontaine IV: ischemic ulceration, necrosis or
	gangrene; confirmed by ABI ≤0.90 at rest and/or
	≥20% post-exercise decrease
Card	iovascular risk factors
Hypertension	Estimated as severe risk factor by physician, based
	on e.g. difficult-to-control hypertension, target organ
TT 1. · 1 ·	damage, medical or family history
Hyperlipidaemia	Estimated as severe risk factor by physician, based
	on e.g. difficult-to-control hyperlipidaemia,
	suspected lipid metabolism disorder, medical or
	tamily history

Supplementary Table 1. Inclusion criteria and exclusion criteria

Diabetes mellitus	Fasting glucose \geq 7.0 mmol/L, non-fasting glucose
	\geq 11.1 mmol/L or use of oral antidiabetic agents or
	insulin
Renal insufficiency	Serum creatinine >120 µmol/L
HIV infection	Chronic infection with human immunodeficiency
	virus
Family medical history	Positive family history for premature cardiovascular
	disease in 1 st degree relatives
Pre-eclampsia†	Gestational hypertension accompanied by
	proteinuria, other maternal organ dysfunction or
	uteroplacental dysfunction
HELLP syndrome†	Haemolysis, elevated liver enzymes, low platelets as
	a manifestation of pre-eclampsia
Placental abruption [†]	Gestational hypertension accompanied by placental
	abruption as an effect of uteroplacental insufficiency
Intrauterine growth restriction [†]	Gestational hypertension accompanied by fetal
	growth restriction as an effect of uteroplacental
	insufficiency
Rema	ining inclusion criteria
18-90 years of age	
Independent in most daily activities	Rankin scale $\leq 3^1$
Exclusion criteria	
Pregnancy	
Short life expectancy (per judgement of	the treating physician)
Insufficient understanding and expression	on of the Dutch language
No informed consent	
Follow-up impossible	\mathbf{N}

* In earlier years of the UCC-SMART study, this laboratory item was defined as CK elevation of $\geq 2x$ upper limit and MB-fraction >5% of total CK level.

[†] Hypertensive pregnancy complications are based on the ISSHP criteria²

ABI, ankle-brachial index; CABG, coronary artery bypass grafting; CK, creatine kinase; CT, computed tomography; ECG, electrocardiogram; HELLP, haemolysis, elevated liver enzymes and low platelets; HIV, human immunodeficiency virus; ISSHP, International Society for the Study of Hypertension in Pregnancy; PCI, percutaneous coronary intervention; TIA, transient ischemic attack.

BMJ Open

Health questionnaire	Medication use	Physical examination	Radiology measurements	Laboratory measurements
Medical history	Statins	Weight (kg)	Visceral fat (cm)	Haemoglobin (mmol/L)
Age (years)	Ezetimibe	Height (m)	Subcutaneous fat (cm)	Haematocrit (%)
Sex	Fibrates	Blood pressure (mmHg)	Carotid artery stenosis (%)	Total cholesterol (mmol/L)
Smoking and pack years	Thiazide diuretics	Ankle-brachial index	Carotid intima thickness (mm)	LDL-C (mmol/L)
Alcohol use and number of units	Loop diuretics	Body mass index (kg/m ²)	Aortic artery diameter (cm)	HDL-C (mmol/L)
Level of education	Potassium saving diuretics	Waist circumference (cm)	Kidney size and volume (cm; mL)	Apolipoprotein B (g/L)
Country of birth	ACE-inhibitors	Hip circumference (cm)	Electrocardiography	Triglycerides (mmol/L)
Quality of life*	Angiotensin II-receptor blockers		Echocardiography†	HbA1c (%)
Exercise (MET-hours per week)	Aldosterone antagonists			Fasting glucose (mmol/L)
	Beta-blockers			Fasting insulin (mU/L)
	Calcium antagonists			Creatinine (µmol/L)
	Alpha blockers			eGFR (ml/min/1.73 m ²)
	Central acting antihypertensives			Albuminuria (mg/L)
	Direct vasodilators			Albumin-to-creatinine ratio
	Aspirin			CRP (mg/L)
	Clopidogrel			TSH (mU/L)
	Dipyridamole			Lp(a)
	DOAC			Urine sodium
	Vitamin K antagonists			Urine potassium
	LMWH			
	Oral glucose-lowering therapy			
	Insulin			
	Antidepressants			
	Benzodiazepines			
† Echocardiography will be added to the UCC-SMART program in the near future

ACE, angiotensin converting enzyme; CRP, C-reactive protein; DOAC, direct oral anticoagulant; eGFR, estimated glomerular filtration rate; HbA1c,

glycosylated haemoglobin type A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LMWH, low molecular

weight heparin; Lp(a), lipoprotein(a); MET, metabolic equivalent of task; TSH, thyroid stimulating hormone; UCC-SMART, Utrecht Cardiovascular Cohort -

Second Manifestations of Arterial Diseas

BMJ Open

Supplementary Table 3. Measurements that have been performed in the past

Vascular wall stiffness was determined from 2001 until 2003 using the Wall Track System that captures vascular diameter changes using radio-frequent signals. At the first signal, the position of the anterior and posterior vascular wall of the common carotid artery are marked at 2 cm proximal to the carotid bulb. Then, for five times on both the left and right side, changes in arterial diameter (ΔD) and end-diastolic diameter (D_d) are registered during four seconds, and the mean is calculated. Carotid distension is defined as the change in artery diameter in systole relative to diastolic diameter. Other stiffness include β stiffness index (ln(SBP/DBP)/($\Delta D/D_d$)), compliance coefficient (($\pi \times D_d \times \Delta D$)/2×pulse pressure), distensibility coefficient (($2 \times \Delta D/D_d$)/pulse pressure), Peterson's modulus (pressure change required for theoretical 100% increase in diameter) and Young's elastic modulus (pressure per mm² required for theoretical 100% extension).

Flow-mediated vasodilatation (FMD) was assessed temporarily starting from March 1999. Here, the Wall Track System described above was used to capture the diameter of the brachial artery in the elbow crease. Following 3 baseline readings, new measurements were taken every 30 seconds for 5 minutes: first after a blood pressure cuff at the forearm was inflated to 100 mmHg above SBP for 4 minutes, and then after sublingual administration of 400 µg of nitroglycerin. Endothelial function was defined as the proportional increase of diameter after nitrate and the baseline-adjusted maximal diameter following ischemia. This examination was stopped in June 2001, since analysis in the first 400 patients showed this measurement was not related to other known measures of atherosclerosis.

Quality of life information was collected through questionnaires based on the 36-Item Short Form Health Survey (SF-36)³, sent to participants from 2001 until 2019. This quality of life assessment contains scales for 1) limitations in physical activities; 2) limitations in social activities; 3) limitations in usual role activities because of physical health problems; 4) bodily pain; 5) mental health; 6) limitations in usual role activities because of emotional problems; 7) vitality and 8) general health perceptions.

Homocysteine was measured from 1998 until 2011 in fasting blood samples by high performance liquid chromatography with fluorescence detection. Up until 2000, a methionine loading test was performed in patients younger than 50 years. Plasma homocysteine was measured six hours after oral administration of 100mg methionine per kilogram bodyweight.

DBP, diastolic blood pressure; SBP; systolic blood pressure

Supplementary Table 4. Definitions of established cardiovascular disease

Cardiovascular disease	Definition of cardiovascular disease*
Cerebrovascular disease	TIA, cerebral infarction, ischemic retinal syndrome, carotid surgery or angioplasty in medical history
Coronary artery disease	Myocardial infarction, angina pectoris, ≥ 1 vessel disease on coronary angiography, PCI or CABG in medical history
Abdominal aortic aneurysm	Abdominal aortic aneurysm, surgical or endovascular treatment of abdominal aortic aneurysm in medical history
Peripheral artery disease	Fontaine classification \geq II, amputation, vascular surgery or angioplasty in medical history

* Definitions of these items are listed in Supplementary Table 1.

CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; TIA, transient ischemic attack.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
10	
20	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49	
50 E1	
כו בי	
52 52	
52 51	
54	
55	
50	
57	
59	
60	
00	

Supplementary Table 5. Definitions of outcome events

Outcome event	Definition of outcome event
	Primary endpoints
Stroke Ischemic stroke / haemorrhagic infarction	>24 hours of associated clinical signs causing increased disability of ≥ 1 grade on modified Rankin scale ¹ , and new (haemorrhagic) infarction on CT or MRI <2 weeks after stroke
Cerebral haemorrhage	Cerebral haemorrhage confirmed with CT, MRI or surgery
Subarachnoid haemorrhage	Subarachnoid haemorrhage confirmed with CT, MRI or surgery
Type not determined	>24 hours of associated clinical signs causing increased disability of ≥ 1 grade on modified Rankin scale, but no brain imaging performed
Retinal syndromes	
Infarction	Associated clinical symptoms, typical fundus changes and/or vision loss, scotoma on perimetry
Haemorrhage	Associated clinical symptoms, typical fundus changes and vision loss
Myocardial infarction	The assessment includes: chest pain >30 minutes, elevated cardiac enzymes, characteristic ECG-changes
STEMI	Acute chest pain with persistent (>20 minutes) ST-elevation
NSTEMI	Acute chest pain without ST-elevation, with elevated troponin
Intervention-related myocardial infarction	New Q wave and elevated troponin <7 days after any intervention (for PCI >3x, for CABG >5x)
Probable myocardial infarction	Typical pain, persistent STT-changes, no documented course of cardiac enzymes
Heart failure	≥2 of the following: dyspnoea, dyspnoea on exertion, paroxysmal nocturnal dyspnoea, orthopnoea, exercise intolerance, pulmonary oedema, increased central venous pressure, third heart tone, hepatojugular reflux, altered hemodynamics, peripheral oedema, cardiomegaly; and (intensified) treatment with loop diuretics or intravenous vasoactive inotropic agents
	Classified as: systolic heart failure (at least moderate left ventricle dysfunction or LVEF <40%) or heart failure with preserved ejection fraction, due to coronary disease, valve disease or other causes
Rupture of abdominal aortic aneurysm	Rupture abdominal aortic aneurysm, proven by ultrasound, CT or laparotomy
Renal disease	· ·
End-stage renal disease	CKD stage 5 (i.e. persisting eGFR <15ml/min/1.73 m ² for >3 months and/or need for renal replacement therapy (chronic dialysis or renal transplantation))

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
י 20
20 ⊇1
∠ I 22
22
23
24
25
26
27
28
29
30
31
37
J∠ 22
22 24
34
35
36
37
38
39
40
41
42
43
44
45
46
40
47
48
49
50
51
52
53
54
55
56
57
58
50
72

Acute renal insufficiency – temporary renal replacement therapy	Acute kidney injury requiring temporary renal replacement therapy
Acute renal insufficiency – no renal replacement therapy	Acute kidney injury KDIGO stage 3 (i.e. serum creatinine 3 times baseline creatinine and/or serum creatinine \geq 354 µmol/L)
Bleeding	Bleeding requiring outpatient treatment or (prolonged) hospitalization
Major bleeding	<i>ISTH definition:</i> fatal bleeding and/or bleeding in critical area or organ (such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular, pericardial, intramuscular causing compartment syndrome), bleeding causing Hb level drop of \geq 1.24 mmol/L or leading to transfusion of \geq 2 units of blood ⁴
	<i>BARC type 3:</i> overt bleeding with Hb level drop of ≥ 1.86 mmol/L, leading to transfusion, cardiac tamponade, surgical intervention for control or intravenous vasoactive agents, or located intracranial or intraocular compromising vision <i>BARC type 5:</i> fatal bleeding ⁵
Diabetes	Self-reported diagnosis, confirmed and classified based on a questionnaire. If necessary, additional information is requested from the general practitioner or looked up in the electronic health record.
DM type 1	Insulin needed immediately at onset and absence of oral glucose lowering medication. Supportive but not mandatory: ≤25 years of age, BMI <25 kg/m ² , presence of anti-GAD antibodies
DM type 2	Diagnosed between age 35 and 40 and BMI >33 kg/m ² or diagnosed after age 40 and BMI >27 kg/m ²
Dementia	Self-reported diagnosis, confirmed and classified based on a questionnaire. Classified as: Alzheimer's disease; vascular dementia; a mix of Alzheimer's disease and vascular dementia; Lewy Body dementia; or frontotemporal dementia.
Vascular mortality Fatal cerebral infarction	Cerebral infarction leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without infarction)
Fatal cerebral haemorrhage	Cerebral haemorrhage leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without infarction)
Fatal stroke - type not determined	Stroke without radiological confirmation leading to Rankin score 4 or 5 followed by death (reasonably plausible that patient would not have died without stroke)
Fatal myocardial infarction	Documented myocardial infarction followed by death (>1 hour after onset of symptoms)

Fatal heart failure	Heart failure leading to death
Fatal rupture abdominal aortic aneurysm	Rupture abdominal aortic aneurysm followed by death
Fatal bleeding	Major bleeding leading to death
Sudden death	Witnessed death occurring within 1 hour after onset of symptoms, or within 24 hours given convincing circumstantial evidence
Other	Death without apparent cause in case of cardiovascular history, terminal renal insufficiency, dementia (unless clearly non-vascular), pulmonary haemorrhage*
Non-vascular mortality	Death caused by malignancy, infection, unnatural death or other
All-cause mortality	Death from any cause
	Secondary endpoints
Amputation	Any amputation of a toe or part of the foot or leg due to chronic ischemia. <i>Excluding:</i> traumatic amputations, amputation due to sepsis, amputation of fingers.
Vascular intervention†	Percutaneous coronary intervention; coronary artery bypass grafting; carotid endarterectomy, angioplasty or stenting; vertebral artery angioplasty or stenting; vascular surgery or percutaneous transluminal angioplasty of the aorta(bifurcation), iliac arteries, femoral and crural arteries; vascular intervention because of abdominal angina; LVAD. Angioplasty and stenting of other arteries are registered as well.
Vascular intervention of an	Coiling or clipping of an intracranial aneurysm
intracranial aneurysm	

* In accordance with Antiplatelets Trialists' Collaboration, Lancet 2002

[†] Excluding interventions already planned before or at inclusion, but including re-interventions and complications of an intervention already planned before or at inclusion.

Anti-GAD, antibodies to glutamic acid decarboxylase; BARC; Bleeding Academic Research Consortium; BMI, body mass index; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; CT, computed tomography; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; Hb, haemoglobin; KDIGO, Kidney Disease Improving Global Outcomes; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MRI, magnetic resonance imaging; NSTEMI, non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; STEMI, STelevation myocardial infarction

Supplementary Table 6. Substudies of UCC-SMART

Substudy	Period in which the patients were included	N	Aim	Key publications	Additional measurements within substudy
ARTEMIS (ARTErial calcifications of the Media and Intima in SMART)	2015 - 2017	520	1) To determine whether intima and media calcification differ in their respective associated CVD risks. 2) To elucidate which risk factors and mechanisms lead to the development of these respective types of calcification and in turn to cardiovascular disease	 Zwakenberg, 2020, PloS One⁶ Hoek, 2021, Atherosclerosis⁷ 	<u>Technique</u> : unenhanced thin-slice CT-scan of the legs (femoral head to feet) <u>Measurement</u> : calcification in the femoral and crural arteries scored as absent, predominant intimal arterial calcification, predominant medial arterial calcification or indistinguishable; calcification volume.
Athero-Express Added to UCC- SMART study in June 2022	2002 - present	Patients undergoing a femoral or carotid endarterectomy	To investigate the value of plaque characteristics in relation to cardiovascular outcomes	Verhoeven, 2004, Eur J Epidemiology ⁸	During surgery, the atherosclerotic plaque is collected and immunohistochemically stained in order to asses fat, collagen, macrophages and smooth muscle cells
BEST (BEtter risk factor treatment with STructured agreement) RCT	2004 - 2006	197 patients with at least 2 modifiable risk factors	To investigate whether a clearly written agreement on risk factor management between general practitioners and hospital improved the vascular risk profile of high-risk patients compared with usual care after 1 year	Brouwer, B.G. 2008. SMART risk factor screening in patients at high vascular risk. Utrecht University, Utrecht ⁹	NA
Brown adipose tissue	2014 – 2016	50 patients with clinically manifest CVD	1) To evaluate and optimize a protocol for quantifying brown adipose tissue with MRI and to assess BAT volume per patient. 2) To evaluate the reproducibility of MRI by determining inter-scan, intra-observer and inter-observer variability in BAT volume	 Franssens, 2016, NMR Biomed¹⁰ Franssens, 2017, J Magn. Reson. Imaging¹¹ 	Technique:1.5T water-fat MRI ofsupraclavicular and subcutaneous adiposetissueMeasurement:fat signal fraction value,representative of the amount of triglycerides,intracellular water content and capillary

Page	53	of	64
------	----	----	----

					density, of supraclavicular and subcutaneou adipose tissue
DISH (Diffuse idiopathic skeletal hyperostosis)	1996 – 2018	4,791 (all patients from SMART with chest X-ray within 3	N.A.	 Harlianto, 2021, Rheumatology¹² Harlianto, 2021, J. Pers. Med.¹³ 	<u>Technique:</u> Chest X-ray within three month of inclusions (if available in routine clinica care)
		months of inclusion)	Deer ro.		<u>Measurement:</u> X-rays were scored for DIS using the Resnick criteria. ¹⁴ DISH is classified following the presence of ossification of at least four contiguous vertebrae; (relative) preservation of the intervertebral disc height; and the absence apophyseal joint bony ankylosis or sacroili joint erosion. Thoracic aortic calcification subjective score as absent, mild, moderate and severe.
IRIS (Internet-based vascular Risk factor Intervention and Self-management) RCT	2008 - 2010	330 patients with a recent clinical manifestation of atherosclerosis of CAD, CeVD or PAD and with ≥ 2 treatable risk factors not at goal (from UMC Utrecht + Rijnstate)	 To evaluate whether an internet- based vascular risk factor management program promoting self-efficacy on top of usual care is more effective than usual care alone in reducing vascular risk factors in patients with a recent clinical manifestation of a vascular disease. To evaluate whether an internet- based vascular risk factor management program for reducing vascular risk factors in patients with a recent clinical manifestation of a vascular disease is cost- effective 	- Vernooij, 2012, BMJ ¹⁵ - Greving, 2015, BMJ Open ¹⁶	NA

Page 54	of 64
---------	-------

RULE	2005 - 2007	604 patients	To assess risk factor status after	Brouwer, 2010, J of Int	NA
(Risk management		with CAD,	referral in patients with established	Med ¹⁷	
in Utrecht and		CeVD, PAD or	vascular disease or type 2 diabetes		
Leiden Evaluation		T2DM from	who took part in the		
study)		UMC Utrecht	multidisciplinary hospital-based		
		(+ 566 patients	vascular screening program		
Two-centre parallel-		from LUMC)	SMART, compared with a group		
group comparative			who did not participate in such a		
investigation			program		
Small aneurysms	1996 - 2005	230 patients	To estimate overall rupture rates of	Schlosser, 2008, J Vasc	Technique: Ultrasound scanning of the aorta
trial (AAA)		with an initial	small AAAs and to investigate a	Surg ¹⁸	
()		AAA diameter	predefined set of demographic	C	
		of 30-55mm,	characteristics and cardiovascular		
		who were	risk factors for association with		Measurement: AAA diameter and change
		examined by >	AAA growth		with initial AAA diameter
		2 AAA	5		
		diameter			
		measurements			
		and with > 6			
		months of FU			
SMART-2	2007 - present	1794 patients	To study the course of		NA
		with a history	atherosclerosis and vascular risk		
		of CVD or	factors over time, and to evaluate		
		diabetes, a	the effects of treatment in the past		
		median of 9.9	1		
		years after			
		inclusion in			
		UCC-SMART			
SMART HEART	1996 - 2006	536 patients	To detect patient characteristics	- Meijs, 2007, Neth Heart	Technique: 1.5T cardiac MRI and delayed-
		with ≥ 3 years	related to the development of LVH	J ¹⁹	enhancement cardiac MRI
		hypertension,	with special focus on the detection	- Meijs, 2009, Eur J Prev	
		but free of	of SNPs that confer an increased	Cardiol ²⁰	
		known	susceptibility for the development	- Vernooii, 2012, Am J	Measurement: LV mass, LV-end diastolic
		coronary or	of LVH, and thus, heart failure	Cardiol ²¹	and end-systolic volumes and left atrial
		·	,,, 		volumes; areas of hyperintense myocardium

Page 55 of 64

2						
3 4 5 6			valvular disease		- De Beus, 2015, Eur J Clin Invest ²²	classified as myocardial scar tissue (used to assess the presence of unrecognized myocardial infarction). Infarct size was quantified as scar mass relative to LV mass.
7 8 9 10 11 12 13 14 15 16	SMART Inform Three-armed hypothesis-blinded RCT	2017 - 2018	303 patients with stable CVD and using a statin	To determine whether communicating personalized statin therapy-effects obtained by prognostic algorithm leads to lower decisional conflict associated with statin use in patients with stable CVD compared with standard (non-personalized) therapy-effects	Jaspers, 2021, BMJ Open ²³	NA
17 18 19 20 21 22 23 24 25 26 27	SMART-Junior	Questionnaires sent between 2009-2013 to patients who were included between 2001 and 2012	4,270 (10,564 children)	1) To investigate the presence of cardiovascular risk factors and vascular disease in offspring of patients participating in the SMART cohort. 2) To identify a risk profile of the parent prognostic for the development of traditional cardiovascular risk factors or cardiovascular events in their children.	- Weijmans, 2015, Int J Cardiol ²⁴ - Weijmans, 2015, Am Heart J ²⁵	 Questions about CV risk factors (incl. dates of risk factor diagnoses): presence of diabetes, hypertension, hypercholesterolemia, smoking behaviour and present weight of the offspring Questions about CVD (incl. dates of occurrence): whether offspring had experienced MI, PCI, CABG, stroke, PAD, or AAA.
27 28 29 30 31 32 33 34 35 36 37 38 20	SMART-MR and SMART Medea	2001 - 2005 1 st follow-up: 2006-2009 2 nd follow-up: 2013-2017	1,309	To investigate brain changes using 1.5T MRI in patients with symptomatic atherosclerotic disease (and 7T MRI in follow-up from 2013-2017)	 Geerlings, 2010, Atherosclerosis²⁶ Muller, 2011, Ann Neurol²⁷ Conijn, 2011, Stroke²⁸ Kloppenborg, 2012, Neurology²⁹ Jochemsen 2013, JAMA Neurology³⁰ Van der Veen, 2015, Stroke³¹ 	Technique: - 1.5T brain MRI - 7T brain MRI Measurement: - Total cerebral blood flow (mL/min per 100 mL brain parenchymal volume) - White matter lesions: volume (mL), shape (using the concavity index and fractal dimension ³⁵) and location were scored

2						
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20			Fo,	Deer revie	- Zwartbol, 2019, Stroke ³² - Ghaznawi 2021, Neurology ³³ - Rissanen, 2021, Neurology ³⁴	 Brain parenchymal fraction (% of intracranial volume (ICV) that is occupied by brain tissue), an indicator for global brain atrophy Ventricular enlargement (% of ventricular volume of the total ICV), an indicator for subcortical brain atrophy Cortical gray matter fraction (% cortical gray matter volume of the total ICV), an indicator of cortical brain atrophy Infarcts: location, affected flow territory and type were scored Neuropsychological assessment (from 2003): 15-learning word test³⁶ Rey-Osterrieth Complex Figure test³⁷ Visual Elevator test³⁸ Brixton Spatial Anticipation test³⁹ Verbal Fluency test (letter)⁴⁰ Dutch version of the National Adult Reading test⁴¹ From 2006: MMSE⁴² Verbal Fluency test (animals)⁴⁰ Digit Symbol Substitution Test⁴³ Forward Digit Span and Backward Digit Span⁴⁴
31 32 33 34 35 36 37	SMART-ORACLE (Optimizing Risk Assessment with CT- angiography or Calcium score in patients at high risk	2012 - present	1.182 (until Dec 2021; ongoing) patients with a history of symptomatic vascular	1) To determine whether there is additional value of performing CAC score, CTCA, total aorta calcification, burden as compared to traditional risk factors in the risk stratification in predicting any cardiovascular event. 2) To	 Franssens, 2017, Eur J of Prev Cardiol⁴⁵ Van 't Klooster, 2020, IJC Heart & Vasculature⁴⁶ 	<u>Technique:</u> Cardiac non-contrast enhanced CT and CTA of the heart and the carotids to the circle of Willis
38 39 40 41 42						16

Page 57 of 64

for a cardiovascular		disease, T2DM	estimate the additional value of		Measurement:
event)		or hypertension	CTCA and CAC score on top of		- Radiodensity and volume of epicardial
			traditional risk factors in predicting		adipose tissue
			cardiac events. 3) To determine the		- Coronary artery calcium (scored using
			value of soft plaque burden in the		Agatston method ⁴⁷)
			carotid and coronary arteries in		- Calcifications on heart valves and in th
			predicting acute vascular events		thoracic aorta (quantified using a pseudo
					mass score: mean calcium houndsfield u
					× region of interest volume)
					- CAD-RADS ⁴⁸
			-		- Carotid stenosis
SPAIN	2005	50 patients	1) To evaluate the feasibility of an	Goessens, 2008, Patient	NA
(Selfmanagement of		with computer	Internet-based vascular risk	education and	
vascular Patients		facilities	reduction program in terms of	counseling ⁴⁹	
Activated by			accessibility, frequency and pattern		
Internet and Nurses)			of use of an individualized website		
			for patients with a		
			recent clinical manifestation of		
			arterial disease. 2) To evaluate		
			whether the use was related to a		
			change in vascular risk factors after		
			6 months		
TEMPUS	1996 - 2009.	78 patients	1) To assess whether there is a	- Lafeber, 2014, Eur J	At baseline and at the end of each treatm
(The Evening versus	Patients were	with	difference in the morning or	Prev Cardiol ³⁰	period: medical history, anthropometric
Morning Polypill	screened	established	evening administration of a	- Lafeber, 2014, Int J	parameters, laboratory blood tests, office
Utilization Study)	between 2012 -	CVD or those	cardiovascular polypill, an FDC	Cardiol	24-hour ambulatory BP monitoring, plat
D 1 1 1	2013	at intermediate	formulation containing aspirin,		function, pulse wave analysis, adherence
Randomized open		to high risk of	simvastatin, lisinopril and		therapy, and questionnaires
blinded endpoint		CVD with	hydrochlorothiazide, on LDL-C and		
crossover trial		indication for	mean 24-hour systolic BP levels in		
		the use of	individuals at high risk of		
		cardiovascular	cardiovascular disease. 2) To assess		
		medication,	the effect of the polypill on LDL-C,		
		according to	amoulatory BP, anti-platelet		
		I THA CUPPANT	Tunction adherence and natients'		1

		Dutch	preference as compared to the				
		guidelines	administration of the individual,				
			identically dosed components of the				
			polypill administered at different				
			times of the day, as is currently				
			recommended in clinical care.				
VENUS	Patients	236 patients	To investigate whether risk factor	- Goessens, 2006, Eur J	Questionnaire about social support using a		
(Vascular	included	with ≥ 2	management in the hospital	Cardiovasc Prev Rehabil ⁵²	social support questionnaire for Dutch CHD		
prEvention by	between May	modifiable risk	improved with nurse practitioner	- Sol, 2009, Eur J C	patients:		
NUrses Study)	2002 and	factors	care plus usual care compared with	Nurse ⁵³	- Structural support: whether they have a		
	October 2003		usual care		spouse and whether they have someone they		
RCT			6		could turn to about their health problems		
					- Functional support: statements about active		
					involvement, protective buffering and		
					overprotection.		

AAA, aortic abdominal aneurysm; BAT, brown adipose tissue; BP, blood pressure; CABG, coronary artery bypass grafting; CAC, coronary artery calcium; CAD, coronary artery disease, CAD-RADS, CAD-reporting and data system, CeVD, cerebrovascular disease; CHD, coronary heart disease; CT, computed tomography; CTA, CT angiography; CTCA, CT coronary angiography; CV, cardiovascular; CVD, cardiovascular disease; DISH, diffuse idiopathic skeletal hyperostosis; FDC, fixed dose combination; FU, follow-up; LDL-c, low-density lipoprotein cholesterol; LUMC, Leiden University Medical Center; LV, left ventricle; LVH, left ventricle hypertrophy; MI, myocardial infarction; MRI, magnetic resonance imaging; NA, not applicable; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; SMART, Second Manifestations of Arterial Disease; SNP; single nucleotide polymorphism; T2DM, type 2 diabetes mellitus; UCC-SMART, Utrecht Cardiovascular Cohort–SMART; UMC, University Medical Center

2	
З	
1	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
11	
12	
13	
14	
15	
15	
16	
17	
10	
10	
19	
20	
21	
27	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
22	
22	
33	
34	
35	
26	
30	
37	
38	
20	
22	
40	
41	
42	
12	
45	
44	
45	
46	
47	
4/	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
5/	
58	

59 60

Supplementary Table 7. Baseline characteristics of participants with complete follow-up and
participants without complete follow-up

	Participants with complete follow-up (n = 13,284)	Participants without complete follow-up (n = 1,546)	
Age (years)	57 ± 12	55 ± 14	
Male sex	8,736 (66)	894 (57)	
Previous or current smoking	9,285 (70)	1,065 (69)	
Established cardiovascular disease	8,270 (65)	913 (59)	
Diabetes mellitus	2,272 (17)	336 (22)	
Lipid-lowering therapy	7,529 (57)	724 (47)	
Antihypertensive therapy	9,053 (68)	977 (63)	
Oral anticoagulant therapy	1,145 (9)	121 (8)	
Systolic blood pressure (mmHg)	140 ± 22	144 ± 23	
Diastolic blood pressure (mmHg)	83 ± 13	84 ± 13	
Body mass index (kg/m^2)	26.9 ± 4.4	27.1 ± 4.8	
Non-HDL-cholesterol (mmol/L)	3.8 ± 1.3	4.0 ± 1.5	
eGFR (ml/min/1.73 m ²)	53 ± 41	48 ± 43	
HbA1c (mmol/mol)	38 (36 - 42)	40 (36 - 48)	
CRP (mg/L)	2.0 (1.0 - 4.3)	2.2 (1.0 - 4.4)	

Data are presented as number (percentage), mean ± standard difference or median (interquartile range).

relievoni

BMJ Open

Supplemental Figure 1. Timeline of substudies of UCC-SMART

1.5T brain MRIs have been performed between 2001 and 2005. Follow-up of 1.5T MRI was performed between 2006 and 2009 and from 2013 to 2017. During the second follow-up, a 7T brain MRI was added in a subsample. A detailed overview of the substudies is provided in Supplementary Table 5.

ARTEMIS, ARTErial calcifications of the Media and Intima in SMART (Second Manifestations of Arterial Disease)⁶; BEST, BEtter risk factor treatment with STructured agreement⁹; Brown Adipose Tissue¹⁰; DISH, Diffuse idiopathic skeletal hyperostosis¹²; IRIS, Internet-based vascular Risk factor Intervention and Self-management¹⁵; RULE, Risk management in Utrecht and Leiden Evaluation study¹⁷; SMART HEART¹⁹; SMART Inform²³; SMART-JUNIOR²⁴; SMART-MR²⁶; ORACLE; Optimizing Risk Assessment with CT-angiography or Calcium score in patients at high risk for a cardiovascular event⁴⁵; SPAIN,

 BMJ Open

Self-management of vascular Patients Activated by Internet and Nurses⁴⁹; TEMPUS, The Evening versus Morning Polypill Utilization Study⁵⁰; VENUS, Vascular prEvention by NUrses Study⁵².

For peer review only

References

- 1. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988 May;19(5):604–7.
- 2. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive Disorders of Pregnancy. Hypertension. 2018 Jul;72(1):24–43.
- 3. Ware JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–83.
- 4. Schulman S, Kearon C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005 Apr 4;3(4):692–4.
- 5. Mehran R, Rao S V, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. Circulation. 2011 Jun;123(23):2736–47.
- Zwakenberg SR, De Jong PA, Hendriks EJ, Westerink J, Spiering W, De Borst GJ, et al. Intimal and medial calcification in relation to cardiovascular risk factors. PLoS One. 2020;15(7 July):1–14.
- 7. Hoek AG, Zwakenberg SR, Elders PJM, de Jong PA, Spiering W, Bartstra JW, et al. An elevated ankle-brachial index is not a valid proxy for peripheral medial arterial calcification. Atherosclerosis. 2021;323(March):13–9.
- 8. Verhoeven BAN, Velema E, Schoneveld AH, de Vries JPPM, de Bruin P, Seldenrijk CA, et al. Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol. 2004;19(12):1127–33.
- 9. Brouwer BG. SMART risk factor screening in patients at high vascular risk [dissertation]. Utrecht University; 2008.
- 10. Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FLJ, Hoogduin JM. Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in patients with manifest cardiovascular disease. NMR Biomed. 2016;29(1):48–56.
- 11. Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FLJ. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging. 2017;46(2):497–504.
- 12. Harlianto NI, Oosterhof N, Foppen W, Hol ME, Wittenberg R, van der Veen PH, et al. Diffuse idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased cardiovascular risk. Rheumatology. 2021;1–8.
- 13. Harlianto NI, Westerink J, Foppen W, Hol ME, Wittenberg R, Van Der Veen PH, et al. Visceral adipose tissue and different measures of adiposity in different severities of diffuse idiopathic skeletal hyperostosis. J Pers Med. 2021;11(7):1–11.
- 14. Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH). Radiology. 1976 Jun;119(3):559–68.
- 15. Vernooij WP, Kaasjager HAH, Van Der Graaf Y, Wierdsma J, Grandjean HMH, Hovens MMC, et al. Internet based vascular risk factor management for patients with clinically manifest vascular disease: Randomised controlled trial. BMJ. 2012;344(7863):1–13.
- Greving JP, Kaasjager HAH, Vernooij JWP, Hovens MMC, Wierdsma J, Grandjean HMH, et al. Cost-effectiveness of a nurse-led internet-based vascular risk factor management programme: Economic evaluation alongside a randomised controlled clinical trial. BMJ Open. 2015;5(5):1–8.
- 17. Brouwer BG, Visseren FLJ, Algra A, Van Bockel JH, Bollen ELEM, Doevendans PA, et al. Effectiveness of a hospital-based vascular screening programme (SMART) for risk factor management in patients with established vascular disease or type 2 diabetes: A parallel-group comparative study. J Intern Med. 2010;268(1):83–93.
- Schlösser FJV, Tangelder MJD, Verhagen HJM, van der Heijden GJMG, Muhs BE, van der Graaf Y, et al. Growth predictors and prognosis of small abdominal aortic aneurysms. J Vasc Surg. 2008;47(6):1127–33.
- 19. Meijs MFL, Bots ML, Vonken EJA, Cramer MJM, Melman PG, Velthuis BK, et al. Rationale and design of the SMART Heart study. Netherlands Hear J. 2007;15(9):295–8.

1		
2	20	Mail ME1 Wassers V. Common Miller Valley FIA Valley's DV Waster DI et al. A
4	20.	Meijs MF I., vergouwe Y, Cramer MJ m., vonken EJA, veitnuis BK, verton DJ, et al. A
5		Cardiol 2010:17(6):621–7
6	21.	Vernooii JWP, Cramer MJM, Visseren FLJ, Korndewal MJ, Bots ML, Meijs MFL, et al.
7		Relation between abdominal obesity, insulin resistance and left ventricular hypertrophy
8		diagnosed by electrocardiogram and magnetic resonance imaging in hypertensive patients. Am
9 10		J Cardiol. 2012;110(2):227–33.
11	22.	de Beus E, Meijs MFL, Bots ML, Visseren FLJ, Blankestijn PJ, Algra A, et al. Presence of
12		albuminuria predicts left ventricular mass in patients with chronic systemic arterial
13	22	hypertension. Eur J Clin Invest. 2015;45(6):550–6.
14	23.	Jaspers NEM, Visseren FLJ, Van Der Graaf Y, Smulders YM, Damman OC, Brouwers C, et al.
15		expectancy: Does it improve decisional conflict? Three-armed blinded randomised controlled
10		trial. BMJ Open. 2021:11(7):1–8.
18	24.	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al.
19		Prevalence and risk of cardiovascular risk factors and events in offspring of patients at high
20		vascular risk and effect of location of parental vascular disease. Int J Cardiol. 2015;195:195-
21		202.
22	25.	Weijmans M, Van Der Graaf Y, De Borst GJ, Asselbergs FW, Cramer MJ, Algra A, et al. The
23 24		relation between the presence of cardiovascular disease and vascular risk factors in offspring
25		and the occurrence of new vascular events in their parents already at high vascular risk. Am
26	26	Geerlings MI Appelman APA Vincken KI Algra A Witkamp TD Mali WPTM et al Brain
27	20.	volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The
28		SMART-MR study. Atherosclerosis. 2010;210(1):130–6.
29	27.	Muller M, Van Der Graaf Y, Algra A, Hendrikse J, Mali WP, Geerlings MI. Carotid
30 31		atherosclerosis and progression of brain atrophy: The SMART-MR Study. Ann Neurol.
32		2011;70(2):237–44.
33	28.	Conijn MMA, Kloppenborg RP, Algra A, Mali WPTM, Kappelle LJ, Vincken KL, et al.
34		Cerebral small vessel disease and risk of death, ischemic stroke, and cardiac complications in
35		patients with atheroscierotic disease: The second manifestations of arterial disease-magnetic
36 27	29	Kloppenborg RP Geerlings MI Visseren FL Mali WPTM Vermeulen M Van Der Graaf V
38	2).	et al. Homocysteine and progression of generalized small-vessel disease 'The SMART-MR
39		study. Neurology. 2014;82(9):777–83.
40	30.	Jochemsen HM, Muller M, Visseren FL, Scheltens P, Vincken KL, Mali WP, et al. Blood
41		pressure and progression of brain atrophy the SMART-MR study. JAMA Neurol.
42		2013;70(8):1046–53.
43	31.	Van Der Veen PH, Muller M, Vincken KL, Hendrikse J, Mali WPTM, Van Der Graaf Y, et al.
45		Longitudinal Relationship between Cerebral Small-Vessel Disease and Cerebral Blood Flow.
46	22	Stroke. 2015;40(5):1255-8. Zwarthal MHT, Van Der Kalk AG, Ghaznawi P, Van Der Graaf V, Handriksa I, Gaerlings MI.
47	52.	et al. Intracranial Vessel Wall Lesions on 7T MRI (Magnetic Resonance Imaging): Occurrence
48		and Vascular Risk Factors: The SMART-MR Study. Stroke. 2019:50(1):88–94.
49	33.	Ghaznawi R, Geerlings MI, Jaarsma-Coes M, Hendrikse J, de Bresser J. Association of White
50 51		Matter Hyperintensity Markers on MRI and Long-term Risk of Mortality and Ischemic Stroke:
52		The SMART-MR Study. Neurology. 2021;96(17):e2172-83.
53	34.	Rissanen I, Lucci C, Ghaznawi R, Hendrikse J, Kappelle LJ, Geerlings MI. Association of
54		Ischemic Imaging Phenotype With Progression of Brain Atrophy and Cerebrovascular Lesions
55	25	on MKI: The SMART-MR Study. Neurology. 2021;9/(11):e1063–74.
56 57	<i>33</i> .	al The association between lacunes and white matter hyperintensity features on MPI. The
58		SMART-MR study. J Cereb Blood Flow Metab. 2019:39(12):2486–96
59	36.	Brand N, Jolles J. Learning and Retrieval Rate of Words Presented Auditorily and Visually. J
60		Gen Psychol. 1985 Apr 1;112(2):201–10.

- 37. Osterrieth PA. Le test de copie d'une figure complexe; contribution à l'étude de la perception et de la mémoire. [Test of copying a complex figure; contribution to the study of perception and memory.]. Arch Psychol (Geneve). 1944;30:206–356.
 - 38. Robertson IH, Ward T, Ridgeway V, Nimmo-Smith I. The structure of normal human attention: The Test of Everyday Attention. J Int Neuropsychol Soc. 1996 Nov;2(6):525–34.
 - 39. Burgess PW, Shallice T. Bizarre responses, rule detection and frontal lobe lesions. Cortex. 1996 Jun;32(2):241–59.
 - 40. Wilkins AJ, Shallice T, McCarthy R. Frontal lesions and sustained attention. Neuropsychologia. 1987;25(2):359–65.
 - Schmand B, Geerlings MI, Jonker C, Lindeboom J. Reading ability as an estimator of premorbid intelligence: does it remain stable in emergent dementia? J Clin Exp Neuropsychol. 1998 Feb;20(1):42–51.
 - 42. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98.
 - 43. Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. Oxford University Press, USA; 2004.
- 44. Wechsler D. Wechsler adult intelligence scale. Arch Clin Neuropsychol. 1955;
- 45. Franssens BT, Nathoe HM, Leiner T, Van Der Graaf Y, Visseren FLJ. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol. 2017;24(6):660–70.
- 46. van 't Klooster CC, Nathoe HM, Hjortnaes J, Bots ML, Isgum I, Lessmann N, et al. Multifocal cardiovascular calcification in patients with established cardiovascular disease; prevalence, risk factors, and relation with recurrent cardiovascular disease. IJC Hear Vasc. 2020;27:100499.
- 47. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte MJ, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990 Mar;15(4):827–32.
- 48. Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. Coronary Artery Disease Reporting and Data System (CAD-RADS): An Expert Consensus Document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc Imaging. 2016 Sep;9(9):1099–113.
- 49. Goessens BMB, Visseren FLJ, de Nooijer J, van den Borne HW, Algra A, Wierdsma J, et al. A pilot-study to identify the feasibility of an Internet-based coaching programme for changing the vascular risk profile of high-risk patients. Patient Educ Couns. 2008;73(1):67–72.
- 50. Lafeber M, Grobbee DE, Bots ML, Thom S, Webster R, Rodgers A, et al. The Evening versus Morning Polypill Utilization Study: The TEMPUS rationale and design. Eur J Prev Cardiol. 2014;21(4):425–33.
- 51. Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood pressure and adherence in high-risk patients; A randomized crossover trial. Int J Cardiol. 2015;181:193–9.
- 52. Goessens BMB, Visseren FLJ, Sol BGM, de Man-Van Ginkel JM, Van Der Graaf Y. A randomized, controlled trial for risk factor reduction in patients with symptomatic vascular disease: The multidisciplinary Vascular Prevention by Nurses Study (VENUS). Eur J Prev Cardiol. 2006;13(6):996–1003.
- 53. Sol BGM, van der Graaf Y, Goessens BMB, Visseren FLJ. Social support and change in vascular risk factors in patients with clinical manifestations of vascular diseases. Eur J Cardiovasc Nurs [Internet]. 2009;8(2):137–43. Available from: http://dx.doi.org/10.1016/j.ejcnurse.2008.10.005

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1+3
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			·
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5+6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6+11-
-		participants. Describe methods of follow-up	12
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6-12
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-12
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-12
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	16-17
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	n.a.
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	16-17
1		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	16-17
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	17-18
Outcome data	15*	Report numbers of outcome events or summary measures over time	

Main results		(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16- 18
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	n.a.
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	25-
		Discuss both direction and magnitude of any potential bias	26
nterpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	25-
-		multiplicity of analyses, results from similar studies, and other relevant evidence	26
Generalisability	21	Discuss the generalisability (external validity) of the study results	25
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	27
		applicable, for the original study on which the present article is based	
Dther analyses Discussion Cey results Limitations Interpretation Generalisability Dther informating	17 18 19 20 21 ion 22	meaningful time period Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses Summarise key results with reference to study objectives Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Discuss the generalisability (external validity) of the study results Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	n 1 2 2 2 2 2 2 2 2

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml