

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The performance of screening tools for predicting mortality across multi-site international sepsis cohorts

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067840
Article Type:	Original research
Date Submitted by the Author:	05-Sep-2022
Complete List of Authors:	Blair, Paul; Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO) Mehta, Rittal; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Oppong, Chris; Komfo Anokye Teaching Hospital, Emergency Medicine Tin, Som; Takeo Provincial Referral Hospital Ko, Emily; Duke University School of Medicine Tsalik, Ephraim ; Duke University School of Medicine Chenoweth, Josh; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Adams, Nehkonti; Naval Medical Research Center Infectious Diseases Directorate Beckett, Charmagne; Naval Medical Research Center Infectious Diseases Directorate Beckett, Charmagne; Naval Medical Research Center Infectious Diseases Directorate Scheett, Charmagne; Naval Medical Research Center Infectious Diseases Directorate Beckett, Charmagne; Naval Medical Research Center Infectious Diseases Directorate Salvador, Mark G; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Brandsma, Joost; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Brandsma, Joost; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahle, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahle, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Frouty, Michael; US Naval Medical Research Unit No 2 Letizia, Andrew; Naval Medical Research Unit No 2 Lawler, James V; University of Nebraska Medical Center, Global Center for Health Security; University of Nebraska Medical Center, Global Center for Internal Medicine Duplessis, Chris; Austere environments

	Medical Research Center-Frederick Gregory, Michael; Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick Vantha, Te; Takeo Provincial Referral Hospital Ofori, Alex Owusu; Komfo Anokye Teaching Hospital Ansong, Samuel; Komfo Anokye Teaching Hospital Oduro, George; Komfo Anokye Teaching Hospital Schully, Kevin; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Clark, Danielle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc
Keywords:	INFECTIOUS DISEASES, Adult intensive & critical care < ANAESTHETICS, Epidemiology < INFECTIOUS DISEASES, Tropical medicine < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

BMJ Open

2	
2	
3	
4	
5	
6	
7	
,	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
51	
55	
56	
57	
58	
50	
29	
60	

1	Title: The performance of screening tools for predicting mortality across multi-site international sepsis
2	cohorts
3	Authors: Paul W. Blair ^{1,2*} , Rittal Mehta ¹ , Chris Oppong ³ , Tin Som ⁴ , Emily R. Ko ⁵ , Ephraim L. Tsalik ⁵ ,
4	Josh Chenoweth ¹ , Michelle Rozo ¹ , Nehkonti Adams ⁶ , Charmagne Beckett ⁶ , Christopher W. Woods ⁵ ,
5	Deborah A. Striegel ¹ , Mark Salvador ¹ , Joost Brandsma ¹ , Lauren McKean ¹ , Rachael E. Mahle ⁵ , William
6	Hulsey ¹ , Subramaniam Krishnan ¹ , Michael Prouty ⁷ , Andrew Letizia ⁸ , Anne Fox ⁸ , Dennis Faix ⁷ , James V.
7	Lawler ⁹ , Chris Duplessis ¹⁰ ; Michael G Gregory ¹⁰ , Te Vantha ⁴ , Alex Owusu-Ofori ³ , Daniel Ansong ³ ,
8	George Oduro ³ , Kevin L. Schully ^{1,10} , and Danielle V. Clark ^{1.}
9	Affiliation:
10 11 12 13 14 15 16 17 18 19 20 21	¹ Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America. ² Johns Hopkins University School of Medicine, MD, United States of America. ³ Komfo Anokye Teaching Hospital, Kumasi, Ghana. ⁴ Takeo Provincial Referral Hospital, Takeo, Cambodia. ⁵ Duke University Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. ⁶ Naval Medical Research Center Infectious Diseases Directorate, Bethesda, MD. ⁷ Naval Medical Research Unit-2, Phnom Penh, Cambodia. ⁸ Naval Medical Research Unit-3 Ghana Detachment, Accra, Ghana. ⁹ Global Center for Health Security at Nebraska and Division of Infectious Disease, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America. ¹⁰ Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, MD, United States of America
22	
23	
24	
25	
26	
27	
28	
29	*Corresponding Author: Paul W. Blair, MD MSPH MHS. Henry M. Jackson Foundation for the
30	Advancement of Military Medicine. 6720A Rockledge Dr, Bethesda, MD 20817. E-mail: pblair@aceso-

31 sepsis.org

2	
2	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
2/	
24 25	
25	
26	
27	
28	
29	
30	
31	
27	
5∠ 22	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	
40	
47	
48	
49	
50	
51	
57	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

33 Word count: 276

Abstract:

32

34 **Objectives:** We evaluated the performance of commonly used sepsis screening tools across prospective

35 sepsis cohorts in the United States, Cambodia, and Ghana.

36 **Design:** Prospective cohort studies

Setting and participants: From 2014 to 2021, participants with 2 or more SIRS (Systemic Inflammatory
Response Syndrome) criteria and suspected infection were enrolled in emergency departments and
medical wards at hospitals in the Cambodia and Ghana and hospitalized participants with suspected
infection were enrolled in the United States. Cox proportional hazards regression was performed, and
Harrell's C-statistic calculated to determine 28-day mortality prediction performance of the qSOFA score
≥2, SIRS score ≥3, NEWS ≥5, MEWS ≥5, or UVA score ≥2, Screening tools were compared to baseline
risk (age and sex) with the Wald test.

Results: The cohorts included 567 participants (42.9% female) including 187 participants from Kumasi,

45 Ghana, 200 participants from Takeo, Cambodia, and 180 participants from Durham, North Carolina in the

¹ Onuna, 200 participants from rakeo, cambodia, and rob participants from Damain, roral caronna in me

46 United States. The pooled mortality was 16.4% at 28-days. The mortality prediction accuracy increased

47 from baseline risk with the MEWS (C-statistic: 0.63, 95% CI: 0.58, 0.68; p=0.002), NEWS (C-statistic:

48 0.68; 95% confidence interval [CI]: 0.64, 0.73; p<0.001), qSOFA (C-statistic: 0.70, 95% CI: 0.64, 0.75;

49 p<0.001), UVA score (C-statistic: 0.73, 95% CI: 0.69, 0.78; p<0.001), but not with SIRS (0.60; 95% CI:

50 0.54, 0.65; p=0.13). Within individual cohorts, only the UVA score in Ghana performed better than

51 baseline risk (C-statistic: 0.77; 95% CI: 0.71, 0.83; p<0.001).

52 Conclusions: Among the cohorts, MEWS, NEWS, qSOFA, and UVA scores performed better than

53 baseline risk, largely driven by accuracy improvements in Ghana, while SIRS scores did not improve

54 prognostication accuracy. Prognostication scores should be validated within the target population prior to

55 clinical use.

56 Keywords: Analysis, Survival; sepsis; Cohort Studies; Prognosis; Global Health

5 57

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	58	Strengths and limitations of this study:		
4 5 6	59	• While single-centre cohorts and retrospective analyses have been performed, the optimal sepsis		
7 8	60	screening tool for prognostication in low- and middle-income countries is unknown. This study		
9 10	61	includes two well-characterized sepsis cohorts in LMICs and a cohort in a high-resource setting		
11 12	62	for comparison.		
13 14	63	• Five sepsis screening tools (i.e., qSOFA score, SIRS score, NEWS, MEWS, and UVA score)		
15 16 17	64	were evaluated across three international cohorts for one-month mortality prognostication,		
17 18 19	65	providing comprehensive performance estimates in settings with disparate causes of sepsis.		
20 21	66	• Diagnostic testing differed at each site and mortality specifically due to sepsis could not be		
22 23	67	determined.		
24 25	68	• Enrolment was by convenience sampling within the referral hospital catchment area and may not		
26 27	69	be representative of the general population within these countries.		
28 29 20	70	• While SIRS was identified as a tool with inferior prognostic performance, sample size limitations		
30 31 32	71	in each of the cohorts may have led to decreased ability to identify differences between each		
33 34	72	screening tool.		
35 36	73			
37 38	74			
39 40	75	Narrative:		
41 42	76	Word count: 3,783		
43 44 45	77			
45 46 47	78	INTRODUCTION		
48 49	79	Sepsis, a syndrome resulting from a systemic dysregulated host response to an infection, is estimated to		
50 51	80	cause six million deaths per year but is likely an underestimate due to limited information from low-		
52 53	81	middle-income countries (LMICs) where 87% of the world population live ¹ . Despite declining age-		
54 55				
56 57				
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

standardized incidence and mortality, sepsis remains a major cause of health loss worldwide and has an especially high health-related burden in LMICs².

Clinical sepsis guidelines developed in the Western world may not be applicable in resource-limited settings and moreover can lead to detrimental effects on sepsis care and management when applied in these conditions due to decreased access to resources to manage iatrogenesis from fluid resuscitation ^{3 4}. In contrast to the United States, pathogens that lead to directly lead to vascular injury are common causes of acute febrile illness in Cambodia and Ghana such as dengue virus, malaria, or rickettsia and may alter empiric treatment response ⁵. While early recognition and treatment of sepsis is critical, most sepsis scores or early warning systems were derived from cohorts outside of LMICs. Differences in causes of sepsis, available treatments, and available resources for supportive care should affect management strategies but evidence is limited and optimal clinical scores or biomarkers for sepsis identification are unknown in these settings. Multi-site international sepsis studies are essential for evaluating current and future sepsis tools to ensure effectiveness in resource-limited settings and across populations.

The most validated prognostication scores, SOFA (Sequential Organ Failure Assessment) and the APACHE IV, have been developed for prognostication but require an arterial blood gas and multiple laboratory parameters ⁶⁷ that are not widely available in low-resource settings. The qSOFA (quick SOFA) is an abbreviated score that does not require laboratory parameters. The qSOFA is one of the most widely adopted sepsis screening tools and has largely replaced the SIRS (Systemic Inflammatory Response Syndrome) criteria as the standard abbreviated sepsis screening tool as part of the Sepsis-3 definition to identify septic patients 8. While the qSOFA and other sepsis screening tools (i.e., Modified Early Warning Score [MEWS], National Early Warning Score [NEWS], and Universal Vital Assessment [UVA]) were developed to identify sepsis, these tools can be used rapidly in the clinical setting and have been studied for their ability to prognosticate mortality among those with suspected sepsis ⁹. Studies have evaluated these tools for predicting in-hospital mortality but the performance of these tools and the prevalence of 28-day

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
17	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25 76	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
22	
50 	
5/	
58	
59	

60

mortality, a common metric of sepsis outcomes, have yet to be described across both high- and low-resource
 settings using similar methods ⁹⁻¹¹.

110

We evaluated the performance of sepsis screening tools across prospective multi-site international cohorts that are part of the Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO) consortium ¹². In contrast to APACHE IV and SOFA, these tools can be quickly performed with limited laboratory test results. We hypothesized that qSOFA may perform poorly in LMIC populations compared to the UVA score due to differences in causes of sepsis. We describe the diverse clinical characteristics, the aetiologies of suspected sepsis within these cohorts, and the performance of sepsis screening tools in current clinical use for predicting mortality at one month post enrolment.

119 METHODS

118

120 From May 2014 to November 2015, 200 participants were enrolled into a prospective observational study 121 of sepsis at Takeo Provincial Hospital in Takeo Province Cambodia¹³. This study was followed by a 122 prospective study at Duke University Hospital in Durham, North Carolina, which enrolled 180 participants 123 from December 2014 to March 2016. In Kumasi, Ghana, participants were enrolled at Komfo Anokye 124 Teaching Hospital from July 2016 to October 2017. Study protocols were approved by the Naval Medical 125 Research Center (NMRC) Institutional Review Board (IRB) (Cambodia sepsis study # NMRC.2013.0019; 126 Ghana sepsis study # NMRC.2016.0004-GHA; Duke sepsis study Duke#PRO00054849) in compliance 127 with all applicable Federal regulations governing the protection of human subjects as well as host country 128 IRBs. The study protocol in Cambodia was approved by the Cambodian National Ethics Committee for 129 Health Research (NECHR). The protocol in Ghana was approved by the Committee on Human Research, 130 Publication and Ethics (CHRPE) at Kwame Nkrumah University of Science & Technology. All procedures 131 were in accordance with the ethical standards of the Helsinki Declaration of the World Medical Association. 132 All patients, or their legally authorized representatives, provided written informed consent.

Hospitalized patients > 18 years of age whose attending physician judged them to have an active infection were considered for inclusion for each of the three cohorts. Additional inclusion and exclusion criteria were required in Cambodia and Ghana but not required in the United States protocol. In Cambodia and Ghana, participants were required to meet least two clinical criteria for systemic inflammatory response syndrome (SIRS) during screening. In Cambodia and Ghana, patients were excluded if they had known malignancy, chronic renal/hepatic insufficiency, immunosuppressive conditions (except HIV) or systemic steroid usage that exceeded 20mg/day to prevent confounding in future biomarker studies. Patients were also excluded in Cambodia and Ghana if they had a history of organ transplant, hemodynamically significant gastrointestinal bleeding, anatomic or functional asplenia, acute cardiovascular disease, general anaesthesia, or surgery in the past week prior to enrolment, women who were pregnant, patients who had a haemoglobin less than 7 g/dL or weighed less than 35kg. Hospital physicians who deemed their patients too ill to participate could defer enrolment.

Following informed consent, study team members conducted a detailed medical history, including prior medications, and physical exam. Responses were recorded on a standardized case report form and included demographics, medical history, physical exam findings, and admission diagnoses. Study specific procedures conducted in Cambodia were described in detail by Rozo et al ¹⁴. Similar enrolment and study procedures were followed in Kumasi, Ghana and in Durham, North Carolina, USA. Blood was collected at the time of enrolment, then at 6 hours later, and at 24 hours later. In Ghana and Cambodia, standardized clinical tests included a peripheral venous blood gas with lactate, complete blood count, complete metabolic panel, optional HIV screening with consent (Alere Determine HIV1/2, Abbott, OK, United States), malaria rapid diagnostic tests (SD Bioline Ag. P.f./Pan, Abbott, OK, United States) and aerobic blood cultures (one aerobic bottle, Bactec 9050, BD, NJ, United States) as part of study procedures in Ghana and Cambodia. Microbiologic results were available if collected through routine clinical care across cohorts. Additional molecular testing and next generation sequencing for pathogens were also performed on blood samples in the Cambodia cohort as previously described ¹⁴. Participants were

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 32

1 ว		
2 3 4	158	followed throughout their hospitalization and a record review performed at discharge. A follow-up
5 6 7 8 9 10 11 12	159	interview was performed, and blood samples were collected at a 28-day follow-up visit across cohorts.
	160	When patients could not return in person, study team members attempted to conduct an interview with
	161	patients or a legally authorized representative by telephone. Fatal outcomes among each discharged
	162	participant were also determined. Using clinical data from case report forms and microbiology diagnostic
13 14	163	information, clinical adjudication was performed by three physician reviewers (internal medicine or
15 16	164	infectious diseases) to determine the source of infection by anatomic location and pathogen class. This
17 18 10	165	was graded on a low, moderate, and high level of confidence by two independent reviewers and a third
19 20 21	166	reviewer served as a tiebreaker for discordant conclusions. If the third reviewer did not agree with either
21 22 23	167	adjudicator, then the decision was determined by committee. Microbiologic results presented include
24 25	168	those adjudicated to be clinically relevant to participant's acute illness.
26 27	169	
28 29 30 31 32 33 34 35	170	Patient and Public Involvement
	171	Patients were not involved in recruitment, design, conduct, or dissemination plans of our research. Results
	172	of this study were disseminated to hospital and clinical leadership at Takeo Provincial Hospital and
	173	Komfo Anokye Teaching Hospital.
36 37 38	174	
38 39 40	175	Summary statistics were calculated for the cohorts individually and pooled, comparing baseline
40 41 42	176	demographics (e.g., gender, age, ethnicity, selected medical comorbidities), baseline screening tool
43 44	177	scores, physiologic parameters, baseline clinical laboratory values using either Chi-square (categorical
45 46	178	values), Fishers exact (categorical values), or Mann-Whitney U tests (continuous values). Prevalence of
47 48	179	diagnoses were described for each cohort by organ system and pathogen type (i.e., bacterial, viral,
49 50	180	parasitic, or fungal aetiologies) and by anatomic site.
51 52	181	
53 54	182	After checking the proportional hazards assumption, Cox regression was performed with bivariable
55 56 57 58	183	models to evaluate increased risk of death in each cohort by baseline demographics, comorbid conditions,
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	184	physiologic parameters, and clinical laboratory parameters. Physiologic parameters and clinical laboratory
5 6	185	parameters were modelled as dichotomous or ordinal parameters at clinically relevant cut offs. Screening
7 8	186	tools were dichotomized according to current usage, including qSOFA score ≥ 2 (range, 0 [best] to 3
9 10	187	[worst] points), SIRS score ≥ 2 (range, 0 [best] to 4 [worst] points), MEWS ≥ 5 (range, 0 [best] to 13
11 12	188	[worst] points), NEWS \geq 5 (range, 0 [best] to 20 [worst] points), and UVA \geq 2 (range, 0 [best] to 13
13 14	189	[worst]) ¹⁰ and were evaluated in Cox regression models unadjusted and adjusted for age and sex for risk
15 16	190	of death 9. Glasgow Coma Scale Score (GCS; range, 3 [worst] to 15 [best] points) of less than 15 was
17 18	191	used for estimation of the qSOFA score, and a GCS of ≤ 3 for unresponsiveness for NEWS, and GCS
19 20 21	192	score 3-15 for the "alert, verbal, pain, unresponsive" scale (AVPU; alert: GCS 13-15, voice: GCS 9-12;
21 22 23	193	pain: GCS 4-8; unresponsiveness: GCS \leq 3) score approximation for MEWS ^{15 16} . Data was
23 24 25	194	administratively right censored past 28 days. The Harrell's C-statistic was calculated for each screening
26 27	195	tool for each cohort, the cohorts combined, and Cambodia and Ghana cohorts pooled ¹⁷ . This statistic is a
28 29	196	performance analogous to area under the receiver operating characteristic curve (AUROC) but accounts
30 31	197	for differences over time with survival outcomes. C-statistic confidence interval estimates were evaluated
32 33	198	rather than a statistical test due to risk of type 1 error with that approach. ¹⁸ The Cox regression Wald test
34 35	199	p-values were calculated for each score covariate was used adjusting for baseline risk estimated by age
36 37	200	and sex ¹⁹ . P-values <0.002 were considered significant using a Bonferroni correction for multiple
38 39	201	comparisons. Cohort sample sizes were determined a priori through Monte Carlo simulation modelling
40 41 42	202	for prognostic biomarker identification. All statistical analyses were performed in SAS (Statistical
43 44	203	Analytical Software, version 9.4), R version 4.0.2 ²⁰ or Stata (version 15.0; StataCorp LLC, College
45 46	204	Station, TX, USA) ²¹ .
47 48	205	
49 50	206	RESULTS
51 52	207	Summary demographics, sepsis severity, and laboratory findings
53 54	208	There were 567 participants across the cohorts including 187 from Kumasi, Ghana, 200 from Takeo,
55 56 57 58	209	Cambodia, and 180 from Durham, North Carolina, United States (Figure 1). The study population was
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 32

BMJ Open

predominantly male (57.1% male), with more male participants enrolled in Cambodia than at other sites
(68.0% vs 55.0% in the U.S. and 52.4% in Ghana). The overall median age was 50 years (interquartile
range [IQR], 36 to 63), which was similar across cohorts (**Table 1**). Previously diagnosed comorbid
conditions were most common at the U.S. site including a history of cardiovascular (65.6%; N=118),
respiratory (42.2%; N=76), or gastrointestinal (36.7%; N=66) conditions.

Table 1. Baseline demographic characteristics stratified by sites.

Variable	Total	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi, Ghana (n=187)
Female gender – no. (%)	243 (42.9%)	64 (32.0%)	81 (45.0%)	98 (52.4%)
Age – years, median (IQR)	50 (36 – 63)	50 (36 - 62)	52.5 (40 - 63)	46 (35 – 63)
Medical history* – no. (%)	, ,	, ,	· · · ·	· · · ·
Cancer	44 (9.9%)	0 (0.0%)	44 (24.4%)	0 (0.0%)
Cardiovascular	202 (41.4%)	22 (18.2%)	118 (65.6%)	62 (33.2%)
Dermatologic	15 (3.1%)	1 (0.8%)	14 (7.8%)	0 (0.0%)
Endocrine	126 (25.8%)	6 (5.0%)	74 (41.1%)	46 (24.6%)
Gastrointestinal	76 (15.6%)	4 (3.3%)	66 (36.7%)	6 (3.2%)
Genitourinary or reproductive	34 (7.0%)	1 (0.8%)	33 (18.3%)	0 (0.0%)
HIV	26 (4.7%)	12 (6.2%)	8 (4.5%)	6 (3.2%)
Neurological	62 (12.7%)	1 (0.8%)	44 (24.4%)	17 (9.1%)
Other	206 (42.2%)	48 (39.7%)	151 (83.9%)	7 (3.7%)
Psychiatric	143 (29.3%)	41 (33.9%)	78 (43.3%)	24 (12.8%)
Renal	41 (8.4%)	0 (0.0%)	41 (22.8%)	0 (0.0%)
Respiratory	89 (18.2%)	7 (5.8%)	76 (42.2%)	6 (3.2%)
Rheumatologic	29 (5.9%)	1 (0.8%)	28 (15.6%)	0 (0.0%)
Surgery	27 (5.5%)	0 (0.0%)	22 (12.2%)	5 (2.7%)
Baseline scores – no. (%)				
MEWS (≥4)	315 (57.8%)	81 (40.7%)	105 (65.6%)	129 (69.3%)
NEWS score (≥5)	324 (61.6%)	90 (47.9%)	98 (64.5%)	136 (73.1%)
qSOFA (≥2)	139 (25.4%)	22 (11.1%)	48 (29.6%)	69 (37.1%)
SIRS (≥2)	447 (81.8%)	125 (68.3%)	157 (89.2%)	165 (88.2%)
UVA (≥2)	199 (37.8%)	47 (25.8%)	68 (42.8%)	84 (45.4%)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Table 1. Baseline demographic characteristics stratified by sites.

Variable	Total	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi Ghana (n=187)
Baseline scores (median [IQR])				
MEWS	4 (3-6)	3 (2-5)	1 (0-4)	1 (1-2)
NEWS	6 (3-8)	4 (2-7)	7 (3-9)	6 (4-8)
qSOFA	1 (1-2)	1 (0-1)	1 (0-2)	1 (1-2)
SIRS	2 (2-3)	2 (1-3)	3 (2-3)	3 (2-3)
UVA	1 (0-3)	1 (0-2)	1 (0-4)	1 (0-4)

respiratory rate at 24 (IQR: 20 to 30), the median white blood count elevated at 12.05 x 10^9 cells/L (IQR:

8.13 to 16.6 x 10^9 cells/L), and median lactate elevated at 2.27 mmol/L (IQR: 1.66 to 3.09 mmol/L)

218 (Supplementary Table S1). At enrolment, the proportion of an elevated qSOFA (≥ 2) at baseline was

219 highest at the Ghana site with 44.4% (N=83) of participants compared to 26.0% (N=52) in Cambodia and

220 22.2% (N=40) in the United States. The SIRS, MEWS, NEWS, and UVA screening tools were similarly

³³ 221 higher in the Ghana cohort.

³⁵ **222**

223 Pathogens detected

The most common positive microbiologic results overall included bacteraemia (N=83), respiratory culture growth (N=19), serum hepatitis B surface antigen (N=15), and malaria rapid diagnostic tests (N=11). A minority (121 of 567, 21.3%) of subjects had confirmed infections with complete adjudicator agreement using all available sources of clinical microbiologic results (with the notable addition of RNA sequencing of samples from Cambodia¹⁴) including 90 (15.9%) bacterial, 17 viral (3.0%), 20 malarial (3.5%), and 2 (0.3%) fungal infections identified across all cohorts (**Supplementary Figure S1**).

1 2		
2 3 4 5 6 7 8 9 10 11 12 13 14	231	In Cambodia, the most common bacterial infections with complete adjudicator agreement were <i>B</i> .
	232	pseudomallei (N=10, with blood or respiratory culture growth), presumptive M. tuberculosis (N=5, with
	233	acid fast positive smears), polymicrobial (N=5), and O. tsutsugamushi (N=4, determined by sequencing).
	234	The most common causes of bacteraemia (17 total of 200 participants) were <i>B. pseudomallei</i> (N=8), <i>E.</i>
	235	coli (N=3), and polymicrobial infections (N=3). Three participants had a positive malaria RDT. Fungal
	236	infections were uncommon with 1 participant with non-albicans Candidemia and 1 with cryptococcal
15 16	237	meningitis. Two individuals had dengue fever (one PCR positive and one adjudicated IgM positive).
17 18 19 20	238	
	239	In Ghana, the most common causes of bacteraemia (culture growth from 28 of 187 participants) were E.
22 23	240	coli (N=6), S. aureus (N=6), Salmonella spp. (N=5), and S. pneumoniae (N=3). Nine participants had a
24 25	241	positive malaria RDT and 15 had a positive hepatitis B surface antigen.
26 27	242	
28 29 30 31 32 33	243	In the United States, the most common causes of bacteraemia (culture growth from 19 of 180
	244	participants) were E.coli (N=5), K. pneumoniae (N=3), polymicrobial (N=2), Pseudomonas spp. (N=2),
	245	or S. aureus (N=2). Viral infections detected by PCR included rhinovirus (N=5), influenza A (N=4),
34 35	246	respiratory syncytial virus (N=4), human immunodeficiency virus (N=3), and human metapneumovirus
36 37 38 39	247	(N=3). There was one participant with Aspergillus fumigatus fungal pneumonia.
	248	
40 41 42	249	Diagnoses and Treatments
43 44	250	Across cohorts, the most common organ system sites of infection were lower respiratory tract infection
45 46	251	(28.7%; N=163), multifocal or generalized source of infection (including malaria) (13.6%; N=77), and
47 48	252	gastrointestinal (including hepatic) (12.7%; N=72) (Figure S1a). The most common antibiotics
49 50	253	administered in United States, Ghana, and Cambodia were beta-lactam antibiotics (Supplementary
51 52	254	Figure S2), but antibiotic regimens varied widely among sites. The most common antibiotics classes used
53 54	255	were other antibacterials (e.g., glycopeptide antibiotics, 58.9%), beta-lactam antibacterials, penicillins
55 56 57	256	(51.7%), and cephalosporin and carbapenem antibacterials (44.4%) in the United States, cephalosporins
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

and carbapenems (64.2%), macrolides, lincosamides and streptogramins (37.4%), and other antibacterials

(33.7%) in Ghana, and cephalosporins and carbapenems (73.0%), beta-lactam antibacterials, penicillins

Among all cohorts, 16.4% (N=93) of participants had died at one month, including 58 (31.0%) in Ghana,

22 (11.0%) in Cambodia, and 13 (7.2%) in the U.S (Figure 1). Among those that died within one month,

median time to death was 4 days (IQR: 1 to 11) in Ghana, 7 days (IQR: 3 to 16) in Cambodia, 10 (IQR: 5

to 19) in the U.S., and 5 days (IQR: 2 to 13) overall. Parameters to calculate the qSOFA score and 28-day

mortality were available for 96.4% participants. All screening tools were associated with an increased risk

of death (Figure 2) with the largest increase among those with an elevated UVA score (Supplementary

Figure S3). For individuals with a UVA ≥ 2 there was a 5.45 times increased risk of death (95% CI: 3.39)

to 8.76; C-statistic: 0.70) and those with a qSOFA \geq 2 had a 4.11 times increased risk of death (95% CI:

2.71 to 6.22; C-statistic: 0.66). Those with an elevated SIRS had a 1.81 times increased risk of death

(95% CI: 0.94 to 3.50; C-statistic: 0.53). Elevated NEWS (HR: 4.03; 95% CI: 2.24 to 7.26; C-statistic:

0.66) and MEWS (HR: 2.03; 95% CI: 1.28 to 3.23; C-statistic: 0.53) had similarly increased risks (Figure

Accuracy in an adjusted Cox model was highest for UVA (0.73; 95% CI 0.68-0.78) followed by qSOFA

(C-statistic: 0.70; 95% CI: 0.64 to 0.75) (Table 2). The sensitivity for predicting death was highest with

SIRS (89%; 95% CI: 80 to 94%) but specificity was lowest (19%; 95% CI: 16 to 26%). The UVA score

had a sensitivity of 74% and specificity of 70%. The qSOFA score had the lowest sensitivity (54%; 95%

discrimination for mortality was moderate with a C-statistic of 0.70 adjusting for age and sex (Figure 3).

There was similar qSOFA accuracy in individual cohorts from the United States (C-statistic 0.71; 95%

CI: 0.54 to 0.89), Cambodia (C-statistic: 0.68; 95% CI: 0.59 to 0.77), or Ghana (C-statistic: 0.72; 95% CI:

CI: 44 to 65%) but highest specificity (80%; 95% CI: 76 to 84%). We observed that the qSOFA

(46.5%) and aminoglycoside antibacterials (39.0%) in Cambodia.

257
207
258
259
260
261
262
• • •
263
264
264
265
205
266
200
267
207
268
269
270
271
272
273
074
274
275
275
276
270
277
277
278
279
280
281
282

3).

Survival

1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
З	
5	
4	
5	
6	
0	
7	
Q	
0	
9	
10	
10	
11	
12	
12	
15	
14	
15	
15	
16	
17	
10	
18	
19	
20	
20	
21	
22	
22	
23	
24	
21	
25	
26	
27	
27	
28	
20	
2)	
30	
31	
22	
32	
33	
24	
54	
35	
36	
50	
37	
38	
20	
29	
40	
⊿1	
11	
42	
43	
11	
44	
45	
46	
40	
47	
48	
10	
49	
50	
51	
51	
52	
53	
54	
55	
56	
20	
57	
58	
20	

59

60

	Score	Sonsitivity	Specificity	PDV	NDV	Unadjusted	A divetod*	n valua
	Table 2. Per	formance char	acteristics of	sepsis score a	cross cohorts	for predicting	28-day morta	lity.
290	but this was no	ot significant a	after correctin	ng for multiple	e comparisons	. In Cambodia	, while not sig	nificant
289	(Table 3). The	e qSOFA score	increased pr	ognostication	accuracy in the	he United State	es cohort with	a p=0.02
288	UVA scores w	vere significan	tly greater the	an baseline ris	sk in Ghana in	on contrast to oth	her scores or c	ohorts
287	\geq 4 (58% of the	e pooled coho	rt), the C-stat	istic was 0.63	(95% CI: 0.5	8 to 0.68) for c	leath. The qSO	OFA and
286	pooled cohort), the C-statisti	ic was 0.68 (9	95% CI: 0.64	to 0.73) and a	mong those wi	th a MEWS s	core of
285	statistic was 0	.60 (95% CI: ().54 to 0.65).	Among partie	cipants with a	NEWS score of	of≥5 (62% of	the
284	(95% CI: 0.68	to 0.78). Othe	er screening s	cores had sim	ilar moderate	C-statistic val	ues. The SIRS	3 C-
283	0.64 to 0.79) ((Figure 3). Sin	nilarly, the U	VA score had	moderate acc	curacy with a C	C-statistics on	0.73

Score	Sensitivity	Specificity	PPV	NPV	Unadjusted	Adjusted*	p-value
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	Bivariate	Cox	(Wald
					Cox model	model	test)
					C-statistic	C-statistic	
					(95% CI)	(95% CI)	
Age and	-	-	_	_	-	0.59	
sex						(0.53,0.64)	
MEWS≥4*	0.73 (0.63,	0.45 (0.40,	0.21 (0.16,	0.89 (0.85,	0.59 (0.54,	0.63	0.002**
	0.82)	0.49)	0.26)	0.93)	0.63)	(0.58,0.68)	
NEWS≥5*	0.86	0.43	0.25	0.93 (0.89,	0.65 (0.64,	0.68	<0.001**
	(0.77,0.93)	(0.38,0.48)	(0.23,0.28)	0.95)	0.67)	(0.64,0.73)	
qSOFA	0.54 (0.44,	0.80 (0.76,	0.35 (0.27,	0.90 (0.87,	0.66 (0.61,	0.70	<0.001**
≥2*	0.65)	0.84)	0.44)	0.93)	0.71)	(0.64,0.75)	
SIRS ≥2*	0.89 (0.80,	0.19 (0.16,	0.17 (0.14,	0.90 (0.82,	0.53 (0.50,	0.60	0.134
	0.94)	0.23)	0.21)	0.95)	0.57)	(0.54,0.65)	
UVA≥2*	0.74	0.70 (0.65,	0.33 (0.27,	0.93	0.70 (0.65,	0.73	<0.001**
	(0.64,	0.74)	0.40)	(0.90,0.95)	0.74)	(0.68,0.78)	
	0.83)		-				

*Adjusted Cox model C-statistic is adjusted for age and gender. Note: p-value are from Wald test of the adjusted Cox regression model.

**Significant at p<0.002

after correction, NEWS (p=0.01) and UVA (p=0.01) scores increased accuracy greater than baseline risk.

292 When pooling LMIC cohorts (i.e., Ghana and Cambodia), after adjustment for age and sex, the qSOFA

293 (C-statistic: 0.71; 95% CI: 0.66 to 0.77) and UVA scores (C-statistic: 0.76; 95% CI: 0.71 to 0.81) had

Table 3. Performance characteristics of sepsis score across cohorts for predicting 28-day mortality stratified by site.

Model	Takeo, Cambodia C-statistic (95% CI)	p-value	Durham, USA C-statistic (95% CI)	p-value	Kumasi, Ghana C-statistic (95% CI)	p-value
Age and Sex	0.68 (0.59, 0.78)	_	0.68 (0.54,0.81)	_	0.57 (0.49, 0.64)	_
MEWS	0.68 (0.59, 0.78)	0.2102	0.68 (0.57, 0.79)	0.4991	0.63 (0.56, 0.70)	0.0097
NEWS	0.73 (0.63, 0.83)	0.0106	0.71 (0.59, 0.84)	0.2557	0.64 (0.57, 0.70)	0.0022
qSOFA	0.68 (0.59, 0.77)	0.5101	0.71 (0.54, 0.89)	0.0365	0.72 (0.64, 0.79)	<0.001*
SIRS	0.69 (0.60, 0.78)	0.5020	0.69 (0.55, 0.83)	0.5831	0.58 (0.51, 0.65)	0.1882
UVA	0.71 (0.60, 0.83)	0.0109	0.70 (0.55, 0.85)	0.4753	0.77 (0.71,0.83)	<0.001*

Note: p-value are from Wald test of the adjusted Cox regression model. Each model is adjusted for age and sex. *Significant at p<0.002

higher accuracy compared with MEWS (C-statistic: 0.66 (95% CI 0.61 to 0.72), NEWS (C-statistic: 0.70
(95% CI: 0.65 to 0.76), and SIRS (C-statistic: 0.61; 95% CI: 0.55 to 0.67). In contrast, in the United
States cohort, NEWS, MEWS, SIRS, qSOFA, and UVA scores after age and sex adjustment each had
similar accuracy with C-statistics ranging from 0.66 to 0.71 (Table 3 and Supplementary Table S3).

299 DISCUSSION

In pooled prospective international cohorts in Cambodia, Ghana, and the United States, the UVA score and Sepsis-3 (qSOFA) performed well with a C-statistic around 0.7 for predicting 28-day mortality. However, this improvement was largely identified in the cohort in Ghana and the accuracy was no different than baseline risk in the Cambodia cohort. There was a trend towards improving prognostication accuracy with the NEWS and UVA score in Cambodia and only with the qSOFA score in the United States. These results suggest that widely used sepsis screening tools may have varying performance for prognostication in diverse settings with different treatment regimens and aetiologies of sepsis. Therefore, screening tools should be selected after validation within populations prior to widespread adoption.

Current sepsis screening tools have had variable performance when applied for prognostication. SOFA or
 APACHE scores have been developed specifically for prognostication but required parameters including

Page 17 of 32

BMJ Open

arterial blood oxygen saturation are often not available 9. Performance of qSOFA and SIRS for mortality have performed poorly (SIRS, area under the receiving operator curve [AUROC], 0.61; qSOFA: AUROC, 0.61) for prognostication in high-resource settings intensive care unit (ICU) settings ¹¹ and in diverse LMICs (adjusted SIRS: AUROC, 0.59; adjusted qSOFA: AUROC, 0.70) ⁹ in prior studies for mortality prognostication. While qSOFA is generally more specific than other screening tools, it is less sensitive than SIRS, MEWS, and NEWS, which is consistent with our data²². When applied to sepsis identification, Surviving Sepsis 2021 guidelines recommend against solely using qSOFA, ²³ due to being a more specific rather than sensitive screening test. Additionally, qSOFA has been found to be inferior to MEWS, and NEWS but more accurate and specific than SIRS for predicting in-hospital mortality and ICU transfer in a large retrospective cohort of over 30 thousand patients in the United States (NEWS: AUROC, 0.77; MEWS: AUROC, 0.73; qSOFA: AUROC, 0.69; SIRS: AUROC, 0.65)²². Different screening scores have been evaluated in prospective cohorts in sub-Saharan Africa (sSA) previously in Tanzania (qSOFA: AUROC, 0.57; MEWS: AUROC, 0.49)²⁴ and Rwanda²⁵ (MEWS: AUROC, 0.69; UVA: AUROC, 0.71; qSOFA: AUROC, 0.65) and in Gabon ²⁶ (UVA: AUROC, 0.90; qSOFA: AUROC, 0.77; MEWS: AUROC, 0.72; SIRS: AUROC, 0.70). Given the performance variability that has been previously observed and was observed in this study, it is prudent to evaluate prediction scores within the populations they serve prior to widespread promotion.

The UVA score performed better than baseline risk in the Ghana cohort. Our results externally validated the UVA score for use prognostication of hospitalized patients with suspected sepsis in Kumasi, Ghana and potentially in the region when demographics are similar. The superiority of the UVA score in the Ghana cohort could be related to similarities in infectious causes of illness with other countries in sub-Saharan Africa (sSA) populations from which the UVA score was derived²⁷. In contrast to the score derivation study²⁷, UVA score performed similarly to qSOFA in Ghana. The accuracy of the UVA scores was not greater than baseline risk in the cohort in Cambodia after adjustment for multiple comparisons. While conclusions may be limited by sample size, sepsis scores derived from the regions of the world

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

with more similar infectious aetiologies may perform better. Our results highlight the importance ofvalidating scores in new patient populations prior to widespread use.

This study had multiple limitations. First, exclusion criteria of immunocompromising conditions except HIV may have led to a skewed populations from Ghana and Cambodia. These exclusion criteria were created to decrease the effect of comorbid conditions or medications on immune biomarkers. However, in Cambodia and Ghana, immunosuppressive medications or diagnoses of chronic liver or kidney disease may be less common in the general population due to limited access to specialists or specialized medications. Additionally, while there were differences in the baseline severity between cohorts, study processes including inclusion criteria were largely standardized across sites improving the comparability of the cohorts in diverse settings. Diagnostic testing differed at each site and mortality specifically due to sepsis could not be determined. Enrolment was by convenience sampling within the referral hospital catchment area and may not be representative of the general population within these countries. Approximation of the mental status for the MEWS scoring using GCS may not be generalizable to the use of GCS at other sites. However, similar MEWS and NEWS performance was observed across sites. Lastly, due to the limited sample size in each of the cohorts, smaller improvements in accuracy may not have been identified in the Cambodia and United States cohorts that had less deaths compared to the Ghana cohort.

Inexpensive and readily available tools are needed for triage in resource-limited areas in the world to help identify patients that need escalation and possible transfer to higher levels of care. Current widely used sepsis screening tools represent a clinical benchmark for the development of future triage tools. Research is ongoing to assess point-of-care diagnostics within our sepsis cohort research network. Assays with portable and low-cost inflammation biomarkers tests, molecular diagnostics, or point-of-care ultrasound (POCUS) have the potential to augment the performance of clinical screening tools towards a more personalized approach to sepsis recognition and triage.

1 ว		
2 3 1	363	
- 5 6	364	CONCLUSION
7 8	365	Sepsis screening tools that are widely used during clinical care had sub-optimal performance for risk
9 10	366	stratification in three international cohorts with increased performance of the UVA and qSOFA scores in
11 12	367	Ghana compared to baseline risk. There remains a need for reliable, low-cost, and scalable
13 14	368	prognostication methods that are validated in diverse settings.
15 16 17	369	
18 19	370	Funding: Defense Threat Reduction Agency (JSTO-CBA) to Naval Medical Research Center (NMRC)
20 21	371	(HDTRA1516108), Defense Health Bureau of Medicine & Surgery to NMRC for Combating Antibiotic
22 23	372	Resistance Bacteria (FY1819 0130.1832), Naval Medical Logistics Command Cooperative Agreement
24 25	373	(N626451920001).
20 27 28	374	Conflicts of Interest: ELT has held equity and consulted for Predigen and Biomeme, and he is an employee
20 29 30	375	of Danaher Diagnostics.
31 32 33	376	Disclaimer:
34	277	
35 36 27	378	K.L.S. is an employee of the US government, and C.B, N.A., C.D., M.P., and A.L. are military service
37 38 30	379	members. This work was prepared as a part of official duties. Title 17 U.S.C. 105 provides that
40 41	380	'Copyright protection under this title is not available for any work of the United States Government.'
42 43	381	Title 17 U.S.C. 101 defines a U.S. Government work as a work prepared by a military service member or
44 45	382	employee of the U.S. Government as part of a person's official duties. The views expressed reflect the
46 47	383	results of research conducted by the authors and do not necessarily reflect the official policy or position of
48 49	384	the Department of the Navy, Department of Defense, nor the United States Government.
50 51	385	Contributorship Statement: PWB, RM, JB, LM, DAS, REM performed data curation and analyses. PWB,
52 53 54	386	KS, and DVC developed the manuscript concept. DVC and KS provided resources for research
55 56 57	387	development. AL, KLS, CO, JC, TS, ERK, ELT, CB, CWW, AF, AL, DF, JVL, MP, MR, NA, CD, MGG,
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	388	TV, AO, DA, and GO were involved in protocol development and data generation. LM, MS, WH, SK, were
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	389	involved in research operations. AL, KLS, CWW, DF, ELT, CB, DVC, and PWB were involved in
	390	manuscript revisions. All authors reviewed and approved of this manuscript.
	391	Data sharing statement: De-identified data may be made available upon reasonable request to the
	392	corresponding author.
	393	
	394	References
	395	1. Reinhart K, Daniels R, Kissoon N, et al. Recognizing Sepsis as a Global Health Priority - A WHO
	396	Resolution. The New England journal of medicine 2017;377(5):414-17. doi:
23 24	397	10.1056/NEJMp1707170 [published Online First: 2017/06/29]
25 26	398	2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality,
27 28	399	1990-2017: analysis for the Global Burden of Disease Study. Lancet (London, England)
29 30	400	2020;395(10219):200-11. doi: 10.1016/s0140-6736(19)32989-7 [published Online First:
31 32	401	2020/01/20]
33 34	402	3. Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe
35 36 37 38 39	403	infection. The New England journal of medicine 2011;364(26):2483-95. doi:
	404	10.1056/NEJMoa1101549 [published Online First: 2011/05/28]
39 40 41	405	4. Andrews B, Semler MW, Muchemwa L, et al. Effect of an Early Resuscitation Protocol on In-hospital
41 42 43	406	Mortality Among Adults With Sepsis and Hypotension: A Randomized Clinical Trial. Jama
44 45	407	2017;318(13):1233-40. doi: 10.1001/jama.2017.10913 [published Online First: 2017/10/04]
46 47	408	5. WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition.
48 49	409	Geneva2009.
50 51	410	6. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for
52 53	411	Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315(8):801-10. doi: 10.1001/jama.2016.0287
54 55 56 57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	412	7. Zimmerman JE, Kramer AA, McNair DS, et al. Acute Physiology and Chronic Health Evaluation
5 6	413	(APACHE) IV: hospital mortality assessment for today's critically ill patients. Critical care
7 8	414	medicine 2006;34(5):1297-310. doi: 10.1097/01.Ccm.0000215112.84523.F0 [published Online
9 10	415	First: 2006/03/17]
11 12	416	8. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for
13 14 15 16 17 18 19	417	Sepsis and Septic Shock (Sepsis-3). Jama 2016;315(8):801-10. doi: 10.1001/jama.2016.0287
	418	[published Online First: 2016/02/24]
17 18	419	9. Rudd KE, Seymour CW, Aluisio AR, et al. Association of the Quick Sequential (Sepsis-Related)
19 20 21	420	Organ Failure Assessment (qSOFA) Score With Excess Hospital Mortality in Adults With
21 22 23	421	Suspected Infection in Low- and Middle-Income Countries. Jama 2018;319(21):2202-11. doi:
24 25	422	10.1001/jama.2018.6229 [published Online First: 2018/05/26]
26 27	423	10. Adegbite BR, Edoa JR, Ndzebe Ndoumba WF, et al. A comparison of different scores for diagnosis
28 29	424	and mortality prediction of adults with sepsis in Low-and-Middle-Income Countries: a systematic
30 31	425	review and meta-analysis. EClinicalMedicine 2021;42:101184. doi:
32 33	426	10.1016/j.eclinm.2021.101184 [published Online First: 2021/11/13]
33 34 35	427	11. Raith EP, Udy AA, Bailey M, et al. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and
36 37	428	qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the
30 39 40	429	Intensive Care Unit. Jama 2017;317(3):290-300. doi: 10.1001/jama.2016.20328 [published
41 42	430	Online First: 2017/01/24]
43 44	431	12. Krishnan S, Beckett C, Espinosa B, et al. Austere environments Consortium for Enhanced Sepsis
45 46	432	Outcomes (ACESO). Shock (Augusta, Ga) 2020;53(3):377-78. doi:
47 48	433	10.1097/shk.00000000001450 [published Online First: 2019/10/01]
49 50	434	13. Schully KL, Berjohn CM, Prouty AM, et al. Melioidosis in lower provincial Cambodia: A case series
51 52	435	from a prospective study of sepsis in Takeo Province. PLoS neglected tropical diseases
53 54	436	2017;11(9):e0005923. doi: 10.1371/journal.pntd.0005923
55 56 57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2		
3 4	437	14. Rozo M, Schully KL, Philipson C, et al. An Observational Study of Sepsis in Takeo Province
5 6	438	Cambodia: An in-depth examination of pathogens causing severe infections. PLoS Negl Trop Dis
7 8 9 10 11 12 13 14	439	2020;14(8):e0008381. doi: 10.1371/journal.pntd.0008381 [published Online First: 2020/08/18]
	440	15. Kelly CA, Upex A, Bateman DN. Comparison of consciousness level assessment in the poisoned
11 12	441	patient using the alert/verbal/painful/unresponsive scale and the Glasgow Coma Scale. Ann
13 14 15 16 17 18 19 20 21 22	442	Emerg Med 2004;44(2):108-13. doi: 10.1016/j.annemergmed.2004.03.028 [published Online
	443	First: 2004/07/28]
17 18	444	16. Nedea D. AVPU Scale: MDApp; [Available from: https://www.mdapp.co/avpu-scale-calculator-163/
19 20 21	445	accessed 18 January, 2022.
21 22 23	446	17. Harrell FE, Jr, Califf RM, Pryor DB, et al. Evaluating the Yield of Medical Tests. JAMA
23 24 25	447	1982;247(18):2543-46. doi: 10.1001/jama.1982.03320430047030
26 27	448	18. Han X, Zhang Y, Shao Y. On comparing 2 correlated C indices with censored survival data. Stat Med
28 29	449	2017;36(25):4041-49. doi: 10.1002/sim.7414 [published Online First: 2017/08/02]
30 31	450	19. Pepe MS, Kerr KF, Longton G, et al. Testing for improvement in prediction model performance. Stat
32 33	451	Med 2013;32(9):1467-82. doi: 10.1002/sim.5727 [published Online First: 2013/01/09]
34 35	452	20. Team TRDC. R: A language environment for statistical computing. R Foundation for Statistical
36 37	453	Computing. 2020
38 39	454	21. StataCorp L. Stata statistical software: release 16 College Station. TX StataCorp LP 2019
40 41 42	455	22. Churpek MM, Snyder A, Han X, et al. Quick Sepsis-related Organ Failure Assessment, Systemic
42 43 44	456	Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical
45 46	457	Deterioration in Infected Patients outside the Intensive Care Unit. Am J Respir Crit Care Med
47 48	458	2017;195(7):906-11. doi: 10.1164/rccm.201604-0854OC [published Online First: 2016/09/21]
49 50	459	23. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for
51 52	460	management of sepsis and septic shock 2021. Intensive care medicine 2021;47(11):1181-247.
53 54		
55 56		
57 58		
59		

2		
3 4	461	24. Carugati M, Zhang HL, Kilonzo KG, et al. Predicting Mortality for Adolescent and Adult Patients
5 6	462	with Fever in Resource-Limited Settings. Am J Trop Med Hyg 2018;99(5):1246-54. doi:
7 8	463	10.4269/ajtmh.17-0682 [published Online First: 2018/09/19]
9 10	464	25. Klinger A, Mueller A, Sutherland T, et al. Predicting mortality in adults with suspected infection in a
11 12	465	Rwandan hospital: an evaluation of the adapted MEWS, qSOFA and UVA scores. BMJ Open
13 14	466	2021;11(2):e040361. doi: 10.1136/bmjopen-2020-040361 [published Online First: 2021/02/12]
14 15 16 17	467	26. Schmedding M, Adegbite BR, Gould S, et al. A Prospective Comparison of Quick Sequential Organ
17 18	468	Failure Assessment, Systemic Inflammatory Response Syndrome Criteria, Universal Vital
19 20	469	Assessment, and Modified Early Warning Score to Predict Mortality in Patients with Suspected
21 22 23	470	Infection in Gabon. Am J Trop Med Hyg 2019;100(1):202-08. doi: 10.4269/ajtmh.18-0577
23 24 25	471	[published Online First: 2018/11/28]
26 27	472	27. Moore CC, Hazard R, Saulters KJ, et al. Derivation and validation of a universal vital assessment
28 29 30 31	473	(UVA) score: a tool for predicting mortality in adult hospitalised patients in sub-Saharan Africa.
	474	BMJ global health 2017;2(2):e000344. doi: 10.1136/bmjgh-2017-000344 [published Online First:
32 33	475	2017/10/31]
34 35	476	
36 37	477	
38 39		
40 41		
42		
43 44		
45		
46		
4/ 10		
40 49		
50		
51		
52		
53		
54		
55		
56 57		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5 6 7	478 479 480 481	Figure Legends Figure 1. Enrolment flow diagram across cohorts. Figure 2. Kaplan-Meier survival plot of 28-day mortality stratified by site. Figure 3. The C-statistic by score overall and by cohort (adjusted for age and sex).
8 9 10 11 12 13	482 483	
14 15 16 17 18 19		
20 21 22 23 24 25		
26 27 28 29 30 31		
32 33 34 35 36 37		
38 39 40 41 42 43		
44 45 46 47 48 49		
50 51 52 53 54 55		
56 57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
0
/
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
25 26
26
27
28
29
30
21
31
32
33
34
35
36
37
20
38
39
40
41
42
12
45
44
45
46
47
48
10
77
50
51
52
53
54
54
55
56
57
58
59
60

Table S1. Baseline physiologic and clinical laboratory parameters by site at enrollment.

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghana Median (IQR)
Physiologic parameters				
Respiratory rate (breaths per minute)	24 (20, 30)	24 (20, 28)	24 (20, 31)	26 (22, 30)
Systolic blood pressure (mmHg)	120 (100, 130)	110 (100, 130)	113 (96, 129)	127.5 (110, 140)
Diastolic blood pressure (mmHg)	70 (60, 80)	70 (70, 80)	64 (56, 75)	80 (60, 90)
Oxygen saturation (%)	97 (94, 98)	98 (96, 98)	95 (92, 97.5)	97 (95, 98)
Temperature (°C)	37.9 (37, 38.7)	37.5 (37, 38.5)	38.1 (36.9, 38.89)	38.2 (37.4, 38.8)
Heart rate (beats per minute)	105 (94, 118)	96 (86.5, 105.5)	111 (99.5, 124)	111 (99, 118)
Clinical laboratory parameters				
White blood cells (x10 ⁹ cells/L)	12.05 (8.13, 16.6)	11.9 (8.2, 16.6)	13.35 (9.7, 17.6)	10.76 (7.68, 15.41)
Platelets (x10 ⁹ cells/L)	222 (152.5, 321.5)	262 (169, 366)	236.5 (160, 291)	193 (137, 284)
Sodium (mEq/L)	135 (132, 138)	135 (131, 138)	137 (134, 139)	134 (130, 138)
Potassium (mEq/L)	3.7 (3.3, 4.2)	3.7 (3.2, 4.1)	3.9 (3.5, 4.3)	3.6 (3.2, 4)
Sodium Bicarbonate (mmol/L)	24 (21, 26)	24 (22, 27)	25 (22, 27)	22 (19, 25)
Glucose (mg/dL)	6.56 (5.4, 10)	6.44 (5.39, 8.28)	6.69 (5.67, 10.06)	6.65 (5.2, 12)
Blood Urea Nitrogen (mg/dL)	5 (3.57, 7.9)	4.29 (3.21, 5.71)	5.71 (3.57, 10)	5.4 (3.5, 9.4)
Creatinine (mg/dL)	88.42 (66, 130)	79.58 (53.05, 88.42)	106.1 (70.74, 150.31)	91 (70, 135)
Alkaline Phosphatase (U/L)	86.5 (65, 132)	98.5 (72, 172)	80 (63, 106)	85 (63, 125)
Alanine Transaminase (U/L)	32 (22, 58)	46 (27, 86)	22 (18, 40)	29 (22, 48)
Aspartate Aminotransferase (U/L)	42 (27, 76)	61 (38, 117)	29 (21, 45)	35.5 (25, 65)
Bilirubin (mg/dL)	15 (10.26, 21)	13.68 (10.26, 20.52)	15.39 (10.26, 20.52)	15 (11, 23)

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghana Median (IQR)
Albumin (g/dL)	3.0 (2.5, 3.5)	2.9 (2.5, 3.4)	3.0 (2.5, 3.5)	3.0 (2.3, 3.6)
Total protein (g/dL)	73 (65, 79)	74 (68, 79.5)	67 (57, 72)	75 (69, 83)
Lactate (mmol/L)	2.27 (1.66, 3.09)	2.33 (1.79, 3.03)	1.5 (1, 2.4)	2.54 (1.8, 3.42)

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
30
10
40 11
41
42
43
44
45
46
47
48
49
50
51
57
J∠ ⊑⊃
53
54
55
56
57
58
59
22

Table S2	2. Performanc	e characteristi	cs of sepsis	score across	Cambodia and	Ghana sites con	nbined for
predictin	g 28-day mor	tality.					
Score	Sensitivity	Specificity	PPV	NPV	Unadjusted	Adjusted*	p-value

	(95% CI)	(95% CI)	(95%) CI)	(95%) CI)	Cox model C-statistic (95% CI)	Cox model C-statistic (95% CI)	
Baseline						0.60 (0.54 – 0.66)	
MEWS ≥4	0.74 (0.64	0.50	0.28	0.88	0.62 (0.57 –	0.66 (0.61 –	<0.001
	- 0.84)	(0.44.3 – 0.56)	(0.25 - 0.32)	(0.84 - 0.92)	0.66)	0.72)	
NEWS ≥5	0.85 (0.75-	0.46 (0.38-	0.33	0.91	0.65 (0.62 -	0.70 (0.65 -	0.001
	0.92)	0.52)	(0.29- 0.36)	(0.85 – 0.94)	0.70)	0.76)	
qSOFA ≥2	0.54 (0.42	0.84 (0.80	0.47	0.87	0.67 (0.62 –	0.71 (0.66-	<0.001
	- 0.65)	- 0.88)	(0.39 – 0.55)	(0.84 – 0.90)	0.73)	0.77)	
SIRS ≥2	0.88 (0.78	0.24 (0.19	0.23	0.89	0.55 (0.51 –	0.61 (0.55 –	0.066
	= 0.94)	(0.30)	(0.21 –	(0.81 –	0.59)	0.67)	
			24)	0.94)			
UVA ≥2	0.75 (0.65	0.74 (0.70	0.45	0.92	0.73 (0.68 –	0.76 (0.71-	<0.001
	- 0.84)	- 0.80)	(0.40 -	(0.88 -	0.77)	0.81)	
			0.52)	0.94)			

× 0,1

2	
3	
4	
5	
c c	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
24	
35	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
57	
52	
53	
54	
55	
56	
57	
57	
58	

59

Table S3. Performance characteristics of sepsis score across the United States site for predicting 28-day	y
mortality.	

Score	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Unadjusted Bivariate Cox model C-statistic (95% CI)	Adjusted* Cox model C-statistic (95% CI)	p-value
Baseline (age +sex)						0.61 (0.52 – 0.66)	
MEWS≥4	0.60 (0.26-0.87)	0.33 (0.26 - 0.41)	0.05 (0.03 - 0.09)	0.92 (0.85	0.53 (0.38 - 0.67)	0.68 (0.57 – 0.79)	0.743
NEWS≥5	0.90 (0.56 – 0.99)	0.37 (0.29 - 0.45)	0.09 (0.07 - 0.11)	0.98 (0.89- 0.99)	0.63 (0.54 - 0.71)	0.71 (0.59-0.84)	0.256
qSOFA ≥2	0.60 (0.26 - 87)	0.72 (0.65 - 0.79)	0.13 (0.08 - 0.20	0.96 (0.93 - 0.98)	0.66 (0.51 – 0.81)	0.71 (0.54 – 0.89)	0.019
SIRS ≥2	0.92 (0.64 - 0.99)	0.11 (0.07 - 0.16)	0.08 (0.07 - 0.09)	0.94 (0.72 - 0.99)	0.51 (0.45 – 0.58)	0.66 (0.54 – 0.82)	0.694
UVA≥2	0.60 (0.26 – 0.88)	0.58 (0.50 - 0.66)	0.09 (0.05 -0.14)	0.95 (0.90 -0.98)	0.59 (0.44 – 0.73)	0.70 (0.50 – 0.87)	0.281

59

2			
3			
4			
5	A ship on she dal a sa she	•	
6	Antinematodal agents	▶━	Cambodia
7	Agents against leishmaniasis and trypanosomiasis	▶	USA
8	Antimalarials		Ghana
9	Agents against amoebiasis and other protozoal diseases		
10	Immune sera		
11	Direct acting antivirals		
12	Drugs for treatment of tuborculosis		
13	Drugs for treatment of tuberculosis		
14	Antimycotics for systemic use		
14	Other antibacterials		
15	Combinations of antibacterials	-	
10	Quinolone antibacterials		
17	Aminoplycoside antibacterials		
18	Macralidas lincocamidas and strentogramins		
19	Macrondes, inicosarindes and screptogrammis		
20	Sulfonamides and trimethoprim		
21	Other beta-lactam antibacterials		
22	Beta-lactam antibacterials, penicillins		
23	Tetracyclines		
24		0 10 20 30 40 50 60	70
25		Percentage of Subjects Per Site Receiving Medicat	tion
26			
27			
28			
20			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
40 //1			
-⊤∠ ∕12			
45			
44			
45			
46			
47			
48			
49	Supplementary Figure S2. Prevalence of anti	biotics received per site.	
50		· · · · · · · · · · · · · · · · · · ·	
51			
52			
53			
54			
55			
56			
57			
58			

Supplementary Figure S3. Forest plot of hazard ratios from bivariate Cox regression models for risk of death at 28-day for sepsis scores, physiologic parameters, and clinical laboratory parameters.
BMJ Open

Validation of screening tools for predicting mortality across multi-site international sepsis cohorts

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067840.R1
Article Type:	Original research
Date Submitted by the Author:	01-Dec-2022
Complete List of Authors:	Blair, Paul; Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO) Mehta, Rittal; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Oppong, Chris; Komfo Anokye Teaching Hospital, Emergency Medicine Tin, Som; Takeo Provincial Referral Hospital Ko, Emily; Duke University School of Medicine Tsalik, Ephraim ; Duke University School of Medicine Chenoweth, Josh; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Adams, Nehkonti; Naval Medical Research Center Infectious Diseases Directorate Beckett, Charmagne; Naval Medical Research Center Infectious Diseases Directorate Woods, Christopher; Duke University School of Medicine; Duke Global Health Institute Striegel, Deborah; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Salvador, Mark G; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Brandsma, Joost; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Brandsma, Joost; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Brandsma, Joost; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Horkean, Lauren; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahle, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Prouty, Michael; US Naval Medical Research Unit No 2 Letizia, Andrew; Naval Medical Research Unit No 2 Lawler, James V; University of Nebraska Medical Center, Global Center for Internal Medicine Duplesis, Chris; Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological

	Medical Research Center-Frederick Gregory, Michael; Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick Vantha, Te; Takeo Provincial Referral Hospital Owusu-Ofori, Alex Kwame; Komfo Anokye Teaching Hospital Ansong, Daniel; Komfo Anokye Teaching Hospital, Emergency Medicine Oduro, George; Komfo Anokye Teaching Hospital Schully, Kevin; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Clark, Danielle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc
Primary Subject Heading :	Global health
Secondary Subject Heading:	Intensive care, Infectious diseases, Evidence based practice
Keywords:	INFECTIOUS DISEASES, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Epidemiology < INFECTIOUS DISEASES, Tropical medicine < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
ЗŎ	

1	Title: Validation of screening tools for predicting mortality across multi-site international sepsis cohorts
2	Authors: Paul W. Blair ^{1,2*} , Rittal Mehta ¹ , Chris Oppong ³ , Tin Som ⁴ , Emily R. Ko ⁵ , Ephraim L. Tsalik ⁵ ,
3	Josh Chenoweth ¹ , Michelle Rozo ¹ , Nehkonti Adams ⁶ , Charmagne Beckett ⁶ , Christopher W. Woods ⁵ ,
4	Deborah A. Striegel ¹ , Mark Salvador ¹ , Joost Brandsma ¹ , Lauren McKean ¹ , Rachael E. Mahle ⁵ , William
5	Hulsey ¹ , Subramaniam Krishnan ¹ , Michael Prouty ⁷ , Andrew Letizia ⁸ , Anne Fox ⁸ , Dennis Faix ⁷ , James V.
6	Lawler ⁹ , Chris Duplessis ¹⁰ ; Michael G Gregory ¹⁰ , Te Vantha ⁴ , Alex Owusu-Ofori ³ , Daniel Ansong ³ ,
7	George Oduro ³ , Kevin L. Schully ^{1,10} , and Danielle V. Clark ^{1.}
8	Affiliation:
9 10 11 12 13 14 15 16 17 18 19 20	¹ Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America. ² Johns Hopkins University School of Medicine, MD, United States of America. ³ Komfo Anokye Teaching Hospital, Kumasi, Ghana. ⁴ Takeo Provincial Referral Hospital, Takeo, Cambodia. ⁵ Duke University Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. ⁶ Naval Medical Research Center Infectious Diseases Directorate, Bethesda, MD. ⁷ Naval Medical Research Unit-2, Phnom Penh, Cambodia. ⁸ Naval Medical Research Unit-3 Ghana Detachment, Accra, Ghana. ⁹ Global Center for Health Security at Nebraska and Division of Infectious Disease, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America. ¹⁰ Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, MD, United States of America
21	
22	
23	
24	
25	
26	
27	
28	*Corresponding Author: Paul W. Blair, MD MSPH MHS. Henry M. Jackson Foundation for the
29	Advancement of Military Medicine. 6720A Rockledge Dr, Bethesda, MD 20817. E-mail:

- pblair6@jhmi.edu
- 30
- 31

2	
2	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
2/	
24 25	
25	
26	
27	
28	
29	
30	
31	
27	
5∠ 22	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	
40	
47	
48	
49	
50	
51	
57	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

32 Abstract:33 Word count: 276

34 **Objectives:** We evaluated the performance of commonly used sepsis screening tools across prospective

35 sepsis cohorts in the United States, Cambodia, and Ghana.

36 **Design:** Prospective cohort studies

Setting and participants: From 2014 to 2021, participants with 2 or more SIRS (Systemic Inflammatory
Response Syndrome) criteria and suspected infection were enrolled in emergency departments and
medical wards at hospitals in the Cambodia and Ghana and hospitalized participants with suspected
infection were enrolled in the United States. Cox proportional hazards regression was performed, and
Harrell's C-statistic calculated to determine 28-day mortality prediction performance of the qSOFA score
≥2, SIRS score ≥3, NEWS ≥5, MEWS ≥5, or UVA score ≥2, Screening tools were compared to baseline
risk (age and sex) with the Wald test.

Results: The cohorts included 567 participants (42.9% female) including 187 participants from Kumasi,

45 Ghana, 200 participants from Takeo, Cambodia, and 180 participants from Durham, North Carolina in the

46 United States. The pooled mortality was 16.4% at 28-days. The mortality prediction accuracy increased

47 from baseline risk with the MEWS (C-statistic: 0.63, 95% CI: 0.58, 0.68; p=0.002), NEWS (C-statistic:

48 0.68; 95% confidence interval [CI]: 0.64, 0.73; p<0.001), qSOFA (C-statistic: 0.70, 95% CI: 0.64, 0.75;

49 p<0.001), UVA score (C-statistic: 0.73, 95% CI: 0.69, 0.78; p<0.001), but not with SIRS (0.60; 95% CI:

50 0.54, 0.65; p=0.13). Within individual cohorts, only the UVA score in Ghana performed better than

51 baseline risk (C-statistic: 0.77; 95% CI: 0.71, 0.83; p<0.001).

52 Conclusions: Among the cohorts, MEWS, NEWS, qSOFA, and UVA scores performed better than

53 baseline risk, largely driven by accuracy improvements in Ghana, while SIRS scores did not improve

54 prognostication accuracy. Prognostication scores should be validated within the target population prior to

55 clinical use.

56 Keywords: Analysis, Survival; sepsis; Cohort Studies; Prognosis; Global Health

5 57

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	58	Strengths and limitations of this study:		
4 5 6	59	• While single-centre cohorts and retrospective analyses have been performed, the optimal sepsis		
7 8	60	screening tool for prognostication in low- and middle-income countries is unknown. This study		
9 10	61	includes two well-characterized sepsis cohorts in LMICs and a cohort in a high-resource setting		
11 12	62	for comparison.		
13 14	63	• Five sepsis screening tools (i.e., qSOFA score, SIRS score, NEWS, MEWS, and UVA score)		
15 16 17	64	were evaluated across three international cohorts for one-month mortality prognostication,		
17 18 19	65	providing comprehensive performance estimates in settings with disparate causes of sepsis.		
20 21	66	• Diagnostic testing differed at each site and mortality specifically due to sepsis could not be		
22 23	67	determined.		
24 25	68	• Enrolment was by convenience sampling within the referral hospital catchment area and may not		
26 27	69	be representative of the general population within these countries.		
28 29 20	70	• While SIRS was identified as a tool with inferior prognostic performance, sample size limitations		
30 31 32	71	in each of the cohorts may have led to decreased ability to identify differences between each		
33 34	72	screening tool.		
35 36	73			
37 38	74			
39 40	75	Narrative:		
41 42	76	Word count: 3,783		
43 44 45	77			
43 46 47	78	INTRODUCTION		
48 49	79	Sepsis, a syndrome resulting from a systemic dysregulated host response to an infection, is estimated to		
50 51	80	cause six million deaths per year but is likely an underestimate due to limited information from low- and		
52 53	81	middle-income countries (LMICs) where 87% of the world population live [1]. Despite declining age-		
54 55				
50 57 58				
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

standardized incidence and mortality, sepsis remains a major cause of health loss worldwide and has an especially high health-related burden in LMICs[2].

Clinical sepsis guidelines developed in the Western world may not be applicable in resource-limited settings and moreover can lead to detrimental effects on sepsis care and management when applied in these conditions due to decreased access to resources to manage iatrogenesis from fluid resuscitation [3, 4]. In contrast to the United States, pathogens that lead to directly lead to vascular injury are common causes of acute febrile illness in Cambodia and Ghana such as dengue virus, malaria, or rickettsia and may alter empiric treatment response [5]. While early recognition and treatment of sepsis is critical, most sepsis scores or early warning systems were derived from cohorts outside of LMICs. Differences in causes of sepsis, available treatments, and available resources for supportive care should affect management strategies but evidence is limited and optimal clinical scores or biomarkers for sepsis identification are unknown in these settings. Multi-site international sepsis studies are essential for evaluating current and future sepsis tools to ensure effectiveness in resource-limited settings and across populations.

The most validated prognostication scores, SOFA (Sequential Organ Failure Assessment) and the APACHE IV, have been developed for prognostication but require an arterial blood gas and multiple laboratory parameters [6, 7] that are not widely available in low-resource settings. The gSOFA (quick SOFA) is an abbreviated score that does not require laboratory parameters. The qSOFA is one of the most widely adopted sepsis screening tools and has largely replaced the SIRS (Systemic Inflammatory Response Syndrome) criteria as the standard abbreviated sepsis screening tool as part of the Sepsis-3 definition to identify septic patients [8]. The qSOFA and other sepsis screening tools (i.e., Modified Early Warning Score [MEWS], National Early Warning Score [NEWS], and Universal Vital Assessment [UVA]) are often used clinically to identify those at risk of sepsis, but these tools have been studied for their ability to prognosticate mortality or poor composite outcomes among hospitalized adults[9-12]. Studies have evaluated these tools for predicting in-hospital mortality but the performance of these tools and the

1 2		
2 3 4	108	prevalence of 28-day mortality, a common metric of sepsis outcomes, have yet to be described across both
5 6	109	high- and low-resource settings using similar methods [9, 13, 14].
7 8	110	
9 10	111	We used prospective multi-site international cohorts that are part of the Austere environments Consortium
11 12	112	for Enhanced Sepsis Outcomes (ACESO) consortium to validate commonly used sepsis screening tools
13 14	113	[15]. In contrast to APACHE IV and SOFA, these tools can be quickly performed with limited laboratory
15 16	114	test results. We hypothesized that qSOFA may perform poorly in LMIC populations compared to the UVA
17 18	115	score due to differences in causes of sepsis. We describe the diverse clinical characteristics, the aetiologies
19 20 21	116	of suspected sepsis within these cohorts, and the performance of sepsis screening tools in current clinical
21 22 23	117	use for predicting mortality at one month post enrolment.
23 24 25	118	
26 27 28 29 30 31 32 33	119	METHODS
	120	From May 2014 to November 2015, 200 participants were enrolled into a prospective observational study
	121	of sepsis at Takeo Provincial Hospital in Takeo Province Cambodia [16] (Figure 1). This study was
	122	followed by a prospective study at Duke University Hospital in Durham, North Carolina, which enrolled
34 35	123	180 participants from December 2014 to March 2016. In Kumasi, Ghana, 187 participants were enrolled at
36 37	124	Komfo Anokye Teaching Hospital from July 2016 to October 2017.
38 39		
40 41	125	Hospitalized patients \geq 18 years of age whose attending physician judged them to have an active infection
42 43	126	were considered for inclusion for each of the three cohorts. Additional inclusion and exclusion criteria
44 45	127	were required in Cambodia and Ghana but not required in the United States protocol. In Cambodia and
46 47	128	Ghana, participants were required to meet least two clinical criteria for systemic inflammatory response
48 49	129	syndrome (SIRS) during screening. In Cambodia and Ghana, patients were excluded if they had known
50 51	130	malignancy, chronic renal/hepatic insufficiency, immunosuppressive conditions (except HIV) or systemic
52 53	131	steroid usage that exceeded 20mg/day to prevent confounding in future biomarker studies. Patients were
54 55 56	132	also excluded in Cambodia and Ghana if they had a history of organ transplant, hemodynamically
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

significant gastrointestinal bleeding, anatomic or functional asplenia, acute cardiovascular disease,
general anaesthesia, or surgery in the past week prior to enrolment, women who were pregnant, patients
who had a haemoglobin less than 7 g/dL or weighed less than 35kg. Hospital physicians who deemed
their patients too ill to participate could defer enrolment.

Study procedures

Following informed consent, study team members conducted a detailed medical history, including prior medications, and physical exam. Responses were recorded on a standardized case report form and included demographics, medical history, physical exam findings, and admission diagnoses. Study specific procedures conducted in Cambodia were described in detail by Rozo et al [17]. Similar enrolment and study procedures were followed in Kumasi, Ghana and in Durham, North Carolina, USA. Blood was collected at the time of enrolment, then at 6 hours later, and at 24 hours later. In Ghana and Cambodia, standardized clinical tests included a peripheral venous blood gas with lactate, complete blood count, complete metabolic panel, optional HIV screening with consent (Alere Determine HIV1/2, Abbott, OK, United States), malaria rapid diagnostic tests (SD Bioline Ag. P.f./Pan, Abbott, OK, United States) and aerobic blood cultures (one aerobic bottle, Bactec 9050, BD, NJ, United States) as part of study procedures in Ghana and Cambodia. Microbiologic results were available if collected through routine clinical care across cohorts. Additional molecular testing and next generation sequencing for pathogens were also performed on blood samples in the Cambodia cohort as previously described [17]. Participants were followed throughout their hospitalization and a record review performed at discharge.

An interview was performed, and blood samples were collected at a 28-day follow-up visit across cohorts. When patients could not return in person, study team members attempted to conduct an interview with patients or a legally authorized representative by telephone. Fatal outcomes among each discharged participant were also determined.

dication the the gal). and a the with ad
e the gal). and a e with ed
gal). and a e with ed
and a e with ed
e with
ed
. Results
d
ol
orical
e of
Э.
models
boratory
inge cut
for
A score

2		
3 4	181	\geq 2 (range, 0 [best] to 3 [worst] points), SIRS score \geq 2 (range, 0 [best] to 4 [worst] points), MEWS \geq 5
5 6	182	(range, 0 [best] to 13 [worst] points), NEWS \geq 5 (range, 0 [best] to 20 [worst] points), and UVA \geq 2
7 8	183	(range, 0 [best] to 13 [worst])[13] and were evaluated in Cox regression models unadjusted and adjusted
9 10	184	for age and sex for risk of death [9]. Glasgow Coma Scale Score (GCS; range, 3 [worst] to 15 [best]
11 12	185	points) of less than 15 was used for estimation of the qSOFA score, and a GCS of \leq 3 for
13 14	186	unresponsiveness for NEWS, and GCS score 3-15 for the "alert, verbal, pain, unresponsive" scale
15 16	187	(AVPU; alert: GCS 13-15, voice: GCS 9-12; pain: GCS 4-8; unresponsiveness: GCS ≤3) score
17 18	188	approximation for MEWS [18, 19]. Data was administratively right censored past 28 days. The Harrell's
19 20 21	189	C-statistic was calculated for each screening tool for each cohort, the cohorts combined, and Cambodia
21 22 23	190	and Ghana cohorts pooled [20]. This statistic is a performance analogous to area under the receiver
23 24 25	191	operating characteristic curve (AUROC) but accounts for differences over time with survival outcomes.
26 27	192	C-statistic confidence interval estimates were determined.[21] The Cox regression Wald test p-values
28 29	193	were calculated for each score covariate adjusting for baseline risk estimated by age and sex [22]. P-
30 31	194	values <0.002 were considered significant using a Bonferroni correction for multiple comparisons. Cohort
32 33	195	sample sizes were determined a priori through Monte Carlo simulation modelling for prognostic
34 35	196	biomarker identification. All statistical analyses were performed in SAS (Statistical Analytical Software,
36 37 29	197	version 9.4), R version 4.0.2 [23] or Stata (version 15.0; StataCorp LLC, College Station, TX, USA) [24].
38 39 40	198	
40 41 42	199	RESULTS
43 44	200	Summary demographics, sepsis severity, and laboratory findings
45 46	201	There were 567 participants across the cohorts including 187 from Kumasi, Ghana, 200 from Takeo,
47 48	202	Cambodia, and 180 from Durham, North Carolina, United States (Figure 1). The study population was
49 50	203	predominantly male (57.1% male), with more male participants enrolled in Cambodia than at other sites
51 52	204	(68.0% vs 55.0% in the U.S. and 52.4% in Ghana). The overall median age was 50 years (interquartile
53 54	205	range [IQR], 36 to 63), which was similar across cohorts (Table 1). Previously diagnosed comorbid

BMJ Open

206 conditions were most common at the U.S. site including a history of cardiovascular (65.6%; N=118),

207 respiratory (42.2%; N=76), or gastrointestinal (36.7%; N=66) conditions.

Characteristic	Total (n=567)	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi, Ghana (n=187)	p-value**
Female gender – no. (%)	243 (42.9%)	64 (32.0%)	81 (45.0%)	98 (52.4%)	< 0.001
Age – years, median (IQR)	50 (36 - 63)	50 (36 - 62)	52.5 (40 – 63)	46 (35 - 63)	0.151
Medical history* – no. (%)					
Cancer	44 (9.9%)	0 (0.0%)	44 (24.4%)	0 (0.0%)	< 0.001
Cardiovascular	202 (41.4%)	22 (18.2%)	118 (65.6%)	62 (33.2%)	< 0.001
Dermatologic	15 (3.1%)	1 (0.8%)	14 (7.8%)	0 (0.0%)	< 0.001
Endocrine	126 (25.8%)	6 (5.0%)	74 (41.1%)	46 (24.6%)	< 0.001
Gastrointestinal	76 (15.6%)	4 (3.3%)	66 (36.7%)	6 (3.2%)	< 0.001
Genitourinary or reproductive	34 (7.0%)	1 (0.8%)	33 (18.3%)	0 (0.0%)	< 0.001
HIV	26 (4.7%)	12 (6.2%)	8 (4.5%)	6 (3.2%)	0.388
Neurological	62 (12.7%)	1 (0.8%)	44 (24.4%)	17 (9.1%)	< 0.001
Other	206 (42.2%)	48 (39.7%)	151 (83.9%)	7 (3.7%)	< 0.001
Psychiatric	143 (29.3%)	41 (33.9%)	78 (43.3%)	24 (12.8%)	< 0.001
Renal	41 (8.4%)	0 (0.0%)	41 (22.8%)	0 (0.0%)	< 0.001
Respiratory	89 (18.2%)	7 (5.8%)	76 (42.2%)	6 (3.2%)	< 0.001
Rheumatologic	29 (5.9%)	1 (0.8%)	28 (15.6%)	0 (0.0%)	< 0.001
Surgery	27 (5.5%)	0 (0.0%)	22 (12.2%)	5 (2.7%)	< 0.001
Baseline scores – no. (%)					
MEWS (≥4)	315 (57.8%)	81 (40.7%)	105 (65.6%)	129 (69.3%)	< 0.001
NEWS score (≥5)	324 (61.6%)	90 (47.9%)	98 (64.5%)	136 (73.1%)	< 0.001
qSOFA (≥2)	139 (25.4%)	22 (11.1%)	48 (29.6%)	69 (37.1%)	< 0.001
SIRS (≥2)	447 (81.8%)	125 (68.3%)	157 (89.2%)	165 (88.2%)	< 0.001
UVA (≥2)	199 (37.8%)	47 (25.8%)	68 (42.8%)	84 (45.4%)	< 0.001
Baseline scores (median [IQR])					
MEWS	4 (3-6)	3 (2-5)	1 (0-4)	1 (1-2)	< 0.001

Table 1. Baseline demographic characteristics stratified by sites.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open			
Table 1. E	Baseline demogra	phic characteris	tics stratified b	by sites.	
Characteristic	Total (n=567)	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi, Ghana (n=187)	p-value**
NEWS	6 (3-8)	4 (2-7)	7 (3-9)	6 (4-8)	< 0.001
qSOFA	1 (1-2)	1 (0-1)	1 (0-2)	1 (1-2)	< 0.001
SIRS	2 (2-3)	2 (1-3)	3 (2-3)	3 (2-3)	< 0.001
UVA	1 (0-3)	1 (0-2)	1 (0-4)	1 (0-4)	< 0.001
*There were 79 subjects parameters compared wit test. Clinical physiologic and l	without comorbic h chi-squared tes aboratory value a	lity information t and numeric p bnormalities at	in the Camboo parameters com enrolment wer	dia cohort. **Ca pared with Kru re common with	ategorical skal-Wallis 1 median
respiratory rate at 24 (IQF	R: 20 to 30), the m	nedian white blo	ood count eleva	ated at 12.05 x	10 ⁹ cells/L (IC
8.13 to 16.6 x 10 ⁹ cells/L)	, and median lact	ate elevated at 2	2.27 mmol/L (I	QR: 1.66 to 3.0)9 mmol/L)
(Supplementary Table S1). At enrolment, the proportion of an elevated qSOFA (≥ 2) at baseline was					
highest at the Ghana site	with 44.4% (N=8.	3) of participant	ts compared to	26.0% (N=52)	in Cambodia
22.2% (N=40) in the Unit	ed States. The SI	RS, MEWS, NI	EWS, and UVA	A screening tool	s were similar
higher in the Ghana cohor	rt.				
Pathogens detected					
The most common positiv	e microbiologic 1	results overall in	ncluded bacter	aemia (N=83), 1	respiratory cu
growth (N=19), serum hep	patitis B surface a	antigen (N=15),	and malaria ra	pid diagnostic t	tests (N=11).
minority (121 of 567, 21.2	3%) of subjects ha	ad confirmed in	fections with c	complete adjudi	cator agreeme
using all available sources	s of clinical micro	biologic results	s (with the nota	ble addition of	RNA sequend
of samples from Cambodi	a[17]) including	90 (15.9%) bac	terial, 17 viral	(3.0%), 20 mala	arial (3.5%), a
2 (0.3%) fungal infections	s identified across	s all cohorts (Su	pplementary	Figure S1). The	ese infection
classes were different amo	ong sites (chi-squ	ared test p<0.00	01).		
For peer	review only - http:/	//bmjopen.bmj.c	com/site/about/	'guidelines.xhtm	I

1 2		
3 4	225	In Cambodia, the most common bacterial infections with complete adjudicator agreement were B.
5 6	226	pseudomallei (N=10, with blood or respiratory culture growth), presumptive M. tuberculosis (N=5, with
7 8	227	acid fast positive smears), polymicrobial (N=5), and O. tsutsugamushi (N=4, determined by sequencing).
9 10	228	The most common causes of bacteraemia (17 total of 200 participants) were <i>B. pseudomallei</i> (N=8), <i>E.</i>
11 12	229	coli (N=3), and polymicrobial infections (N=3). Three participants had a positive malaria RDT. Fungal
13 14	230	infections were uncommon with 1 participant with non-albicans Candidemia and 1 with cryptococcal
15 16	231	meningitis. Two individuals had dengue fever (one PCR positive and one adjudicated IgM positive).
17 18	232	
19 20 21	233	In Ghana, the most common causes of bacteraemia (culture growth from 28 of 187 participants) were E.
21 22 23	234	coli (N=6), S. aureus (N=6), Salmonella spp. (N=5), and S. pneumoniae (N=3). Nine participants had a
23 24 25	235	positive malaria RDT and 15 had a positive hepatitis B surface antigen.
26 27	236	
28 29	237	In the United States, the most common causes of bacteraemia (culture growth from 19 of 180
30 31	238	participants) were E.coli (N=5), K. pneumoniae (N=3), polymicrobial (N=2), Pseudomonas spp. (N=2),
32 33	239	or S. aureus (N=2). Viral infections detected by PCR included rhinovirus (N=5), influenza A (N=4),
34 35	240	respiratory syncytial virus (N=4), human immunodeficiency virus (N=3), and human metapneumovirus
36 37	241	(N=3). There was one participant with Aspergillus fumigatus fungal pneumonia.
30 39 40	242	
40 41 42	243	Diagnoses and Treatments
43 44	244	Across cohorts, the most common organ system sites of infection were lower respiratory tract infection
45 46	245	(28.7%; N=163), multifocal or generalized source of infection (including malaria) (13.6%; N=77), and
47 48	246	gastrointestinal (including hepatic) (12.7%; N=72) (Figure S1a). The most common antibiotics
49 50	247	administered in United States, Ghana, and Cambodia were beta-lactam antibiotics (Supplementary
51 52	248	Figure S2), but antibiotic regimens varied widely among sites. The most common antibiotics classes used
53 54	249	were other antibacterials (e.g., glycopeptide antibiotics, 58.9%), beta-lactam antibacterials, penicillins
55 56 57 58	250	(51.7%), and cephalosporin and carbapenem antibacterials (44.4%) in the United States, cephalosporins
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1

251 and carbapenems (64.2%), macrolides, lincosamides and streptogramins (37.4%), and other antibacterials 252 (33.7%) in Ghana, and cephalosporins and carbapenems (73.0%), beta-lactam antibacterials, penicillins 253 (46.5%) and aminoglycoside antibacterials (39.0%) in Cambodia. 254 255 Survival 256 Among all cohorts, 16.4% (N=93) of participants had died at one month, including 58 (31.0%) in Ghana, 257 22 (11.0%) in Cambodia, and 13 (7.2%) in the U.S (Figure 1). Among those that died within one month, 258 median time to death was 4 days (IQR: 1 to 11) in Ghana, 7 days (IQR: 3 to 16) in Cambodia, 10 (IQR: 5 259 to 19) in the U.S., and 5 days (IQR: 2 to 13) overall. Parameters to calculate the qSOFA score and 28-day 260 mortality were available for 96.4% participants. Hypernatremia (>145 mEq/L) had the highest unadjusted 261 risk of death (hazard ratio 6.89, 95% CI: 3.43, 13.85) among parameters tested in bivariate models 262 (Supplementary Figure S3). All screening tools were associated with an increased risk of death (Figure 263 2) with the largest increase among those with an elevated UVA score (Supplementary Figure S3). For 264 individuals with a UVA ≥ 2 there was a 5.45 times increased risk of death (95% CI: 3.39 to 8.76; C-265 statistic: 0.70) and those with a gSOFA \geq 2 had a 4.11 times increased risk of death (95% CI: 2.71 to 6.22; 266 C-statistic: 0.66). Those with an elevated SIRS had a 1.81 times increased risk of death (95% CI: 0.94 to 267 3.50; C-statistic:0.53). Elevated NEWS (HR: 4.03; 95% CI: 2.24 to 7.26; C-statistic: 0.66) and MEWS 268 (HR: 2.03; 95% CI: 1.28 to 3.23; C-statistic: 0.53) had similarly increased risks (Figure 3). 269 270 Accuracy in an adjusted Cox model was highest for UVA (0.73; 95% CI 0.68-0.78) followed by qSOFA 271 (C-statistic: 0.70; 95% CI: 0.64 to 0.75) (Table 2). The sensitivity for predicting death was highest with 272 SIRS (89%; 95% CI: 80 to 94%) but specificity was lowest (19%; 95% CI: 16 to 26%). The UVA score 273 had a sensitivity of 74% and specificity of 70%. The gSOFA score had the lowest sensitivity (54%; 95% 274 CI: 44 to 65%) but highest specificity (80%; 95% CI: 76 to 84%). We observed that the qSOFA 275 discrimination for mortality was moderate with a C-statistic of 0.70 adjusting for age and sex (Figure 3). 276 There was similar qSOFA accuracy in individual cohorts from the United States (C-statistic 0.71; 95%

BMJ Open

277	CI: 0.54 to 0.89), Cambodia (C-statistic: 0.68; 95% CI: 0.59 to 0.77), or Ghana (C-statistic: 0.72; 95% CI:
278	0.64 to 0.79) (Figure 3). Similarly, the UVA score had moderate accuracy with a C-statistics on 0.73
279	(95% CI: 0.68 to 0.78). Other screening scores had similar moderate C-statistic values. The SIRS C-
280	statistic was 0.60 (95% CI: 0.54 to 0.65). Among participants with a NEWS score of \geq 5 (62% of the
281	pooled cohort), the C-statistic was 0.68 (95% CI: 0.64 to 0.73) and among those with a MEWS score of
282	\geq 4 (58% of the pooled cohort), the C-statistic was 0.63 (95% CI: 0.58 to 0.68) for death. The qSOFA and
283	UVA scores were significantly greater than baseline risk in Ghana in contrast to other scores or cohorts
284	(Table 3). The qSOFA score increased prognostication accuracy in the United States cohort with a p=0.02
285	but this was not significant after correcting for multiple comparisons. In Cambodia, while not significant Table 2 , Performance characteristics of sensis score across cohorts for predicting 28-day mortality

Score	Sensitivity	Specificity	PPV	NPV	Unadjusted	Adjusted*	p-value
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	Bivariate	Cox	(Wald
					Cox model	model	test)
					C-statistic	C-statistic	
					(95% CI)	(95% CI)	
Age and	-	_	_	_	—	0.59	
sex						(0.53,0.64)	
MEWS≥4*	0.73 (0.63,	0.45 (0.40,	0.21 (0.16,	0.89 (0.85,	0.59 (0.54,	0.63	0.002**
	0.82)	0.49)	0.26)	0.93)	0.63)	(0.58,0.68)	
NEWS≥5*	0.86	0.43	0.25	0.93 (0.89,	0.65 (0.64,	0.68	<0.001**
	(0.77,0.93)	(0.38,0.48)	(0.23,0.28)	0.95)	0.67)	(0.64,0.73)	
qSOFA	0.54 (0.44,	0.80 (0.76,	0.35 (0.27,	0.90 (0.87,	0.66 (0.61,	0.70	<0.001**
$\geq 2^*$	0.65)	0.84)	0.44)	0.93)	0.71)	(0.64,0.75)	
SIRS ≥2*	0.89 (0.80,	0.19 (0.16,	0.17 (0.14,	0.90 (0.82,	0.53 (0.50,	0.60	0.134
	0.94)	0.23)	0.21)	0.95)	0.57)	(0.54,0.65)	
UVA≥2*	0.74	0.70 (0.65,	0.33 (0.27,	0.93	0.70 (0.65,	0.73	<0.001**
	(0.64,	0.74)	0.40)	(0.90,0.95)	0.74)	(0.68,0.78)	
	0.83)						

*Adjusted Cox model C-statistic is adjusted for age and gender. Note: p-value are from Wald test of the adjusted Cox regression model. **Significant at p<0.002

after correction, NEWS (p=0.01) and UVA (p=0.01) scores increased accuracy greater than baseline risk.

287 When pooling LMIC cohorts (i.e., Ghana and Cambodia), after adjustment for age and sex, the qSOFA

288 (C-statistic: 0.71; 95% CI: 0.66 to 0.77) and UVA scores (C-statistic: 0.76; 95% CI: 0.71 to 0.81) had

Table 3. Performance characteristics of sepsis score across cohorts for predicting 28-day mortality stratified by site.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Model	Takeo, Cambodia C-statistic (95% CI)	p-value	Durham, USA C-statistic (95% CI)	p-value	Kumasi, Ghana C-statistic (95% CI)	p-value
Age and Sex	0.68 (0.59, 0.78)	_	0.68 (0.54,0.81)	_	0.57 (0.49, 0.64)	_
MEWS	0.68 (0.59, 0.78)	0.2102	0.68 (0.57, 0.79)	0.4991	0.63 (0.56, 0.70)	0.0097
NEWS	0.73 (0.63, 0.83)	0.0106	0.71 (0.59, 0.84)	0.2557	0.64 (0.57, 0.70)	0.0022
qSOFA	0.68 (0.59, 0.77)	0.5101	0.71 (0.54, 0.89)	0.0365	0.72 (0.64, 0.79)	<0.001*
SIRS	0.69 (0.60, 0.78)	0.5020	0.69 (0.55, 0.83)	0.5831	0.58 (0.51, 0.65)	0.1882
UVA	0.71 (0.60, 0.83)	0.0109	0.70 (0.55, 0.85)	0.4753	0.77 (0.71,0.83)	<0.001*
<i>Note: p-value are from Wald test of the adjusted Cox regression model. Each model is adjusted for age and sex.</i> *Significant at p<0.002 igher accuracy compared with MEWS (C-statistic: 0.66 (95% CI 0.61 to 0.72), NEWS (C-statistic: 0.70						

(95% CI: 0.65 to 0.76), and SIRS (C-statistic: 0.61; 95% CI: 0.55 to 0.67) (Supplementary Table S2). In

02.0

contrast, in the United States cohort, NEWS, MEWS, SIRS, qSOFA, and UVA scores after age and sex

adjustment each had similar accuracy with C-statistics ranging from 0.66 to 0.71 (Table 3 and

Supplementary Table S3).

DISCUSSION

In pooled prospective international cohorts in Cambodia, Ghana, and the United States, the UVA score

and Sepsis-3 (qSOFA) performed well with a C-statistic around 0.7 for predicting 28-day mortality.

However, this improvement was largely identified in the cohort in Ghana and the accuracy was no

different than baseline risk in the Cambodia cohort. There was a trend towards improving prognostication

accuracy with the NEWS and UVA score in Cambodia and only with the qSOFA score in the United

States. These results suggest that widely used sepsis screening tools may have varying performance for

prognostication in diverse settings with different treatment regimens and aetiologies of sepsis. Therefore,

screening tools should be selected after validation within populations prior to widespread adoption.

Page 17 of 33

BMJ Open

Current sepsis screening tools have had variable performance when applied for prognostication. SOFA or
APACHE scores have been developed specifically for prognostication but required parameters including
arterial blood oxygen saturation are often not available [9]. Performance of qSOFA and SIRS for
mortality have performed poorly (SIRS, area under the receiving operator curve [AUROC], 0.61; qSOFA:
AUROC, 0.61) for prognostication in high-resource settings intensive care unit (ICU) settings [14] and in
diverse LMICs (adjusted SIRS: AUROC, 0.59; adjusted qSOFA: AUROC, 0.70) [9] in prior studies for
mortality prognostication. While qSOFA is generally more specific than other screening tools, it is less
sensitive than SIRS, MEWS, and NEWS, which is consistent with our data[25]. When applied to sepsis
identification, Surviving Sepsis 2021 guidelines recommend against solely using qSOFA, [26] due to
being a more specific rather than sensitive screening test. Additionally, qSOFA has been found to be
inferior to MEWS, and NEWS but more accurate and specific than SIRS for predicting in-hospital
mortality and ICU transfer in a large retrospective cohort of over 30 thousand patients in the United States
(NEWS: AUROC, 0.77; MEWS: AUROC, 0.73; qSOFA: AUROC, 0.69; SIRS: AUROC, 0.65) [25].
Different screening scores have been evaluated in prospective cohorts in sub-Saharan Africa (sSA)
previously in Tanzania (qSOFA: AUROC, 0.57; MEWS: AUROC, 0.49) [27] and Rwanda [28] (MEWS:
AUROC, 0.69; UVA: AUROC, 0.71; qSOFA: AUROC, 0.65) and in Gabon [29] (UVA: AUROC, 0.90;
qSOFA: AUROC, 0.77; MEWS: AUROC, 0.72; SIRS: AUROC, 0.70). Given the performance variability
that has been previously observed and was observed in this study, it is prudent to evaluate prediction
scores within the populations they serve prior to widespread promotion.

The UVA score performed better than baseline risk in the Ghana cohort. Our results externally validated the UVA score for use prognostication of hospitalized patients with suspected sepsis in Kumasi, Ghana and potentially in the region when demographics are similar. The superiority of the UVA score in the Ghana cohort could be related to similarities in infectious causes of illness with other countries in sub-Saharan Africa (sSA) populations from which the UVA score was derived[12]. In contrast to the score derivation study[12], UVA score performed similarly to qSOFA in Ghana. The accuracy of the UVA

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

scores was not greater than baseline risk in the cohort in Cambodia after adjustment for multiple
comparisons. While conclusions may be limited by sample size, sepsis scores derived from the regions of
the world with more similar infectious aetiologies may perform better. Our results highlight the
importance of validating scores in new patient populations prior to widespread use.

This study had multiple limitations. First, exclusion criteria of immunocompromising conditions except HIV may have led to a skewed populations from Ghana and Cambodia. These exclusion criteria were created to decrease the effect of comorbid conditions or medications on immune biomarkers. However, in Cambodia and Ghana, immunosuppressive medications or diagnoses of chronic liver or kidney disease may be less common in the general population due to limited access to specialists or specialized medications. Additionally, while there were differences in the baseline severity between cohorts, study processes including inclusion criteria were largely standardized across sites improving the comparability of the cohorts in diverse settings. Diagnostic testing differed at each site and mortality specifically due to sepsis could not be determined. Enrolment was by convenience sampling within the referral hospital catchment area and may not be representative of the general population within these countries. Approximation of the mental status for the MEWS scoring using GCS may not be generalizable to the use of GCS at other sites. However, similar MEWS and NEWS performance was observed across sites. Lastly, due to the limited sample size in each of the cohorts, smaller improvements in accuracy may not have been identified in the Cambodia and United States cohorts that had less deaths compared to the Ghana cohort.

Inexpensive and readily available tools are needed for triage in resource-limited areas in the world to help identify patients that need escalation and possible transfer to higher levels of care. Current widely used sepsis screening tools represent a clinical benchmark for the development of future triage tools. Research is ongoing to assess point-of-care diagnostics within our sepsis cohort research network. Assays with portable and low-cost inflammation biomarkers tests, molecular diagnostics, or point-of-care ultrasound

1		
2 3 4	357	(POCUS) have the potential to augment the performance of clinical screening tools towards a more
5 6	358	personalized approach to sepsis recognition and triage.
7 8	359	
9 10	360	CONCLUSION
11 12 13	361	Sepsis screening tools that are widely used during clinical care had sub-optimal performance for risk
14 15	362	stratification in three international cohorts with increased performance of the UVA and qSOFA scores in
16 17	363	Ghana compared to baseline risk. There remains a need for reliable, low-cost, and scalable
18 19	364	prognostication methods that are validated in diverse settings.
20 21	365	
22 23	366	Funding: Defense Threat Reduction Agency (JSTO-CBA) to Naval Medical Research Center (NMRC)
24 25 26	367	(HDTRA1516108), Defense Health Bureau of Medicine & Surgery to NMRC for Combating Antibiotic
20 27 28	368	Resistance Bacteria (FY1819 0130.1832), Naval Medical Logistics Command Cooperative Agreement
29 30	369	(N626451920001).
31 32 33	370	
34 35	371	Conflicts of Interest: ELT has held equity and consulted for Predigen and Biomeme, and he is an employee
36 37	372	of Danaher Diagnostics. All other authors declared no competing interests.
38 39 40	373	
41 42	374	Ethics approval: Study protocols were approved by the Naval Medical Research Center (NMRC)
43 44 45	375	Institutional Review Board (IRB) (Cambodia sepsis study # NMRC.2013.0019; Ghana sepsis study #
45 46 47	376	NMRC.2016.0004-GHA; Duke sepsis study Duke#PRO00054849) in compliance with all applicable
48 49	377	Federal regulations governing the protection of human subjects as well as host country IRBs. The study
50 51	378	protocol in Cambodia was approved by the Cambodian National Ethics Committee for Health Research
52 53	379	(NECHR). The protocol in Ghana was approved by the Committee on Human Research, Publication and
54 55 56 57 58 59	380	Ethics (CHRPE) at Kwame Nkrumah University of Science & Technology. All procedures were in

accordance with the ethical standards of the Helsinki Declaration of the World Medical Association. All
 patients, or their legally authorized representatives, provided written informed consent.

Disclaimer: K.L.S. is an employee of the US government, and C.B, N.A., C.D., M.P., and A.L. are military service members. This work was prepared as a part of official duties. Title 17 U.S.C. 105 provides that 'Copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. 101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of a person's official duties. The views expressed reflect the results of research conducted by the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the United States Government.

392 Contributorship Statement: PWB, RM, JB, LM, DAS, REM performed data curation and analyses. PWB,
393 KLS, and DVC developed the manuscript concept. DVC and KLS provided resources for research
394 development. AL, KLS, CO, JC, TS, ERK, ELT, CB, CWW, AF, AL, DF, JVL, MP, MR, NA, CD, MGG,
395 TV, AO, DA, and GO were involved in protocol development and data generation. LM, MS, WH, SK, were
396 involved in research operations. AL, KLS, CWW, DF, ELT, CB, DVC, and PWB were involved in
397 manuscript revisions. All authors reviewed and approved of this manuscript.

1 398

399 Data sharing statement: De-identified data may be made available upon reasonable request to the400 corresponding author.

° 401

402 References

1 2		
3 4	403	1. Reinhart K, Daniels R, Kissoon N, et al. Recognizing Sepsis as a Global Health Priority - A WHO
5 6	404	Resolution. The New England journal of medicine 2017;377(5):414-17. doi:
7 8 9 10 11 12 13 14 15	405	10.1056/NEJMp1707170 [published Online First: 2017/06/29]
	406	2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality,
11 12	407	1990-2017: analysis for the Global Burden of Disease Study. Lancet (London, England)
13 14	408	2020;395(10219):200-11. doi: 10.1016/s0140-6736(19)32989-7 [published Online First:
15 16 17 18 19 20	409	2020/01/20]
	410	3. Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe
19 20 21	411	infection. The New England journal of medicine 2011;364(26):2483-95. doi:
21 22 23	412	10.1056/NEJMoa1101549 [published Online First: 2011/05/28]
23 24 25 26 27 28 29 30 31	413	4. Andrews B, Semler MW, Muchemwa L, et al. Effect of an Early Resuscitation Protocol on In-hospital
	414	Mortality Among Adults With Sepsis and Hypotension: A Randomized Clinical Trial. Jama
	415	2017;318(13):1233-40. doi: 10.1001/jama.2017.10913 [published Online First: 2017/10/04]
	416	5. WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition.
32 33	417	Geneva2009.
34 35	418	6. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for
36 37	419	Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315(8):801-10. doi: 10.1001/jama.2016.0287
38 39	420	7. Zimmerman JE, Kramer AA, McNair DS, et al. Acute Physiology and Chronic Health Evaluation
40 41 42	421	(APACHE) IV: hospital mortality assessment for today's critically ill patients. Critical care
42 43 44	422	medicine 2006;34(5):1297-310. doi: 10.1097/01.Ccm.0000215112.84523.F0 [published Online
45 46	423	First: 2006/03/17]
47 48	424	8. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for
49 50	425	Sepsis and Septic Shock (Sepsis-3). Jama 2016;315(8):801-10. doi: 10.1001/jama.2016.0287
51 52	426	[published Online First: 2016/02/24]
53 54	427	9. Rudd KE, Seymour CW, Aluisio AR, et al. Association of the Quick Sequential (Sepsis-Related)
55 56	428	Organ Failure Assessment (qSOFA) Score With Excess Hospital Mortality in Adults With
57 58		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
- 3 4	429	Suspected Infection in Low- and Middle-Income Countries. Jama 2018;319(21):2202-11. doi:
5 6	430	10.1001/jama.2018.6229 [published Online First: 2018/05/26]
7 8	431	10. Subbe CP, Kruger M, Rutherford P, et al. Validation of a modified Early Warning Score in medical
9 10	432	admissions. Qjm 2001;94(10):521-6. doi: 10.1093/qjmed/94.10.521 [published Online First:
11 12	433	2001/10/06]
13 14	434	11. Smith GB, Prytherch DR, Meredith P, et al. The ability of the National Early Warning Score (NEWS)
15 16	435	to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission,
17 18	436	and death. Resuscitation 2013;84(4):465-70. doi: 10.1016/j.resuscitation.2012.12.016 [published
19 20 21	437	Online First: 2013/01/09]
21 22 23	438	12. Moore CC, Hazard R, Saulters KJ, et al. Derivation and validation of a universal vital assessment
24 25	439	(UVA) score: a tool for predicting mortality in adult hospitalised patients in sub-Saharan Africa.
26 27	440	<i>BMJ global health</i> 2017;2(2):e000344. doi: 10.1136/bmjgh-2017-000344 [published Online First:
28 29	441	2017/10/31]
30 31	442	13. Adegbite BR, Edoa JR, Ndzebe Ndoumba WF, et al. A comparison of different scores for diagnosis
32 33	443	and mortality prediction of adults with sepsis in Low-and-Middle-Income Countries: a systematic
34 35	444	review and meta-analysis. EClinicalMedicine 2021;42:101184. doi:
36 37	445	10.1016/j.eclinm.2021.101184 [published Online First: 2021/11/13]
38 39 40	446	14. Raith EP, Udy AA, Bailey M, et al. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and
40 41 42	447	qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the
43 44	448	Intensive Care Unit. Jama 2017;317(3):290-300. doi: 10.1001/jama.2016.20328 [published
45 46	449	Online First: 2017/01/24]
47 48	450	15. Krishnan S, Beckett C, Espinosa B, et al. Austere environments Consortium for Enhanced Sepsis
49 50	451	Outcomes (ACESO). Shock (Augusta, Ga) 2020;53(3):377-78. doi:
51 52	452	10.1097/shk.00000000001450 [published Online First: 2019/10/01]
53 54		
55 56		
57 58		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
- 3 4	453	16. Schully KL, Berjohn CM, Prouty AM, et al. Melioidosis in lower provincial Cambodia: A case series
5 6	454	from a prospective study of sepsis in Takeo Province. PLoS neglected tropical diseases
7 8	455	2017;11(9):e0005923. doi: 10.1371/journal.pntd.0005923
9 10	456	17. Rozo M, Schully KL, Philipson C, et al. An Observational Study of Sepsis in Takeo Province
11 12	457	Cambodia: An in-depth examination of pathogens causing severe infections. PLoS Negl Trop Dis
13 14	458	2020;14(8):e0008381. doi: 10.1371/journal.pntd.0008381 [published Online First: 2020/08/18]
15 16	459	18. Kelly CA, Upex A, Bateman DN. Comparison of consciousness level assessment in the poisoned
17 18	460	patient using the alert/verbal/painful/unresponsive scale and the Glasgow Coma Scale. Ann
19 20 21	461	Emerg Med 2004;44(2):108-13. doi: 10.1016/j.annemergmed.2004.03.028 [published Online
21 22 23	462	First: 2004/07/28]
23 24 25	463	19. Nedea D. AVPU Scale: MDApp; [Available from: <u>https://www.mdapp.co/avpu-scale-calculator-163/</u>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	464	accessed 18 January, 2022.
	465	20. Harrell FE, Jr, Califf RM, Pryor DB, et al. Evaluating the Yield of Medical Tests. JAMA
	466	1982;247(18):2543-46. doi: 10.1001/jama.1982.03320430047030
32 33	467	21. Han X, Zhang Y, Shao Y. On comparing 2 correlated C indices with censored survival data. Stat Med
34 35	468	2017;36(25):4041-49. doi: 10.1002/sim.7414 [published Online First: 2017/08/02]
36 37	469	22. Pepe MS, Kerr KF, Longton G, et al. Testing for improvement in prediction model performance. Stat
30 39 40	470	Med 2013;32(9):1467-82. doi: 10.1002/sim.5727 [published Online First: 2013/01/09]
40 41 42	471	23. Team TRDC. R: A language environment for statistical computing. R Foundation for Statistical
43 44	472	Computing. 2020
45 46	473	24. StataCorp L. Stata statistical software: release 16 College Station. TX StataCorp LP 2019
47 48	474	25. Churpek MM, Snyder A, Han X, et al. Quick Sepsis-related Organ Failure Assessment, Systemic
49 50	475	Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical
51 52	476	Deterioration in Infected Patients outside the Intensive Care Unit. Am J Respir Crit Care Med
53 54	477	2017;195(7):906-11. doi: 10.1164/rccm.201604-0854OC [published Online First: 2016/09/21]
55 56		
57 58		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
- 3 4	478	26. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for
5 6	479	management of sepsis and septic shock 2021. Intensive care medicine 2021;47(11):1181-247.
7 8	480	27. Carugati M, Zhang HL, Kilonzo KG, et al. Predicting Mortality for Adolescent and Adult Patients
9 10	481	with Fever in Resource-Limited Settings. Am J Trop Med Hyg 2018;99(5):1246-54. doi:
11 12	482	10.4269/ajtmh.17-0682 [published Online First: 2018/09/19]
13 14	483	28. Klinger A, Mueller A, Sutherland T, et al. Predicting mortality in adults with suspected infection in a
15 16	484	Rwandan hospital: an evaluation of the adapted MEWS, qSOFA and UVA scores. BMJ Open
17 18 10	485	2021;11(2):e040361. doi: 10.1136/bmjopen-2020-040361 [published Online First: 2021/02/12]
19 20 21	486	29. Schmedding M, Adegbite BR, Gould S, et al. A Prospective Comparison of Quick Sequential Organ
22 23	487	Failure Assessment, Systemic Inflammatory Response Syndrome Criteria, Universal Vital
24 25	488	Assessment, and Modified Early Warning Score to Predict Mortality in Patients with Suspected
26 27	489	Infection in Gabon. Am J Trop Med Hyg 2019;100(1):202-08. doi: 10.4269/ajtmh.18-0577
27 28 29	490	[published Online First: 2018/11/28]
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	491	in the second seco
60		For peer review only - http://bmJopen.bmJ.com/site/about/guidelines.xhtml

1 2 3	492	Figure Legends
4 5 6 7	493 494 495 496	Figure 1. Enrolment flow diagram across cohorts. Figure 2. Kaplan-Meier survival plot of 28-day mortality stratified by site. Figure 3. The C-statistic by score overall and by cohort (adjusted for age and sex).
8 9 10	497	
10 11 12		
12 13 14		
15 16		
17 18		
19 20		
21 22		
23 24 25		
25 26 27		
28 29		
30 31		
32 33		
34 35		
36 37 38		
39 40		
41 42		
43 44		
45 46		
47 48 40		
49 50 51		
52 53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

165x96mm (800 x 800 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghana Median (IQR)
Physiologic parameters				
Respiratory rate (breaths per minute)	24 (20, 30)	24 (20, 28)	24 (20, 31)	26 (22, 30)
Systolic blood pressure (mmHg)	120 (100, 130)	110 (100, 130)	113 (96, 129)	127.5 (110, 140)
Diastolic blood pressure (mmHg)	70 (60, 80)	70 (70, 80)	64 (56, 75)	80 (60, 90)
Oxygen saturation (%)	97 (94, 98)	98 (96, 98)	95 (92, 97.5)	97 (95, 98)
Temperature (°C)	37.9 (37, 38.7)	37.5 (37, 38.5)	38.1 (36.9, 38.89)	38.2 (37.4, 38.8
Heart rate (beats per minute)	105 (94, 118)	96 (86.5, 105.5)	111 (99.5, 124)	111 (99, 118)
Clinical laboratory parameters				
White blood cells (x10 ⁹ cells/L)	12.05 (8.13, 16.6)	11.9 (8.2, 16.6)	13.35 (9.7, 17.6)	10.76 (7.68, 15.41)
Platelets (x10 ⁹ cells/L)	222 (152.5, 321.5)	262 (169, 366)	236.5 (160, 291)	193 (137, 284)
Sodium (mEq/L)	135 (132, 138)	135 (131, 138)	137 (134, 139)	134 (130, 138)
Potassium (mEq/L)	3.7 (3.3, 4.2)	3.7 (3.2, 4.1)	3.9 (3.5, 4.3)	3.6 (3.2, 4)
Sodium Bicarbonate (mmol/L)	24 (21, 26)	24 (22, 27)	25 (22, 27)	22 (19, 25)
Glucose (mg/dL)	6.56 (5.4, 10)	6.44 (5.39, 8.28)	6.69 (5.67, 10.06)	6.65 (5.2, 12)
Blood Urea Nitrogen (mg/dL)	5 (3.57, 7.9)	4.29 (3.21, 5.71)	5.71 (3.57, 10)	5.4 (3.5, 9.4)
Creatinine (mg/dL)	88.42 (66, 130)	79.58 (53.05, 88.42)	106.1 (70.74, 150.31)	91 (70, 135)
Alkaline Phosphatase (U/L)	86.5 (65, 132)	98.5 (72, 172)	80 (63, 106)	85 (63, 125)
Alanine Transaminase (U/L)	32 (22, 58)	46 (27, 86)	22 (18, 40)	29 (22, 48)
Aspartate Aminotransferase (U/L)	42 (27, 76)	61 (38, 117)	29 (21, 45)	35.5 (25, 65)
Bilirubin (mg/dL)	15 (10.26, 21)	13.68 (10.26, 20.52)	15.39 (10.26, 20.52)	15 (11, 23)

T-1-1 d alimiaal lab .11

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghana Median (IQR)
Albumin (g/dL)	3.0 (2.5, 3.5)	2.9 (2.5, 3.4)	3.0 (2.5, 3.5)	3.0 (2.3, 3.6)
Total protein (g/dL)	73 (65, 79)	74 (68, 79.5)	67 (57, 72)	75 (69, 83)
Lactate (mmol/L)	2.27 (1.66, 3.09)	2.33 (1.79, 3.03)	1.5 (1, 2.4)	2.54 (1.8, 3.42)

3
4
5
6
7
8
0
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
75 16
40 //7
4/ 10
4ð
49 50
50
51
52
53
54
55
56
57

predicting 28-day mortality.	Table S	2. Performan	ce characteris	stics of sepsis	score across	Cambodia and	Ghana sites con	mbined for
	predictin	ig 28-day mo	ortality.					

Score	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Unadjusted Bivariate Cox model C-statistic (95% CI)	Adjusted* Cox model C-statistic (95% CI)	p-value
Baseline						0.60 (0.54 – 0.66)	
MEWS ≥4	0.74 (0.64 - 0.84)	0.50 (0.44.3 – 0.56)	0.28 (0.25 – 0.32)	0.88 (0.84 - 0.92)	0.62 (0.57 – 0.66)	0.66 (0.61 – 0.72)	<0.001
NEWS ≥5	0.85 (0.75- 0.92)	0.46 (0.38- 0.52)	0.33 (0.29- 0.36)	0.91 (0.85 – 0.94)	0.65 (0.62 – 0.70)	0.70 (0.65 – 0.76)	0.001
qSOFA ≥2	0.54 (0.42 - 0.65)	0.84 (0.80 - 0.88)	0.47 (0.39 – 0.55)	0.87 (0.84 – 0.90)	0.67 (0.62 – 0.73)	0.71 (0.66- 0.77)	<0.001
SIRS ≥2	0.88 (0.78 = 0.94)	0.24 (0.19 (0.30)	0.23 (0.21 – 24)	0.89 (0.81 – 0.94)	0.55 (0.51 – 0.59)	0.61 (0.55 – 0.67)	0.066
UVA ≥2	0.75 (0.65 - 0.84)	0.74 (0.70 - 0.80)	0.45 (0.40 - 0.52)	0.92 (0.88 - 0.94)	0.73 (0.68 – 0.77)	0.76 (0.71- 0.81)	<0.001

2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
27	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
47 50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
20	
59	

Table S3.	Performance characteristics of sepsis score	across the United States	site for predicting 28-day
mortality.	_		

Score	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Unadjusted Bivariate Cox model C-statistic (95% CI)	Adjusted* Cox model C-statistic (95% CI)	p-value
Baseline (age +sex)						0.61 (0.52 – 0.66)	
MEWS≥4	0.60 (0.26-0.87)	0.33 (0.26 - 0.41)	0.05 (0.03 - 0.09)	0.92 (0.85 - 0.96)	0.53 (0.38 - 0.67)	0.68 (0.57 – 0.79)	0.743
NEWS≥5	0.90 (0.56 – 0.99)	0.37 (0.29 - 0.45)	0.09 (0.07 - 0.11)	0.98 (0.89-0.99)	0.63 (0.54 - 0.71)	0.71 (0.59-0.84)	0.256
qSOFA ≥2	0.60 (0.26 - 87)	0.72 (0.65 - 0.79)	0.13 (0.08	0.96 (0.93 - 0.98)	0.66 (0.51 – 0.81)	0.71 (0.54 – 0.89)	0.019
SIRS ≥2	0.92 (0.64 - 0.99)	0.11 (0.07 - 0.16)	0.08 (0.07 - 0.09)	0.94 (0.72 - 0.99)	0.51 (0.45 – 0.58)	0.66 (0.54 – 0.82)	0.694
UVA≥2	0.60 (0.26 – 0.88)	0.58 (0.50 - 0.66)	0.09 (0.05 -0.14)	0.95 (0.90 -0.98)	0.59 (0.44 – 0.73)	0.70 (0.50 – 0.87)	0.281

Supplementary Figure S3. Forest plot of hazard ratios from bivariate Cox regression models for risk of death at 28-day for sepsis scores, physiologic parameters, and clinical laboratory parameters.
BMJ Open

Screening tools for predicting mortality of adults with suspected sepsis: an international sepsis cohort validation study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067840.R2
Article Type:	Original research
Date Submitted by the Author:	09-Jan-2023
Complete List of Authors:	Blair, Paul; Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO) Mehta, Rittal; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Oppong, Chris; Komfo Anokye Teaching Hospital, Emergency Medicine Tin, Som; Takeo Provincial Referral Hospital Ko, Emily; Duke University School of Medicine Tsalik, Ephraim ; Duke University School of Medicine Chenoweth, Josh; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Scheekett, Charmagne; Naval Medical Research Center Infectious Diseases Directorate Woods, Christopher; Duke University School of Medicine; Duke Global Health Institute Striegel, Deborah; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Salvador, Mark G; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Brandsma, Joost; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahle, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Krishnan, Subramaniam; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Prouty, Michael; US Naval Medical Research Unit No 2 Letizia, Andrew; Naval Medical Research Unit-3 Ghana Detachment Fax, Dennis; US Naval Medical Research Unit No 2 Letzizia, Andrew; Naval Medical Re

	Duplessis, Chris; Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick Gregory, Michael; Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick Vantha, Te; Takeo Provincial Referral Hospital Owusu-Ofori, Alex Kwame; Komfo Anokye Teaching Hospital Ansong, Daniel; Komfo Anokye Teaching Hospital, Emergency Medicine Oduro, George; Komfo Anokye Teaching Hospital Schully, Kevin; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Clark, Danielle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc
Primary Subject Heading :	Global health
Secondary Subject Heading:	Intensive care, Infectious diseases, Evidence based practice
Keywords:	INFECTIOUS DISEASES, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Epidemiology < INFECTIOUS DISEASES, Tropical medicine < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

BMJ Open

Title: Screening tools for predicting mortality of adults with suspected sepsis: an international sepsis cohort validation study Authors: Paul W. Blair^{1,2*}, Rittal Mehta¹, Chris Oppong³, Tin Som⁴, Emily R. Ko⁵, Ephraim L. Tsalik⁵, Josh Chenoweth¹, Michelle Rozo¹, Nehkonti Adams⁶, Charmagne Beckett⁶, Christopher W. Woods⁵, Deborah A. Striegel¹, Mark Salvador¹, Joost Brandsma¹, Lauren McKean¹, Rachael E. Mahle⁵, William Hulsev¹, Subramaniam Krishnan¹, Michael Prouty⁷, Andrew Letizia⁸, Anne Fox⁸, Dennis Faix⁷, James V. Lawler⁹, Chris Duplessis¹⁰; Michael G Gregory¹⁰, Te Vantha⁴, Alex Owusu-Ofori³, Daniel Ansong³, George Oduro³, Kevin L. Schully^{1,10}, and Danielle V. Clark^{1.} Affiliation: ¹Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America. ²Johns Hopkins University School of Medicine, MD, United States of America. ³Komfo Anokye Teaching Hospital, Kumasi, Ghana. ⁴Takeo Provincial Referral Hospital, Takeo, Cambodia. ⁵Duke University Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. ⁶Naval Medical Research Center Infectious Diseases Directorate, Bethesda, MD. ⁷Naval Medical Research Unit-2, Phnom Penh, Cambodia. 8Naval Medical Research Unit-3 Ghana Detachment, Accra, Ghana. ⁹ Global Center for Health Security at Nebraska and Division of Infectious Disease. Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America. ¹⁰Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense

- Additional Defense
 Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, MD, United States of America
 America
 20
 21
 22
 23
 24
 25
 26
 27
 28
- 26
 27
 27
 28
 29 *Corresponding Author: Paul W. Blair, MD MSPH MHS. Henry M. Jackson Foundation for the
 30 Advancement of Military Medicine. 6720A Rockledge Dr, Bethesda, MD 20817. E-mail:
- 31 <u>pblair6@jhmi.edu</u>

1 ว		
2 3	32	
4 5	33	Abstract:
6 7	31	Word count: 276
8 9	54	word count. 270
10	35	Objectives: We evaluated the performance of commonly used sepsis screening tools across prospective
11	36	sepsis cohorts in the United States, Cambodia, and Ghana.
13 14	37	Design: Prospective cohort studies
15 16	38	Setting and participants: From 2014 to 2021, participants with 2 or more SIRS (Systemic Inflammatory
17 18 10	39	Response Syndrome) criteria and suspected infection were enrolled in emergency departments and
20 21	40	medical wards at hospitals in the Cambodia and Ghana and hospitalized participants with suspected
22 23	41	infection were enrolled in the United States. Cox proportional hazards regression was performed, and
24 25	42	Harrell's C-statistic calculated to determine 28-day mortality prediction performance of the qSOFA score
26 27	43	\geq 2, SIRS score \geq 3, NEWS \geq 5, MEWS \geq 5, or UVA score \geq 2, Screening tools were compared to baseline
28 29	44	risk (age and sex) with the Wald test.
30 31	45	Results: The cohorts included 567 participants (42.9% female) including 187 participants from Kumasi,
32 33	46	Ghana, 200 participants from Takeo, Cambodia, and 180 participants from Durham, North Carolina in the
34 35 26	47	United States. The pooled mortality was 16.4% at 28-days. The mortality prediction accuracy increased
30 37 38	48	from baseline risk with the MEWS (C-statistic: 0.63, 95% CI: 0.58, 0.68; p=0.002), NEWS (C-statistic:
39 40	49	0.68; 95% confidence interval [CI]: 0.64, 0.73; p<0.001), qSOFA (C-statistic: 0.70, 95% CI: 0.64, 0.75;
41 42	50	p<0.001), UVA score (C-statistic: 0.73, 95% CI: 0.69, 0.78; p<0.001), but not with SIRS (0.60; 95% CI:
43 44	51	0.54, 0.65; p=0.13). Within individual cohorts, only the UVA score in Ghana performed better than
45 46	52	baseline risk (C-statistic: 0.77; 95% CI: 0.71, 0.83; p<0.001).
47 48	53	Conclusions: Among the cohorts, MEWS, NEWS, qSOFA, and UVA scores performed better than
49 50	54	baseline risk, largely driven by accuracy improvements in Ghana, while SIRS scores did not improve
51 52	55	prognostication accuracy. Prognostication scores should be validated within the target population prior to
55 55	56	clinical use.
56 57 58	57	Keywords: Analysis, Survival; sepsis; Cohort Studies; Prognosis; Global Health

2 3	58	
4 5 6	59	Strengths and limitations of this study:
7 8	60	• This study includes two well-characterized sepsis cohorts in low- and middle-income countries
9 10	61	(LMICs) and a cohort in a high-resource setting for comparison.
11 12	62	• The performance characteristics of five commonly used sepsis screening tools for predicting 28-
13 14	63	day death was compared to baseline risk after adjustment for multiple comparisons.
15 16 17 18 19	64	• Diagnostic testing differed at each site and mortality specifically due to sepsis could not be
	65	determined.
20 21	66	• Enrolment was by convenience sampling within the referral hospital catchment area and may not
22 23 24 25 26 27 28 29 30 31 32	67	be representative of the general population within these countries.
	68	• Sample size limitations in each of the cohorts may have led to decreased ability to identify
	69	differences between each screening tool.
	70	
	71	
33 34	72	Narrative:
35 36	73	Word count: 3,883
37 38	74	
39 40	75	INTRODUCTION
41 42 43	76	Sepsis, a syndrome resulting from a systemic dysregulated host response to an infection, is estimated to
44 45	77	cause six million deaths per year but is likely an underestimate due to limited information from low- and
46 47	78	middle-income countries (LMICs) where 87% of the world population live [1]. Despite declining age-
48 49	79	standardized incidence and mortality, sepsis remains a major cause of health loss worldwide and has an
50 51	80	especially high health-related burden in LMICs[2].
52 53 54 55	81	
56 57 58		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Clinical sepsis guidelines developed in the Western world may not be applicable in resource-limited settings and moreover can lead to detrimental effects on sepsis care and management when applied in these conditions due to decreased access to resources to manage iatrogenesis from fluid resuscitation [3, 4]. In contrast to the United States, pathogens that lead to directly lead to vascular injury are common causes of acute febrile illness in Cambodia and Ghana such as dengue virus, malaria, or rickettsia and may alter empiric treatment response [5]. While early recognition and treatment of sepsis is critical, most sepsis scores or early warning systems were derived from cohorts outside of LMICs. Differences in causes of sepsis, available treatments, and available resources for supportive care should affect management strategies but evidence is limited and optimal clinical scores or biomarkers for sepsis identification are unknown in these settings. Multi-site international sepsis studies are essential for evaluating current and future sepsis tools to ensure effectiveness in resource-limited settings and across populations.

The most validated prognostication scores, SOFA (Sequential Organ Failure Assessment) and the APACHE IV, have been developed for prognostication but require an arterial blood gas and multiple laboratory parameters [6, 7] that are not widely available in low-resource settings. The gSOFA (quick SOFA) is an abbreviated score that does not require laboratory parameters. The qSOFA is one of the most widely adopted sepsis screening tools and has largely replaced the SIRS (Systemic Inflammatory Response Syndrome) criteria as the standard abbreviated sepsis screening tool as part of the Sepsis-3 definition to identify septic patients [8]. The qSOFA and other sepsis screening tools (i.e., Modified Early Warning Score [MEWS], National Early Warning Score [NEWS], and Universal Vital Assessment [UVA]) are often used clinically to identify those at risk of sepsis, but these tools have been studied for their ability to prognosticate mortality or poor composite outcomes among hospitalized adults[9-12]. Studies have evaluated these tools for predicting in-hospital mortality but the performance of these tools and the prevalence of 28-day mortality, a common metric of sepsis outcomes, have yet to be described across both high- and low-resource settings using similar methods [9, 13, 14].

Page 7 of 33

BMJ Open

We used prospective multi-site international cohorts that are part of the Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO) consortium to validate commonly used sepsis screening tools [15]. In contrast to APACHE IV and SOFA, these tools can be quickly performed with limited laboratory test results. We hypothesized that qSOFA may perform poorly in LMIC populations compared to the UVA score due to differences in causes of sepsis. We describe the diverse clinical characteristics, the aetiologies of suspected sepsis within these cohorts, and the performance of sepsis screening tools in current clinical use for predicting mortality at one month post enrolment.

116 METHODS

117 From May 2014 to November 2015, 200 participants were enrolled into a prospective observational study 118 of sepsis at Takeo Provincial Hospital in Takeo Province Cambodia [16] (Figure 1). This study was 119 followed by a prospective study at Duke University Hospital in Durham, North Carolina, which enrolled 120 180 participants from December 2014 to March 2016. In Kumasi, Ghana, 187 participants were enrolled at 121 Komfo Anokye Teaching Hospital from July 2016 to October 2017.

Hospitalized patients \geq 18 years of age whose attending physician judged them to have an active infection were considered for inclusion for each of the three cohorts. Additional inclusion and exclusion criteria were required in Cambodia and Ghana but not required in the United States protocol. In Cambodia and Ghana, participants were required to meet least two clinical criteria for systemic inflammatory response syndrome (SIRS) during screening. In Cambodia and Ghana, patients were excluded if they had known malignancy, chronic renal/hepatic insufficiency, immunosuppressive conditions (except HIV) or systemic steroid usage that exceeded 20mg/day to prevent confounding in future biomarker studies. Patients were also excluded in Cambodia and Ghana if they had a history of organ transplant, hemodynamically significant gastrointestinal bleeding, anatomic or functional asplenia, acute cardiovascular disease, general anaesthesia, or surgery in the past week prior to enrolment, women who were pregnant, patients

who had a haemoglobin less than 7 g/dL or weighed less than 35kg. Hospital physicians who deemedtheir patients too ill to participate could defer enrolment.

Study procedures

Following informed consent, study team members conducted a detailed medical history, including prior medications, and physical exam. Responses were recorded on a standardized case report form and included demographics, medical history, physical exam findings, and admission diagnoses. Study specific procedures conducted in Cambodia were described in detail by Rozo et al [17]. Similar enrolment and study procedures were followed in Kumasi, Ghana and in Durham, North Carolina, USA. Blood was collected at the time of enrolment, then at 6 hours later, and at 24 hours later. In Ghana and Cambodia, standardized clinical tests included a peripheral venous blood gas with lactate, complete blood count, complete metabolic panel, optional HIV screening with consent (Alere Determine HIV1/2, Abbott, OK, United States), malaria rapid diagnostic tests (SD Bioline Ag. P.f./Pan, Abbott, OK, United States) and aerobic blood cultures (one aerobic bottle, Bactec 9050, BD, NJ, United States) as part of study procedures in Ghana and Cambodia. Microbiologic results were available if collected through routine clinical care across cohorts. Additional molecular testing and next generation sequencing for pathogens were also performed on blood samples in the Cambodia cohort as previously described [17]. Participants were followed throughout their hospitalization and a record review performed at discharge.

An interview was performed, and blood samples were collected at a 28-day follow-up visit across cohorts.
When patients could not return in person, study team members attempted to conduct an interview with
patients or a legally authorized representative by telephone. Fatal outcomes among each discharged
participant were also determined.

Using clinical data from case report forms and microbiology diagnostic information, clinical adjudication
was performed by three physician reviewers (internal medicine or infectious diseases) to determine the
source of infection by anatomic location and pathogen class (i.e., bacterial, parasitic, viral, or fungal).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	156	This was graded on a low, moderate, and high level of confidence by two independent reviewers and a
5 6	157	third reviewer served as a tiebreaker for discordant conclusions. If the third reviewer did not agree with
7 8	158	either adjudicator, then the decision was determined by committee. Microbiologic results presented
9 10 11	159	include those adjudicated to be clinically relevant to participant's acute illness.
12 13 14	160	Patient and Public Involvement
14 15 16	161	Patients were not involved in recruitment, design, conduct, or dissemination plans of our research. Results
10 17 18	162	of this study were disseminated to hospital and clinical leadership at Takeo Provincial Hospital and
19 20	163	Komfo Anokye Teaching Hospital.
20 21 22	164	
23 24	165	Statistical analysis
25 26	166	Summary statistics were calculated for the cohorts individually and pooled, comparing baseline
27 28	167	demographics (e.g., gender, age, ethnicity, selected medical comorbidities), baseline screening tool
29 30	168	scores, physiologic parameters, baseline clinical laboratory values using either Chi-square (categorical
31 32	169	values), Fishers exact (categorical values), or Kruskal-Wallis (continuous values) tests. Prevalence of
33 34 25	170	diagnoses were described for each cohort by organ system and pathogen type and by anatomic site.
35 36 37	171	
38 39	172	After checking the proportional hazards assumption, Cox regression was performed with bivariate models
40 41	173	to evaluate increased risk of death in each cohort by baseline demographics, comorbid conditions,
42 43	174	physiologic parameters, and clinical laboratory parameters. Physiologic parameters and clinical laboratory
44 45	175	parameters were modelled as dichotomous or ordinal parameters at clinically relevant abnormal range cut
46 47	176	offs (e.g., blood urea nitrogen $\geq 20 \text{mg/dL}$) to explore associations with increased risk of death and for
48 49	177	clinical inference. Screening tools were dichotomized according to current usage, including qSOFA score
50 51	178	\geq 2 (range, 0 [best] to 3 [worst] points), SIRS score \geq 2 (range, 0 [best] to 4 [worst] points), MEWS \geq 5
52 53	179	(range, 0 [best] to 13 [worst] points), NEWS \geq 5 (range, 0 [best] to 20 [worst] points), and UVA \geq 2
54 55 56	180	(range, 0 [best] to 13 [worst])[13] and were evaluated in Cox regression models unadjusted and adjusted
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

for age and sex for risk of death [9]. Glasgow Coma Scale Score (GCS; range, 3 [worst] to 15 [best] points) of less than 15 was used for estimation of the qSOFA score, and a GCS of \leq 3 for unresponsiveness for NEWS, and GCS score 3-15 for the "alert, verbal, pain, unresponsive" scale (AVPU; alert: GCS 13-15, voice: GCS 9-12; pain: GCS 4-8; unresponsiveness: GCS \leq 3) score approximation for MEWS [18, 19]. Data was administratively right censored past 28 days. The Harrell's C-statistic was calculated for each screening tool for each cohort, the cohorts combined, and Cambodia and Ghana cohorts pooled [20]. This statistic is a performance analogous to area under the receiver operating characteristic curve (AUROC) but accounts for differences over time with survival outcomes. C-statistic confidence interval estimates were determined.[21] The Cox regression Wald test p-values were calculated for each score covariate adjusting for baseline risk estimated by age and sex to determine if scores improved model accuracy above baseline risk [9, 22]. P-values <0.002 were considered significant using a Bonferroni correction for multiple comparisons. Cohort sample sizes were determined a priori through Monte Carlo simulation modelling for prognostic biomarker identification. All statistical analyses were performed in SAS (Statistical Analytical Software, version 9.4), R version 4.0.2 [23] or Stata (version 15.0; StataCorp LLC, College Station, TX, USA) [24]. RESULTS *Summary demographics, sepsis severity, and laboratory findings* There were 567 participants across the cohorts including 187 from Kumasi, Ghana, 200 from Takeo, Cambodia, and 180 from Durham, North Carolina, United States (Figure 1). The study population was predominantly male (57.1% male), with more male participants enrolled in Cambodia than at other sites (68.0% vs 55.0% in the U.S. and 52.4% in Ghana). The overall median age was 50 years (interquartile range [IQR], 36 to 63), which was similar across cohorts (Table 1). Previously diagnosed comorbid conditions were most common at the U.S. site including a history of cardiovascular (65.6%; N=118), respiratory (42.2%; N=76), or gastrointestinal (36.7%; N=66) conditions.

BMJ Open

Characteristic	Total (n=567)	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi, Ghana (n=187)	p-value**
Female gender – no. (%)	243 (42.9%)	64 (32.0%)	81 (45.0%)	98 (52.4%)	< 0.001
Age – years, median (IQR)	50 (36 - 63)	50 (36 - 62)	52.5 (40 – 63)	46 (35 - 63)	0.151
Medical history* – no. (%)					
Cancer	44 (9.9%)	0 (0.0%)	44 (24.4%)	0 (0.0%)	< 0.001
Cardiovascular	202 (41.4%)	22 (18.2%)	118 (65.6%)	62 (33.2%)	< 0.001
Dermatologic	15 (3.1%)	1 (0.8%)	14 (7.8%)	0 (0.0%)	< 0.001
Endocrine	126 (25.8%)	6 (5.0%)	74 (41.1%)	46 (24.6%)	< 0.001
Gastrointestinal	76 (15.6%)	4 (3.3%)	66 (36.7%)	6 (3.2%)	< 0.001
Genitourinary or reproductive	34 (7.0%)	1 (0.8%)	33 (18.3%)	0 (0.0%)	< 0.001
HIV	26 (4.7%)	12 (6.2%)	8 (4.5%)	6 (3.2%)	0.388
Neurological	62 (12.7%)	1 (0.8%)	44 (24.4%)	17 (9.1%)	< 0.001
Other	206 (42.2%)	48 (39.7%)	151 (83.9%)	7 (3.7%)	< 0.001
Psychiatric	143 (29.3%)	41 (33.9%)	78 (43.3%)	24 (12.8%)	< 0.001
Renal	41 (8.4%)	0 (0.0%)	41 (22.8%)	0 (0.0%)	< 0.001
Respiratory	89 (18.2%)	7 (5.8%)	76 (42.2%)	6 (3.2%)	< 0.001
Rheumatologic	29 (5.9%)	1 (0.8%)	28 (15.6%)	0 (0.0%)	< 0.001
Surgery	27 (5.5%)	0 (0.0%)	22 (12.2%)	5 (2.7%)	< 0.001
Baseline scores – no. (%)					
MEWS (≥4)	315 (57.8%)	81 (40.7%)	105 (65.6%)	129 (69.3%)	< 0.001
NEWS score (≥5)	324 (61.6%)	90 (47.9%)	98 (64.5%)	136 (73.1%)	< 0.001
qSOFA (≥2)	139 (25.4%)	22 (11.1%)	48 (29.6%)	69 (37.1%)	< 0.001
SIRS (≥2)	447 (81.8%)	125 (68.3%)	157 (89.2%)	165 (88.2%)	< 0.001
UVA (≥2)	199 (37.8%)	47 (25.8%)	68 (42.8%)	84 (45.4%)	< 0.001
Baseline scores (median [IQR])					
MEWS	4 (3-6)	3 (2-5)	1 (0-4)	1 (1-2)	< 0.001
NEWS	6 (3-8)	4 (2-7)	7 (3-9)	6 (4-8)	< 0.001
qSOFA	1 (1-2)	1 (0-1)	1 (0-2)	1 (1-2)	< 0.001
SIRS	2 (2-3)	2 (1-3)	3 (2-3)	3 (2-3)	< 0.001

Table 1. Baseline demographic characteristics stratified by sites.

	Characteristic	Total (n=567)	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi, Ghana (n=187)	p-value**				
	UVA	1 (0-3)	1 (0-2)	1 (0-4)	1 (0-4)	< 0.001				
	*There were 79 subjects wit parameters compared with c test. Not adjusted for multip	hout comorbid hi-squared test le comparisons	ity information and numeric pass.	in the Camboc arameters comp	lia cohort. **C pared with Kru	ategorical skal-Wallis				
Clinical physiologic and laboratory value abnormalities at enrolment were common with median										
respiratory rate at 24 (IQR: 20 to 30), the median white blood count elevated at 12.05 x 10 ⁹ cells/L (IQR:										
8.13 to 16.6 x 10 ⁹ cells/L), and median lactate elevated at 2.27 mmol/L (IQR: 1.66 to 3.09 mmol/L)										
,	(Supplementary Table S1).	At enrolment,	the proportion	of an elevated	qSOFA (≥2) at	baseline was				
	highest at the Ghana site with	n 44.4% (N=83	3) of participant	s compared to	26.0% (N=52)	in Cambodia and				
	22.2% (N=40) in the United	States. The SIF	RS, MEWS, NE	WS, and UVA	screening tool	ls were similarly				
	higher in the Ghana cohort.									
	Pathogens detected									
,	The most common positive r	nicrobiologic r	esults overall in	cluded bactera	emia (N=83), 1	respiratory cultur				
	growth (N=19), serum hepat	itis B surface a	ntigen (N=15),	and malaria raj	pid diagnostic	tests (N=11). A				
ļ	minority (121 of 567, 21.3%)) of subjects ha	d confirmed in	fections with c	omplete adjudi	cator agreement				
1	using all available sources of	clinical micro	biologic results	(with the nota	ble addition of	RNA sequencing				
,	of samples from Cambodia[1	7]) including 9	90 (15.9%) bact	erial, 17 viral ((3.0%), 20 mala	arial (3.5%), and				
	2 (0.3%) fungal infections id	entified across	all cohorts (Su	pplementary l	Figure S1). Th	ese infection				
,	classes were different among	sites (chi-squa	ared test p<0.00	1).						
	In Cambodia, the most comm	non bacterial ir	nfections with c	omplete adjudi	cator agreemen	nt were <i>B</i> .				
Ì	<i>pseudomallei</i> (N=10, with bl	ood or respirat	ory culture grow	wth), presumpt	ive M. tubercu	losis (N=5, with				
		1 . 1.10		1.01						

Table 1. Baseline demographic characteristics stratified by sites.

1 2		
2 3 4	226	The most common causes of bacteraemia (17 total of 200 participants) were <i>B. pseudomallei</i> (N=8), <i>E.</i>
5 6	227	coli (N=3), and polymicrobial infections (N=3). Three participants had a positive malaria RDT. Fungal
7 8	228	infections were uncommon with 1 participant with non-albicans Candidemia and 1 with cryptococcal
9 10	229	meningitis. Two individuals had dengue fever (one PCR positive and one adjudicated IgM positive).
11 12	230	
13 14	231	In Ghana, the most common causes of bacteraemia (culture growth from 28 of 187 participants) were E.
15 16	232	coli (N=6), S. aureus (N=6), Salmonella spp. (N=5), and S. pneumoniae (N=3). Nine participants had a
17 18	233	positive malaria RDT and 15 had a positive hepatitis B surface antigen.
19 20	234	
21 22 23	235	In the United States, the most common causes of bacteraemia (culture growth from 19 of 180
23 24 25	236	participants) were E.coli (N=5), K. pneumoniae (N=3), polymicrobial (N=2), Pseudomonas spp. (N=2),
26 27	237	or S. aureus (N=2). Viral infections detected by PCR included rhinovirus (N=5), influenza A (N=4),
28 29	238	respiratory syncytial virus (N=4), human immunodeficiency virus (N=3), and human metapneumovirus
30 31	239	(N=3). There was one participant with Aspergillus fumigatus fungal pneumonia.
32 33	240	
34 35	241	Diagnoses and Treatments
36 37	242	Across cohorts, the most common organ system sites of infection were lower respiratory tract infection
38 39	243	(28.7%; N=163), multifocal or generalized source of infection (including malaria) (13.6%; N=77), and
40 41	244	gastrointestinal (including hepatic) (12.7%; N=72) (Figure S1a). The most common antibiotics
42 43	245	administered in United States, Ghana, and Cambodia were beta-lactam antibiotics (Supplementary
44 45 46	246	Figure S2), but antibiotic regimens varied widely among sites. The most common antibiotics classes used
47 48	247	were other antibacterials (e.g., glycopeptide antibiotics, 58.9%), beta-lactam antibacterials, penicillins
49 50	248	(51.7%), and cephalosporin and carbapenem antibacterials (44.4%) in the United States, cephalosporins
51 52	249	and carbapenems (64.2%), macrolides, lincosamides and streptogramins (37.4%), and other antibacterials
53 54	250	(33.7%) in Ghana, and cephalosporins and carbapenems (73.0%), beta-lactam antibacterials, penicillins
55 56 57 58	251	(46.5%) and aminoglycoside antibacterials (39.0%) in Cambodia.
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	252	
5 6	253	Survival
7 8 9 10 11 12	254	Among all cohorts, 16.4% (N=93) of participants had died at one month, including 58 (31.0%) in Ghana,
	255	22 (11.0%) in Cambodia, and 13 (7.2%) in the U.S (Figure 1). Among those that died within one month,
	256	median time to death was 4 days (IQR: 1 to 11) in Ghana, 7 days (IQR: 3 to 16) in Cambodia, 10 (IQR: 5
13 14	257	to 19) in the U.S., and 5 days (IQR: 2 to 13) overall. Parameters to calculate the qSOFA score and 28-day
15 16	258	mortality were available for 96.4% participants. Hypernatremia (>145 mEq/L) had the highest unadjusted
17 18 10	259	risk of death (hazard ratio 6.89, 95% CI: 3.43, 13.85) among parameters tested in bivariate models
19 20 21	260	(Supplementary Figure S3). All screening tools were associated with an increased risk of death (Figure
22 22 23	261	2) with the largest increase among those with an elevated UVA score (Supplementary Figure S3). For
24 25 26 27 28 29 30 31	262	individuals with a UVA \geq 2 there was a 5.45 times increased risk of death (95% CI: 3.39 to 8.76; C-
	263	statistic: 0.70) and those with a qSOFA \geq 2 had a 4.11 times increased risk of death (95% CI: 2.71 to 6.22;
	264	C-statistic: 0.66). Those with an elevated SIRS had a 1.81 times increased risk of death (95% CI: 0.94 to
	265	3.50; C-statistic:0.53). Elevated NEWS (HR: 4.03; 95% CI: 2.24 to 7.26; C-statistic: 0.66) and MEWS
32 33	266	(HR: 2.03; 95% CI: 1.28 to 3.23; C-statistic: 0.53) had similarly increased risks (Figure 3).
34 35	267	
36 37	268	Accuracy in an adjusted Cox model was highest for UVA (0.73; 95% CI 0.68-0.78) followed by qSOFA
30 39 40	269	(C-statistic: 0.70; 95% CI: 0.64 to 0.75) (Table 2). The sensitivity for predicting death was highest with
40 41 42	270	SIRS (89%; 95% CI: 80 to 94%) but specificity was lowest (19%; 95% CI: 16 to 26%). The UVA score
43 44	271	had a sensitivity of 74% and specificity of 70%. The qSOFA score had the lowest sensitivity (54%; 95%
45 46	272	CI: 44 to 65%) but highest specificity (80%; 95% CI: 76 to 84%). We observed that the qSOFA
47 48	273	discrimination for mortality was moderate with a C-statistic of 0.70 adjusting for age and sex (Figure 3).
49 50	274	There was similar qSOFA accuracy in individual cohorts from the United States (C-statistic 0.71; 95%
51 52	275	CI: 0.54 to 0.89), Cambodia (C-statistic: 0.68; 95% CI: 0.59 to 0.77), or Ghana (C-statistic: 0.72; 95% CI:
53 54	276	0.64 to 0.79) (Figure 3). Similarly, the UVA score had moderate accuracy with a C-statistics on 0.73
55 56 57	277	(95% CI: 0.68 to 0.78). Other screening scores had similar moderate C-statistic values. The SIRS C-
58 59		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
72 //2	
4J A A	
44	
45	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

		(05% CD	05% CD	(05% CD	(05% CD	Divoriato	Čov	- Wald			
	Score	Sensitivity	Specificity	PPV	NPV	Unadjusted	Adjusted*	p-value			
	Table 2. Performance characteristics of sepsis score across cohorts for predicting 28-day mortality.										
283	but this was not significant after correcting for multiple comparisons. In Cambodia, while not significant										
202	(ruble 5). The quotient score increased prognostication accuracy in the Olined States conort with a p -0.02										
282	(Table 3) The	e aSOFA score	e increased pr	ognostication	accuracy in f	he United State	es cohort with	a n=0.02			
281	UVA scores were significantly greater than baseline risk in Ghana in contrast to other scores or cohorts										
280	\geq 4 (58% of the pooled cohort), the C-statistic was 0.63 (95% CI: 0.58 to 0.68) for death. The qSOFA and										
279	pooled cohort), the C-statistic was 0.68 (95% CI: 0.64 to 0.73) and among those with a MEWS score of										
278	statistic was 0.60 (95% CI: 0.54 to 0.65). Among participants with a NEWS score of \geq 5 (62% of the										

Score	Sensitivity	specificity	111		Unaujusteu	Aujusteu	p-value
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	Bivariate	Cox	(Wald
					Cox model	model	test)
					C-statistic	C-statistic	
					(95% CI)	(95% CI)	
Age and	-	-	-	_	-	0.59	
sex						(0.53,0.64)	
MEWS≥4*	0.73 (0.63,	0.45 (0.40,	0.21 (0.16,	0.89 (0.85,	0.59 (0.54,	0.63	0.002**
	0.82)	0.49)	0.26)	0.93)	0.63)	(0.58,0.68)	
NEWS≥5*	0.86	0.43	0.25	0.93 (0.89,	0.65 (0.64,	0.68	<0.001**
	(0.77,0.93)	(0.38,0.48)	(0.23,0.28)	0.95)	0.67)	(0.64,0.73)	
qSOFA	0.54 (0.44,	0.80 (0.76,	0.35 (0.27,	0.90 (0.87,	0.66 (0.61,	0.70	<0.001**
≥2*	0.65)	0.84)	0.44)	0.93)	0.71)	(0.64,0.75)	
SIRS ≥2*	0.89 (0.80,	0.19 (0.16,	0.17 (0.14,	0.90 (0.82,	0.53 (0.50,	0.60	0.134
	0.94)	0.23)	0.21)	0.95)	0.57)	(0.54,0.65)	
UVA≥2*	0.74	0.70 (0.65,	0.33 (0.27,	0.93	0.70 (0.65,	0.73	<0.001**
	(0.64,	0.74)	0.40)	(0.90,0.95)	0.74)	(0.68,0.78)	
	0.83)						

*Adjusted Cox model C-statistic is adjusted for age and gender. Note: p-value are from Wald test of the adjusted Cox regression model.

**Significant at p<0.002

after correction, NEWS (p=0.01) and UVA (p=0.01) scores increased accuracy greater than baseline risk.

285 When pooling LMIC cohorts (i.e., Ghana and Cambodia), after adjustment for age and sex, the qSOFA

286 (C-statistic: 0.71; 95% CI: 0.66 to 0.77) and UVA scores (C-statistic: 0.76; 95% CI: 0.71 to 0.81) had

Table 3. Performance characteristics of sepsis score across cohorts for predicting 28-day mortality stratified by site.

Model	Takeo, Cambodia C-statistic (95% CI)	p-value	Durham, USA C-statistic (95% CI)	p-value	Kumasi, Ghana C-statistic (95% CI)	p-value
Age and Sex	0.68 (0.59, 0.78)	_	0.68 (0.54,0.81)	_	0.57 (0.49, 0.64)	—

MEWS	0.68 (0.59, 0.78)	0.2102	0.68 (0.57, 0.79)	0.4991	0.63 (0.56, 0.70)	0.0097	
NEWS	0.73 (0.63, 0.83)	0.0106	0.71 (0.59, 0.84)	0.2557	0.64 (0.57, 0.70)	0.0022	
qSOFA	0.68 (0.59, 0.77)	0.5101	0.71 (0.54, 0.89)	0.0365	0.72 (0.64, 0.79)	<0.001*	
SIRS	0.69 (0.60, 0.78)	0.5020	0.69 (0.55, 0.83)	0.5831	0.58 (0.51, 0.65)	0.1882	
UVA	0.71 (0.60, 0.83)	0.0109	0.70 (0.55, 0.85)	0.4753	0.77 (0.71,0.83)	<0.001*	
<i>Note: p-value sex.</i> *Signific	<i>are from Wald test of th</i> ant at p<0.002	ie adjusted	Cox regression mod	lel. Each n	nodel is adjusted for	age and	
higher accuracy	y compared with MEWS	S (C-statist	ic: 0.66 (95% CI 0.6	1 to 0.72),	NEWS (C-statistic:	0.70	
(95% CI: 0.65	to 0.76), and SIRS (C-st	atistic: 0.6	1; 95% CI: 0.55 to 0	.67) (Sup r	elementary Table S	2) . In	
contrast, in the	United States cohort, N	EWS, ME	WS, SIRS, qSOFA, a	and UVA s	scores after age and	sex	
adjustment eac	h had similar accuracy v	with C-stati	istics ranging from 0	.66 to 0.71	(Table 3 and		
Supplementar	y Table S3).						
DISCUSSION	ſ						
In pooled prospective international cohorts in Cambodia, Ghana, and the United States, the UVA score							
and Sepsis-3 (qSOFA) performed well with a C-statistic around 0.7 for predicting 28-day mortality.							
However, this improvement was largely identified in the cohort in Ghana and the accuracy was no							
different than baseline risk in the Cambodia cohort. There was a trend towards improving prognostication							
accuracy with the NEWS and UVA score in Cambodia and only with the qSOFA score in the United							
States. These results suggest that widely used sepsis screening tools may have varying performance for							
prognostication in diverse settings with different treatment regimens and aetiologies of sepsis. Therefore,							
screening tools should be selected after validation within populations prior to widespread adoption.							
High sodium (l	nypernatremia) was asso	ciated with	n the highest risk of 2	28-day dea	th among individual	l	
clinical parame	eters. Hypernatremia dui	ing critica	l illness has been pre	viously as	sociated with mortal	ity in	
		esource set	tings [25-26] Hype	rnatremia	can occur in sepsis d	lue to	
large observation	onal studies from high r	esource set	20, 20]. Hype		1		

Page 17 of 33

1 2

60

3 4	307	from the disease process [27]. There can also be an iatrogenic contribution from diuretics, sodium from
5 6	308	intravenous fluids, or with inadequate fluid resuscitation. Ultimately, there is not data available to
7 8	309	precisely determine the causes of hypernatremia among the participants in our cohorts. However, our
9 10	310	results highlight the universal risk of death among those with hypernatremia among those with sepsis and
11 12	311	emphasize the need for close management of fluid and electrolytes across critical care settings.
13 14	312	
15 16	313	Current sepsis screening tools have had variable performance when applied for prognostication. SOFA or
17 18 19	314	APACHE scores have been developed specifically for prognostication but required parameters including
20 21	315	arterial blood oxygen saturation are often not available [9]. Performance of qSOFA and SIRS for
22 23	316	mortality have performed poorly (SIRS, area under the receiving operator curve [AUROC], 0.61; qSOFA:
24 25	317	AUROC, 0.61) for prognostication in high-resource settings intensive care unit (ICU) settings [14] and in
26 27	318	diverse LMICs (adjusted SIRS: AUROC, 0.59; adjusted qSOFA: AUROC, 0.70) [9] in prior studies for
28 29	319	mortality prognostication. While qSOFA is generally more specific than other screening tools, it is less
30 31	320	sensitive than SIRS, MEWS, and NEWS, which is consistent with our data[28]. When applied to sepsis
32 33	321	identification, Surviving Sepsis 2021 guidelines recommend against solely using qSOFA, [29] due to
34 35 36	322	being a more specific rather than sensitive screening test. Additionally, qSOFA has been found to be
37 38	323	inferior to MEWS, and NEWS but more accurate and specific than SIRS for predicting in-hospital
39 40	324	mortality and ICU transfer in a large retrospective cohort of over 30 thousand patients in the United States
41 42	325	(NEWS: AUROC, 0.77; MEWS: AUROC, 0.73; qSOFA: AUROC, 0.69; SIRS: AUROC, 0.65) [28].
43 44	326	Different screening scores have been evaluated in prospective cohorts in sub-Saharan Africa (SSA)
45 46	327	previously in Tanzania (qSOFA: AUROC, 0.57; MEWS: AUROC, 0.49) [30] and Rwanda [31] (MEWS:
47 48	328	AUROC, 0.69; UVA: AUROC, 0.71; qSOFA: AUROC, 0.65) and in Gabon [32] (UVA: AUROC, 0.90;
49 50	329	qSOFA: AUROC, 0.77; MEWS: AUROC, 0.72; SIRS: AUROC, 0.70). Given the performance variability
51 52	330	that has been previously observed and was observed in this study, it is prudent to evaluate prediction
55 55	331	scores within the populations they serve prior to widespread promotion.
56 57	332	
58 59		

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
2/	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 17	
47 40	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
20	
59	

60

1 2

> 333 The UVA score performed better than baseline risk in the Ghana cohort. Our results externally validated 334 the UVA score for use prognostication of hospitalized patients with suspected sepsis in Kumasi, Ghana 335 and potentially in the region when demographics are similar. The superiority of the UVA score in the 336 Ghana cohort could be related to similarities in infectious causes of illness with other countries in SSA 337 populations from which the UVA score was derived[12]. In contrast to the score derivation study[12], 338 UVA score performed similarly to gSOFA in Ghana. The accuracy of the UVA scores was not greater 339 than baseline risk in the cohort in Cambodia after adjustment for multiple comparisons. While 340 conclusions may be limited by sample size, sepsis scores derived from the regions of the world with more 341 similar infectious aetiologies may perform better. Our results highlight the importance of validating 342 scores in new patient populations prior to widespread use. 343 344 This study had multiple limitations. First, exclusion criteria of immunocompromising conditions except 345 HIV may have led to a skewed populations from Ghana and Cambodia. These exclusion criteria were 346 created to decrease the effect of comorbid conditions or medications on immune biomarkers. However, in 347 Cambodia and Ghana, immunosuppressive medications or diagnoses of chronic liver or kidney disease 348 may be less common in the general population due to limited access to specialists or specialized 349 medications. Additionally, while there were differences in the baseline severity between cohorts, study 350 processes including inclusion criteria were largely standardized across sites improving the comparability 351 of the cohorts in diverse settings and baseline risk was adjusted in models using age and sex. Diagnostic 352 testing differed at each site and mortality specifically due to sepsis could not be determined. Enrolment 353 was by convenience sampling within the referral hospital catchment area and may not be representative of 354 the general population within these countries. Approximation of the mental status for the MEWS scoring 355 using GCS may not be generalizable to the use of GCS at other sites. However, similar MEWS and 356 NEWS performance was observed across sites. Lastly, due to the limited sample size in each of the 357 cohorts, smaller improvements in accuracy may not have been identified in the Cambodia and United 358 States cohorts that had less deaths compared to the Ghana cohort.

2 3 ⊿	359	
5 6	360	Inexpensive and readily available tools are needed for triage in resource-limited areas in the world to help
7 8	361	identify patients that need escalation and possible transfer to higher levels of care. Current widely used
9 10	362	sepsis screening tools represent a clinical benchmark for the development of future triage tools. Research
11 12 12	363	is ongoing to assess point-of-care diagnostics within our sepsis cohort research network. Assays with
13 14 15	364	portable and low-cost inflammation biomarkers tests, molecular diagnostics, or point-of-care ultrasound
16 17	365	(POCUS) have the potential to augment the performance of clinical screening tools towards a more
18 19	366	personalized approach to sepsis recognition and triage.
20 21	367	
22 23	368	CONCLUSION
24 25	369	Sepsis screening tools that are widely used during clinical care had sub-optimal performance for risk
26 27	370	stratification in three international cohorts with increased performance of the UVA and qSOFA scores in
28 29 20	371	Ghana compared to baseline risk. There remains a need for reliable, low-cost, and scalable
30 31 32	372	prognostication methods that are validated in diverse settings.
33 34	373	
35 36	374	Funding: Defense Threat Reduction Agency (JSTO-CBA) to Naval Medical Research Center (NMRC)
37 38	375	(HDTRA1516108), Defense Health Bureau of Medicine & Surgery to NMRC for Combating Antibiotic
39 40	376	Resistance Bacteria (FY1819 0130.1832), Naval Medical Logistics Command Cooperative Agreement
41 42	377	(N626451920001).
43 44 45	378	
46 47 48	379	Conflicts of Interest: ELT has held equity and consulted for Predigen and Biomeme, and he is an employee
40 49 50	380	of Danaher Diagnostics. All other authors declared no competing interests.
51 52 53 54 55	381	
56 57		
58 59		For near raview only - http://hmianan.hmi.com/sita/ahaut/auidalinas.yhtml

Ethics approval: Study protocols were approved by the Naval Medical Research Center (NMRC) Institutional Review Board (IRB) (Cambodia sepsis study # NMRC.2013.0019; Ghana sepsis study # NMRC.2016.0004-GHA; Duke sepsis study Duke#PRO00054849) in compliance with all applicable Federal regulations governing the protection of human subjects as well as host country IRBs. The study protocol in Cambodia was approved by the Cambodian National Ethics Committee for Health Research (NECHR). The protocol in Ghana was approved by the Committee on Human Research, Publication and Ethics (CHRPE) at Kwame Nkrumah University of Science & Technology. All procedures were in accordance with the ethical standards of the Helsinki Declaration of the World Medical Association. All patients, or their legally authorized representatives, provided written informed consent.

Disclaimer: K.L.S. is an employee of the US government, and C.B. N.A., C.D., M.P., and A.L. are military service members. This work was prepared as a part of official duties. Title 17 U.S.C. 105 provides that 'Copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. 101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of a person's official duties. The views expressed reflect the results of research conducted by the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the United States Government.

Contributorship Statement: PWB, RM, JB, LM, DAS, REM performed data curation and analyses. PWB, KLS, and DVC developed the manuscript concept. DVC and KLS provided resources for research development. AL, KLS, CO, JC, TS, ERK, ELT, CB, CWW, AF, AL, DF, JVL, MP, MR, NA, CD, MGG, TV, AO, DA, and GO were involved in protocol development and data generation. LM, MS, WH, SK, were involved in research operations. AL, KLS, CWW, DF, ELT, CB, DVC, and PWB were involved in manuscript revisions. All authors reviewed and approved of this manuscript.

1 2 2			
3 4	407	Data	sharing statement: De-identified data may be made available upon reasonable request to the
5 6 7	408	corres	ponding author.
7 8 9	409		
10 11	410	Refer	ences
12 13	411	1.	Reinhart, K., et al., Recognizing Sepsis as a Global Health Priority - A WHO Resolution. N Engl
14 15	412		J Med, 2017. 377 (5): p. 414-417.
16 17	413	2.	Rudd, K.E., et al., Global, regional, and national sepsis incidence and mortality, 1990-2017:
18 19	414		analysis for the Global Burden of Disease Study. Lancet, 2020. 395(10219): p. 200-211.
20 21	415	3.	Maitland, K., et al., Mortality after fluid bolus in African children with severe infection. N Engl J
22 23	416		Med, 2011. 364 (26): p. 2483-95.
24 25 26	417	4.	Andrews, B., et al., Effect of an Early Resuscitation Protocol on In-hospital Mortality Among
26 27 28	418		Adults With Sepsis and Hypotension: A Randomized Clinical Trial. Jama, 2017. 318(13): p. 1233-
20 29 30	419		1240.
31 32	420	5.	WHO, in Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition.
33 34	421		2009: Geneva.
35 36	422	6.	Singer, M., et al., The Third International Consensus Definitions for Sepsis and Septic Shock
37 38	423		(Sepsis-3). JAMA, 2016. 315 (8): p. 801-810.
39 40	424	7.	Zimmerman, J.E., et al., Acute Physiology and Chronic Health Evaluation (APACHE) IV:
41 42	425		hospital mortality assessment for today's critically ill patients. Crit Care Med, 2006. 34(5): p.
43 44	426		1297-310.
45 46	427	8.	Singer, M., et al., The Third International Consensus Definitions for Sepsis and Septic Shock
47 48	428		(Sepsis-3). Jama, 2016. 315 (8): p. 801-10.
49 50 51	429	9.	Rudd, K.E., et al., Association of the Quick Sequential (Sepsis-Related) Organ Failure
52 53	430		Assessment (qSOFA) Score With Excess Hospital Mortality in Adults With Suspected Infection in
55 55 56 57	431		Low- and Middle-Income Countries. Jama, 2018. 319 (21): p. 2202-2211.
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	432	10.	Subbe, C.P., et al., Validation of a modified Early Warning Score in medical admissions. Qjm,
5 6	433		2001. 94 (10): p. 521-6.
7 8	434	11.	Smith, G.B., et al., The ability of the National Early Warning Score (NEWS) to discriminate
9 10	435		patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death.
11 12	436		Resuscitation, 2013. 84(4): p. 465-70.
13 14	437	12.	Moore, C.C., et al., Derivation and validation of a universal vital assessment (UVA) score: a tool
15 16	438		for predicting mortality in adult hospitalised patients in sub-Saharan Africa. BMJ Glob Health,
17 18	439		2017. 2 (2): p. e000344.
19 20 21	440	13.	Adegbite, B.R., et al., A comparison of different scores for diagnosis and mortality prediction of
21 22 23	441		adults with sepsis in Low-and-Middle-Income Countries: a systematic review and meta-analysis.
24 25	442		EClinicalMedicine, 2021. 42 : p. 101184.
26 27	443	14.	Raith, E.P., et al., Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for
28 29	444		In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care
30 31	445		Unit. Jama, 2017. 317(3): p. 290-300.
32 33	446	15.	Krishnan, S., et al., Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO).
34 35	447		Shock, 2020. 53 (3): p. 377-378.
36 37 29	448	16.	Schully, K.L., et al., Melioidosis in lower provincial Cambodia: A case series from a prospective
30 39 40	449		study of sepsis in Takeo Province. PLoS Negl Trop Dis, 2017. 11(9): p. e0005923.
40 41 42	450	17.	Rozo, M., et al., An Observational Study of Sepsis in Takeo Province Cambodia: An in-depth
43 44	451		examination of pathogens causing severe infections. PLoS Negl Trop Dis, 2020. 14(8): p.
45 46	452		e0008381.
47 48	453	18.	Kelly, C.A., A. Upex, and D.N. Bateman, Comparison of consciousness level assessment in the
49 50	454		poisoned patient using the alert/verbal/painful/unresponsive scale and the Glasgow Coma Scale.
51 52	455		Ann Emerg Med, 2004. 44(2): p. 108-13.
53 54	456	19.	Nedea, D. AVPU Scale. 18 January, 2022]; Available from: https://www.mdapp.co/avpu-scale-
55 56 57 58	457		<u>calculator-163/</u> .
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	458	20.	Harrell, F.E., Jr, et al., Evaluating the Yield of Medical Tests. JAMA, 1982. 247(18): p. 2543-
5 6	459		2546.
7 8	460	21.	Han, X., Y. Zhang, and Y. Shao, On comparing 2 correlated C indices with censored survival
9 10	461		<i>data</i> . Stat Med, 2017. 36 (25): p. 4041-4049.
11 12	462	22.	Pepe, M.S., et al., <i>Testing for improvement in prediction model performance</i> . Stat Med, 2013.
13 14	463		32 (9): p. 1467-82.
15 16	464	23.	Team, T.R.D.C., R: A language environment for statistical computing. R Foundation for
17 18 10	465		Statistical Computing. 2020.
20 21	466	24.	StataCorp, L., Stata statistical software: release 16 College Station. TX StataCorp LP, 2019.
22 23	467	25.	Castello, L.M., et al., Hypernatremia and moderate-to-severe hyponatremia are independent
24 25	468		predictors of mortality in septic patients at emergency department presentation: A sub-group
26 27	469		analysis of the need-speed trial. Eur J Intern Med, 2021. 83: p. 21-27.
28 29	470	26.	Olsen, M.H., et al., Association Between ICU-Acquired Hypernatremia and In-Hospital
30 31	471		Mortality: Data From the Medical Information Mart for Intensive Care III and the Electronic
32 33	472		ICU Collaborative Research Database. Crit Care Explor, 2020. 2(12): p. e0304.
34 35	473	27.	Lindner, G. and G.C. Funk, Hypernatremia in critically ill patients. J Crit Care, 2013. 28(2): p.
36 37 29	474		216.e11-20.
30 39 40	475	28.	Churpek, M.M., et al., Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory
40 41 42	476		Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected
43 44	477		Patients outside the Intensive Care Unit. Am J Respir Crit Care Med, 2017. 195(7): p. 906-911.
45 46	478	29.	Evans, L., et al., Surviving sepsis campaign: international guidelines for management of sepsis
47 48	479		and septic shock 2021. Intensive care medicine, 2021. 47(11): p. 1181-1247.
49 50	480	30.	Carugati, M., et al., Predicting Mortality for Adolescent and Adult Patients with Fever in
51 52	481		Resource-Limited Settings. Am J Trop Med Hyg, 2018. 99(5): p. 1246-1254.
53 54			
55 56			
57 58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	482	31.	Klinger, A., et al., Predicting mortality in adults with suspected infection in a Rwandan hospital:
5 6	483		an evaluation of the adapted MEWS, qSOFA and UVA scores. BMJ Open, 2021. 11(2): p.
7 8	484		e040361.
9 10	485	32.	Schmedding, M., et al., A Prospective Comparison of Quick Sequential Organ Failure
11 12	486		Assessment, Systemic Inflammatory Response Syndrome Criteria, Universal Vital Assessment,
13 14	487		and Modified Early Warning Score to Predict Mortality in Patients with Suspected Infection in
15 16 17	488		Gabon. Am J Trop Med Hyg, 2019. 100(1): p. 202-208.
$\begin{array}{c} 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 90\\ 60\\ 57\\ 58\\ 90\\ 60\\ 57\\ 58\\ 90\\ 60\\ 57\\ 58\\ 90\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 60\\ 57\\ 58\\ 59\\ 50\\ 50\\ 57\\ 58\\ 59\\ 50\\ 57\\ 58\\ 59\\ 50\\ 57\\ 58\\ 59\\ 50\\ 57\\ 58\\ 59\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50$	489		
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4	490 491	Figure Legends
5 6 7	492 493 494	Figure 2. Kaplan-Meier survival plot of 28-day mortality stratified by site. Figure 3. The C-statistic by score overall and by cohort (adjusted for age and sex).
8 9	495	
10 11 12		
12		
14 15 16		
16 17 18		
10 19 20		
20 21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38 30		
39 40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2. Kaplan-Meier survival plot of 28-day mortality stratified by site.

387x258mm (236 x 236 DPI)

165x96mm (800 x 800 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghana Median (IQR)
Physiologic parameters				
Respiratory rate (breaths per minute)	24 (20, 30)	24 (20, 28)	24 (20, 31)	26 (22, 30)
Systolic blood pressure (mmHg)	120 (100, 130)	110 (100, 130)	113 (96, 129)	127.5 (110, 140)
Diastolic blood pressure (mmHg)	70 (60, 80)	70 (70, 80)	64 (56, 75)	80 (60, 90)
Oxygen saturation (%)	97 (94, 98)	98 (96, 98)	95 (92, 97.5)	97 (95, 98)
Temperature (°C)	37.9 (37, 38.7)	37.5 (37, 38.5)	38.1 (36.9, 38.89)	38.2 (37.4, 38.8
Heart rate (beats per minute)	105 (94, 118)	96 (86.5, 105.5)	111 (99.5, 124)	111 (99, 118)
Clinical laboratory parameters				
White blood cells (x10 ⁹ cells/L)	12.05 (8.13, 16.6)	11.9 (8.2, 16.6)	13.35 (9.7, 17.6)	10.76 (7.68, 15.41)
Platelets (x10 ⁹ cells/L)	222 (152.5, 321.5)	262 (169, 366)	236.5 (160, 291)	193 (137, 284)
Sodium (mEq/L)	135 (132, 138)	135 (131, 138)	137 (134, 139)	134 (130, 138)
Potassium (mEq/L)	3.7 (3.3, 4.2)	3.7 (3.2, 4.1)	3.9 (3.5, 4.3)	3.6 (3.2, 4)
Sodium Bicarbonate (mmol/L)	24 (21, 26)	24 (22, 27)	25 (22, 27)	22 (19, 25)
Glucose (mg/dL)	6.56 (5.4, 10)	6.44 (5.39, 8.28)	6.69 (5.67, 10.06)	6.65 (5.2, 12)
Blood Urea Nitrogen (mg/dL)	5 (3.57, 7.9)	4.29 (3.21, 5.71)	5.71 (3.57, 10)	5.4 (3.5, 9.4)
Creatinine (mg/dL)	88.42 (66, 130)	79.58 (53.05, 88.42)	106.1 (70.74, 150.31)	91 (70, 135)
Alkaline Phosphatase (U/L)	86.5 (65, 132)	98.5 (72, 172)	80 (63, 106)	85 (63, 125)
Alanine Transaminase (U/L)	32 (22, 58)	46 (27, 86)	22 (18, 40)	29 (22, 48)
Aspartate Aminotransferase (U/L)	42 (27, 76)	61 (38, 117)	29 (21, 45)	35.5 (25, 65)
Bilirubin (mg/dL)	15 (10.26, 21)	13.68 (10.26, 20.52)	15.39 (10.26, 20.52)	15 (11, 23)

T-1-1 d alimiaal lab .11

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghan Median (IQR)
Albumin (g/dL)	3.0 (2.5, 3.5)	2.9 (2.5, 3.4)	3.0 (2.5, 3.5)	3.0 (2.3, 3.6)
Total protein (g/dL)	73 (65, 79)	74 (68, 79.5)	67 (57, 72)	75 (69, 83)
Lactate (mmol/L)	2.27 (1.66, 3.09)	2.33 (1.79, 3.03)	1.5 (1, 2.4)	2.54 (1.8, 3.42)

3
4
5
6
7
8
0
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
75 16
40 //7
4/ 10
4ð
49 50
50
51
52
53
54
55
56
57

predicting 28-day mortality.	Table S	2. Performan	ce characteris	stics of sepsis	score across	Cambodia and	Ghana sites con	mbined for
	predictin	ig 28-day mo	ortality.					

Score	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Unadjusted Bivariate Cox model C-statistic (95% CI)	Adjusted* Cox model C-statistic (95% CI)	p-value
Baseline						0.60 (0.54 – 0.66)	
MEWS ≥4	0.74 (0.64 - 0.84)	0.50 (0.44.3 – 0.56)	0.28 (0.25 – 0.32)	0.88 (0.84 - 0.92)	0.62 (0.57 – 0.66)	0.66 (0.61 – 0.72)	<0.001
NEWS ≥5	0.85 (0.75- 0.92)	0.46 (0.38- 0.52)	0.33 (0.29- 0.36)	0.91 (0.85 – 0.94)	0.65 (0.62 – 0.70)	0.70 (0.65 – 0.76)	0.001
qSOFA ≥2	0.54 (0.42 - 0.65)	0.84 (0.80 - 0.88)	0.47 (0.39 – 0.55)	0.87 (0.84 – 0.90)	0.67 (0.62 – 0.73)	0.71 (0.66- 0.77)	<0.001
SIRS ≥2	0.88 (0.78 = 0.94)	0.24 (0.19 (0.30)	0.23 (0.21 – 24)	0.89 (0.81 – 0.94)	0.55 (0.51 – 0.59)	0.61 (0.55 – 0.67)	0.066
UVA ≥2	0.75 (0.65 - 0.84)	0.74 (0.70 - 0.80)	0.45 (0.40 - 0.52)	0.92 (0.88 - 0.94)	0.73 (0.68 – 0.77)	0.76 (0.71- 0.81)	<0.001

2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
27	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
47 50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
20	
59	

Table S3.	Performance characteristics of sepsis score	across the United States	site for predicting 28-day
mortality.	_		

Score	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Unadjusted Bivariate Cox model C-statistic (95% CI)	Adjusted* Cox model C-statistic (95% CI)	p-value
Baseline (age +sex)						0.61 (0.52 – 0.66)	
MEWS≥4	0.60 (0.26-0.87)	0.33 (0.26 - 0.41)	0.05 (0.03 - 0.09)	0.92 (0.85 - 0.96)	0.53 (0.38 - 0.67)	0.68 (0.57 – 0.79)	0.743
NEWS≥5	0.90 (0.56 – 0.99)	0.37 (0.29 - 0.45)	0.09 (0.07 - 0.11)	0.98 (0.89-0.99)	0.63 (0.54 - 0.71)	0.71 (0.59-0.84)	0.256
qSOFA ≥2	0.60 (0.26 - 87)	0.72 (0.65 - 0.79)	0.13 (0.08	0.96 (0.93 - 0.98)	0.66 (0.51 – 0.81)	0.71 (0.54 – 0.89)	0.019
SIRS ≥2	0.92 (0.64 - 0.99)	0.11 (0.07 - 0.16)	0.08 (0.07 - 0.09)	0.94 (0.72 - 0.99)	0.51 (0.45 – 0.58)	0.66 (0.54 – 0.82)	0.694
UVA≥2	0.60 (0.26 – 0.88)	0.58 (0.50 - 0.66)	0.09 (0.05 -0.14)	0.95 (0.90 -0.98)	0.59 (0.44 – 0.73)	0.70 (0.50 – 0.87)	0.281

Supplementary Figure S3. Forest plot of hazard ratios from bivariate Cox regression models for risk of death at 28-day for sepsis scores, physiologic parameters, and clinical laboratory parameters.
BMJ Open

Screening tools for predicting mortality of adults with suspected sepsis: an international sepsis cohort validation study

Journal:	BMJ Open			
Manuscript ID	bmjopen-2022-067840.R3			
Article Type:	Original research			
Date Submitted by the Author:	02-Feb-2023			
Complete List of Authors:	Blair, Paul; Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO) Mehta, Rittal; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Oppong, Chris; Komfo Anokye Teaching Hospital, Emergency Medicine Tin, Som; Takeo Provincial Referral Hospital Ko, Emily; Duke University School of Medicine Tsalik, Ephraim ; Duke University School of Medicine Chenoweth, Josh; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Rozo, Michelle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Adams, Nehkonti; Naval Medical Research Center Infectious Diseases Directorate Beckett, Charmagne; Naval Medical Research Center Infectious Diseases Directorate Woods, Christopher; Duke University School of Medicine; Duke Global Health Institute Striegel, Deborah; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Salvador, Mark G; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Salvador, Mark G; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahe, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahle, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahle, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Mahle, Rachael; Duke University School of Medicine Hulsey, William R; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Krishnan, Subramaniam; Henry M Jackson Foundation for the Advancement of Military Medicial Research Unit No 2 Letizia, Andrew; Naval Medical Research Unit No 2 Letizia, Andrew; Naval Medical Research Unit-3 Ghana Detachment Fax, Dennis; US Naval Medical Research Unit-3 Ghana Detachment Fax, Dennis; US Naval Medical Research Unit No			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Duplessis, Chris; Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick Gregory, Michael; Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick Vantha, Te; Takeo Provincial Referral Hospital Owusu-Ofori, Alex Kwame; Komfo Anokye Teaching Hospital Ansong, Daniel; Komfo Anokye Teaching Hospital, Emergency Medicine Oduro, George; Komfo Anokye Teaching Hospital Schully, Kevin; Henry M Jackson Foundation for the Advancement of Military Medicine Inc Clark, Danielle; Henry M Jackson Foundation for the Advancement of Military Medicine Inc
Primary Subject Heading :	Global health
Secondary Subject Heading:	Intensive care, Infectious diseases, Evidence based practice
Keywords:	INFECTIOUS DISEASES, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Epidemiology < INFECTIOUS DISEASES, Tropical medicine < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

BMJ Open

Title: Screening tools for predicting mortality of adults with suspected sepsis: an international sepsis cohort validation study Authors: Paul W. Blair^{1,2*}, Rittal Mehta¹, Chris Oppong³, Tin Som⁴, Emily R. Ko⁵, Ephraim L. Tsalik⁵, Josh Chenoweth¹, Michelle Rozo¹, Nehkonti Adams⁶, Charmagne Beckett⁶, Christopher W. Woods⁵, Deborah A. Striegel¹, Mark Salvador¹, Joost Brandsma¹, Lauren McKean¹, Rachael E. Mahle⁵, William Hulsev¹, Subramaniam Krishnan¹, Michael Prouty⁷, Andrew Letizia⁸, Anne Fox⁸, Dennis Faix⁷, James V. Lawler⁹, Chris Duplessis¹⁰; Michael G Gregory¹⁰, Te Vantha⁴, Alex Owusu-Ofori³, Daniel Ansong³, George Oduro³, Kevin L. Schully^{1,10}, and Danielle V. Clark^{1.} Affiliation: ¹Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America. ²Johns Hopkins University School of Medicine, MD, United States of America. ³Komfo Anokye Teaching Hospital, Kumasi, Ghana. ⁴Takeo Provincial Referral Hospital, Takeo, Cambodia. ⁵Duke University Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. ⁶Naval Medical Research Center Infectious Diseases Directorate, Bethesda, MD. ⁷Naval Medical Research Unit-2, Phnom Penh, Cambodia. 8Naval Medical Research Unit-3 Ghana Detachment, Accra, Ghana. ⁹ Global Center for Health Security at Nebraska and Division of Infectious Disease. Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America. ¹⁰Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense

- Additional Defense
 Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, MD, United States of America
 America
 20
 21
 22
 23
 24
 25
 26
 27
 28
- 26
 27
 27
 28
 29 *Corresponding Author: Paul W. Blair, MD MSPH MHS. Henry M. Jackson Foundation for the
 30 Advancement of Military Medicine. 6720A Rockledge Dr, Bethesda, MD 20817. E-mail:
- 31 <u>pblair6@jhmi.edu</u>

1 ว		
2 3	32	
4 5	33	Abstract:
6 7	31	Word count: 276
8 9	54	word count. 270
10	35	Objectives: We evaluated the performance of commonly used sepsis screening tools across prospective
11	36	sepsis cohorts in the United States, Cambodia, and Ghana.
13 14	37	Design: Prospective cohort studies
15 16	38	Setting and participants: From 2014 to 2021, participants with 2 or more SIRS (Systemic Inflammatory
17 18 10	39	Response Syndrome) criteria and suspected infection were enrolled in emergency departments and
20 21	40	medical wards at hospitals in the Cambodia and Ghana and hospitalized participants with suspected
22 23	41	infection were enrolled in the United States. Cox proportional hazards regression was performed, and
24 25	42	Harrell's C-statistic calculated to determine 28-day mortality prediction performance of the qSOFA score
26 27	43	\geq 2, SIRS score \geq 3, NEWS \geq 5, MEWS \geq 5, or UVA score \geq 2, Screening tools were compared to baseline
28 29	44	risk (age and sex) with the Wald test.
30 31	45	Results: The cohorts included 567 participants (42.9% female) including 187 participants from Kumasi,
32 33	46	Ghana, 200 participants from Takeo, Cambodia, and 180 participants from Durham, North Carolina in the
34 35 26	47	United States. The pooled mortality was 16.4% at 28-days. The mortality prediction accuracy increased
30 37 38	48	from baseline risk with the MEWS (C-statistic: 0.63, 95% CI: 0.58, 0.68; p=0.002), NEWS (C-statistic:
39 40	49	0.68; 95% confidence interval [CI]: 0.64, 0.73; p<0.001), qSOFA (C-statistic: 0.70, 95% CI: 0.64, 0.75;
41 42	50	p<0.001), UVA score (C-statistic: 0.73, 95% CI: 0.69, 0.78; p<0.001), but not with SIRS (0.60; 95% CI:
43 44	51	0.54, 0.65; p=0.13). Within individual cohorts, only the UVA score in Ghana performed better than
45 46	52	baseline risk (C-statistic: 0.77; 95% CI: 0.71, 0.83; p<0.001).
47 48	53	Conclusions: Among the cohorts, MEWS, NEWS, qSOFA, and UVA scores performed better than
49 50	54	baseline risk, largely driven by accuracy improvements in Ghana, while SIRS scores did not improve
51 52	55	prognostication accuracy. Prognostication scores should be validated within the target population prior to
55 55	56	clinical use.
56 57 58	57	Keywords: Analysis, Survival; sepsis; Cohort Studies; Prognosis; Global Health

2 3	58				
4 5 6	59	Strengths and limitations of this study:			
7 8	60	• This study includes two well-characterized sepsis cohorts in low- and middle-income countries			
9 10	61	(LMICs) and a cohort in a high-resource setting for comparison.			
11 12	62	• The performance characteristics of five commonly used sepsis screening tools for predicting 28-			
13 14	63	day death was compared to baseline risk after adjustment for multiple comparisons.			
15 16 17	64	• Diagnostic testing differed at each site and mortality specifically due to sepsis could not be			
18 19	65	determined.			
20 21	66	• Enrolment was by convenience sampling within the referral hospital catchment area and may not			
22 23	67	be representative of the general population within these countries.			
24 25	68	• Sample size limitations in each of the cohorts may have led to decreased ability to identify			
26 27 28 29 30 31 32 33 34	69	differences between each screening tool.			
	70				
	71				
	72	Narrative:			
35 36	73	Word count: 3,883			
37 38	74				
39 40	75	INTRODUCTION			
41 42 43	76	Sepsis, a syndrome resulting from a systemic dysregulated host response to an infection, is estimated to			
44 45	77	cause six million deaths per year but is likely an underestimate due to limited information from low- and			
46 47	78	middle-income countries (LMICs) where 87% of the world population live [1]. Despite declining age-			
48 49	79	standardized incidence and mortality, sepsis remains a major cause of health loss worldwide and has an			
50 51	80	especially high health-related burden in LMICs[2].			
52 53 54 55	81				
56 57 58					
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

Clinical sepsis guidelines developed in the Western world may not be applicable in resource-limited settings and moreover can lead to detrimental effects on sepsis care and management when applied in these conditions due to decreased access to resources to manage iatrogenesis from fluid resuscitation [3, 4]. In contrast to the United States, pathogens that lead to directly lead to vascular injury are common causes of acute febrile illness in Cambodia and Ghana such as dengue virus, malaria, or rickettsia and may alter empiric treatment response [5]. While early recognition and treatment of sepsis is critical, most sepsis scores or early warning systems were derived from cohorts outside of LMICs. Differences in causes of sepsis, available treatments, and available resources for supportive care should affect management strategies but evidence is limited and optimal clinical scores or biomarkers for sepsis identification are unknown in these settings. Multi-site international sepsis studies are essential for evaluating current and future sepsis tools to ensure effectiveness in resource-limited settings and across populations.

The most validated prognostication scores, SOFA (Sequential Organ Failure Assessment) and the APACHE IV, have been developed for prognostication but require an arterial blood gas and multiple laboratory parameters [6, 7] that are not widely available in low-resource settings. The gSOFA (quick SOFA) is an abbreviated score that does not require laboratory parameters. The qSOFA is one of the most widely adopted sepsis screening tools and has largely replaced the SIRS (Systemic Inflammatory Response Syndrome) criteria as the standard abbreviated sepsis screening tool as part of the Sepsis-3 definition to identify septic patients [8]. The qSOFA and other sepsis screening tools (i.e., Modified Early Warning Score [MEWS], National Early Warning Score [NEWS], and Universal Vital Assessment [UVA]) are often used clinically to identify those at risk of sepsis, but these tools have been studied for their ability to prognosticate mortality or poor composite outcomes among hospitalized adults[9-12]. Studies have evaluated these tools for predicting in-hospital mortality but the performance of these tools and the prevalence of 28-day mortality, a common metric of sepsis outcomes, have yet to be described across both high- and low-resource settings using similar methods [9, 13, 14].

Page 7 of 33

BMJ Open

We used prospective multi-site international cohorts that are part of the Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO) consortium to validate commonly used sepsis screening tools [15]. In contrast to APACHE IV and SOFA, these tools can be quickly performed with limited laboratory test results. We hypothesized that qSOFA may perform poorly in LMIC populations compared to the UVA score due to differences in causes of sepsis. We describe the diverse clinical characteristics, the aetiologies of suspected sepsis within these cohorts, and the performance of sepsis screening tools in current clinical use for predicting mortality at one month post enrolment.

116 METHODS

117 From May 2014 to November 2015, 200 participants were enrolled into a prospective observational study 118 of sepsis at Takeo Provincial Hospital in Takeo Province Cambodia [16] (Figure 1). This study was 119 followed by a prospective study at Duke University Hospital in Durham, North Carolina, which enrolled 120 180 participants from December 2014 to March 2016. In Kumasi, Ghana, 187 participants were enrolled at 121 Komfo Anokye Teaching Hospital from July 2016 to October 2017.

Hospitalized patients \geq 18 years of age whose attending physician judged them to have an active infection were considered for inclusion for each of the three cohorts. Additional inclusion and exclusion criteria were required in Cambodia and Ghana but not required in the United States protocol. In Cambodia and Ghana, participants were required to meet least two clinical criteria for systemic inflammatory response syndrome (SIRS) during screening. In Cambodia and Ghana, patients were excluded if they had known malignancy, chronic renal/hepatic insufficiency, immunosuppressive conditions (except HIV) or systemic steroid usage that exceeded 20mg/day to prevent confounding in future biomarker studies. Patients were also excluded in Cambodia and Ghana if they had a history of organ transplant, hemodynamically significant gastrointestinal bleeding, anatomic or functional asplenia, acute cardiovascular disease, general anaesthesia, or surgery in the past week prior to enrolment, women who were pregnant, patients

who had a haemoglobin less than 7 g/dL or weighed less than 35kg. Hospital physicians who deemedtheir patients too ill to participate could defer enrolment.

Study procedures

Following informed consent, study team members conducted a detailed medical history, including prior medications, and physical exam. Responses were recorded on a standardized case report form and included demographics, medical history, physical exam findings, and admission diagnoses. Study specific procedures conducted in Cambodia were described in detail by Rozo et al [17]. Similar enrolment and study procedures were followed in Kumasi, Ghana and in Durham, North Carolina, USA. Blood was collected at the time of enrolment, then at 6 hours later, and at 24 hours later. In Ghana and Cambodia, standardized clinical tests included a peripheral venous blood gas with lactate, complete blood count, complete metabolic panel, optional HIV screening with consent (Alere Determine HIV1/2, Abbott, OK, United States), malaria rapid diagnostic tests (SD Bioline Ag. P.f./Pan, Abbott, OK, United States) and aerobic blood cultures (one aerobic bottle, Bactec 9050, BD, NJ, United States) as part of study procedures in Ghana and Cambodia. Microbiologic results were available if collected through routine clinical care across cohorts. Additional molecular testing and next generation sequencing for pathogens were also performed on blood samples in the Cambodia cohort as previously described [17]. Participants were followed throughout their hospitalization and a record review performed at discharge.

An interview was performed, and blood samples were collected at a 28-day follow-up visit across cohorts.
When patients could not return in person, study team members attempted to conduct an interview with
patients or a legally authorized representative by telephone. Fatal outcomes among each discharged
participant were also determined.

Using clinical data from case report forms and microbiology diagnostic information, clinical adjudication
was performed by three physician reviewers (internal medicine or infectious diseases) to determine the
source of infection by anatomic location and pathogen class (i.e., bacterial, parasitic, viral, or fungal).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	156	This was graded on a low, moderate, and high level of confidence by two independent reviewers and a
5 6	157	third reviewer served as a tiebreaker for discordant conclusions. If the third reviewer did not agree with
7 8	158	either adjudicator, then the decision was determined by committee. Microbiologic results presented
9 10 11	159	include those adjudicated to be clinically relevant to participant's acute illness.
12 13 14	160	Patient and Public Involvement
14 15 16	161	Patients were not involved in recruitment, design, conduct, or dissemination plans of our research. Results
10 17 18	162	of this study were disseminated to hospital and clinical leadership at Takeo Provincial Hospital and
19 20	163	Komfo Anokye Teaching Hospital.
20 21 22	164	
23 24	165	Statistical analysis
25 26	166	Summary statistics were calculated for the cohorts individually and pooled, comparing baseline
27 28	167	demographics (e.g., gender, age, ethnicity, selected medical comorbidities), baseline screening tool
29 30	168	scores, physiologic parameters, baseline clinical laboratory values using either Chi-square (categorical
31 32	169	values), Fishers exact (categorical values), or Kruskal-Wallis (continuous values) tests. Prevalence of
33 34 25	170	diagnoses were described for each cohort by organ system and pathogen type and by anatomic site.
35 36 37	171	
38 39	172	After checking the proportional hazards assumption, Cox regression was performed with bivariate models
40 41	173	to evaluate increased risk of death in each cohort by baseline demographics, comorbid conditions,
42 43	174	physiologic parameters, and clinical laboratory parameters. Physiologic parameters and clinical laboratory
44 45	175	parameters were modelled as dichotomous or ordinal parameters at clinically relevant abnormal range cut
46 47	176	offs (e.g., blood urea nitrogen $\geq 20 \text{mg/dL}$) to explore associations with increased risk of death and for
48 49	177	clinical inference. Screening tools were dichotomized according to current usage, including qSOFA score
50 51	178	\geq 2 (range, 0 [best] to 3 [worst] points), SIRS score \geq 2 (range, 0 [best] to 4 [worst] points), MEWS \geq 5
52 53	179	(range, 0 [best] to 13 [worst] points), NEWS \geq 5 (range, 0 [best] to 20 [worst] points), and UVA \geq 2
54 55 56	180	(range, 0 [best] to 13 [worst])[13] and were evaluated in Cox regression models unadjusted and adjusted
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2

181 for age and sex for risk of death [9]. Glasgow Coma Scale Score (GCS; range, 3 [worst] to 15 [best] 182 points) of less than 15 was used for estimation of the qSOFA score, and a GCS of \leq 3 for 183 unresponsiveness for NEWS, and GCS score 3-15 for the "alert, verbal, pain, unresponsive" scale 184 (AVPU; alert: GCS 13-15, voice: GCS 9-12; pain: GCS 4-8; unresponsiveness: GCS \leq 3) score 185 approximation for MEWS [18, 19]. Data was administratively right censored past 28 days. The Harrell's 186 C-statistic was calculated for each screening tool for each cohort, the cohorts combined, and Cambodia 187 and Ghana cohorts pooled [20]. This statistic is a performance analogous to area under the receiver 188 operating characteristic curve (AUROC) but accounts for differences over time with survival outcomes. 189 C-statistic confidence interval estimates were determined.[21] The Cox regression Wald test p-values 190 were calculated for each score covariate adjusting for baseline risk estimated by age and sex to determine 191 if scores improved model accuracy above baseline risk [9, 22]. Adjustment was limited to age and sex 192 covariates to avoid introducing confounding (e.g., ascertainment bias from past medical history), type I 193 error from multiple comparisons, or overfitting. P-values < 0.002 were considered significant using a 194 Bonferroni correction for multiple comparisons. Cohort sample sizes were determined a priori through 195 Monte Carlo simulation modelling for prognostic biomarker identification. All statistical analyses were 196 performed in SAS (Statistical Analytical Software, version 9.4), R version 4.0.2 [23] or Stata (version 197 15.0; StataCorp LLC, College Station, TX, USA) [24]. 198

¹ 199 RESULTS

200 Summary demographics, sepsis severity, and laboratory findings

201 There were 567 participants across the cohorts including 187 from Kumasi, Ghana, 200 from Takeo,

202 Cambodia, and 180 from Durham, North Carolina, United States (Figure 1). The study population was

predominantly male (57.1% male), with more male participants enrolled in Cambodia than at other sites

204 (68.0% vs 55.0% in the U.S. and 52.4% in Ghana). The overall median age was 50 years (interquartile

range [IQR], 36 to 63), which was similar across cohorts (Table 1). Previously diagnosed comorbid

BMJ Open

206 conditions were most common at the U.S. site including a history of cardiovascular (65.6%; N=118),

207 respiratory (42.2%; N=76), or gastrointestinal (36.7%; N=66) conditions.

Characteristic	Total (n=567)	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi, Ghana (n=187)	p-value**	
Female gender – no. (%)	243 (42.9%)	64 (32.0%)	81 (45.0%)	98 (52.4%)	< 0.001	
Age – years, median (IQR)	50 (36 - 63)	50 (36 - 62)	52.5 (40 – 63)	46 (35 - 63)	0.151	
Medical history* – no. (%)						
Cancer	44 (9.9%)	0 (0.0%)	44 (24.4%)	0 (0.0%)	< 0.001	
Cardiovascular	202 (41.4%)	22 (18.2%)	118 (65.6%)	62 (33.2%)	< 0.001	
Dermatologic	15 (3.1%)	1 (0.8%)	14 (7.8%)	0 (0.0%)	< 0.001	
Endocrine	126 (25.8%)	6 (5.0%)	74 (41.1%)	46 (24.6%)	< 0.001	
Gastrointestinal	76 (15.6%)	4 (3.3%)	66 (36.7%)	6 (3.2%)	< 0.001	
Genitourinary or reproductive	34 (7.0%)	1 (0.8%)	33 (18.3%)	0 (0.0%)	< 0.001	
HIV	26 (4.7%)	12 (6.2%)	8 (4.5%)	6 (3.2%)	0.388	
Neurological	62 (12.7%)	1 (0.8%)	44 (24.4%)	17 (9.1%)	< 0.001	
Other	206 (42.2%)	48 (39.7%)	151 (83.9%)	7 (3.7%)	< 0.001	
Psychiatric	143 (29.3%)	41 (33.9%)	78 (43.3%)	24 (12.8%)	< 0.001	
Renal	41 (8.4%)	0 (0.0%)	41 (22.8%)	0 (0.0%)	< 0.001	
Respiratory	89 (18.2%)	7 (5.8%)	76 (42.2%)	6 (3.2%)	< 0.001	
Rheumatologic	29 (5.9%)	1 (0.8%)	28 (15.6%)	0 (0.0%)	< 0.001	
Surgery	27 (5.5%)	0 (0.0%)	22 (12.2%)	5 (2.7%)	< 0.001	
Baseline scores – no. (%)						
MEWS (≥4)	315 (57.8%)	81 (40.7%)	105 (65.6%)	129 (69.3%)	< 0.001	
NEWS score (≥5)	324 (61.6%)	90 (47.9%)	98 (64.5%)	136 (73.1%)	< 0.001	
qSOFA (≥2)	139 (25.4%)	22 (11.1%)	48 (29.6%)	69 (37.1%)	< 0.001	
SIRS (≥2)	447 (81.8%)	125 (68.3%)	157 (89.2%)	165 (88.2%)	< 0.001	
UVA (≥2)	199 (37.8%)	47 (25.8%)	68 (42.8%)	84 (45.4%)	< 0.001	
Baseline scores (median [IQR])						
MEWS	4 (3-6)	3 (2-5)	1 (0-4)	1 (1-2)	< 0.001	

Table 1. Baseline demographic characteristics stratified by sites.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Characte	ristic	Total (n=567)	Takeo, Cambodia (n=200)	Durham, USA (n=180)	Kumasi, Ghana (n=187)	p-value**	
NEWS		6 (3-8)	4 (2-7)	7 (3-9)	6 (4-8)	< 0.001	
qSOFA		1 (1-2)	1 (0-1)	1 (0-2)	1 (1-2)	< 0.001	
SIRS		2 (2-3)	2 (1-3)	3 (2-3)	3 (2-3)	< 0.001	
UVA		1 (0-3)	1 (0-2)	1 (0-4)	1 (0-4)	< 0.001	
*There were 79 parameters comp test. Not adjuster Clinical physiolo	subjects with pared with ch d for multipl gic and labo	nout comorbid ni-squared test e comparisons ratory value a	lity information t and numeric p s. bnormalities at	in the Camboo arameters com enrolment wer	tha cohort. **Ca pared with Kru e common with	ategorical skal-Wallis median	
respiratory rate a	t 24 (IQR: 20	J to 30), the m	hedian white blo	ood count eleva	ated at 12.05 x	10^{9} cells/L (1	
8.13 to 16.6 x 10	⁹ cells/L), an	d median lact	ate elevated at 2	2.27 mmol/L (I	QR: 1.66 to 3.0	9 mmol/L)	
(Supplementary	Table S1).	At enrolment,	the proportion	of an elevated	qSOFA (≥2) at	baseline was	
highest at the Gh	highest at the Ghana site with 44.4% (N=83) of participants compared to 26.0% (N=52) in Cambodia and						
22.2% (N=40) in	22.2% (N=40) in the United States. The SIRS, MEWS, NEWS, and UVA screening tools were similarly						
higher in the Gha	ina cohort.						
Pathogens detect	ed						
The most commo	The most common positive microbiologic results overall included bacteraemia (N=83), respiratory cultur						
growth (N=19), s	growth (N=19), serum hepatitis B surface antigen (N=15), and malaria rapid diagnostic tests (N=11). A						
minority (121 of	567, 21.3%)	of subjects ha	ad confirmed in	fections with c	omplete adjudi	cator agreem	
using all availabl	e sources of	clinical micro	biologic results	(with the nota	ble addition of	RNA sequen	
of samples from	of samples from Cambodia[17]) including 90 (15.9%) bacterial, 17 viral (3.0%), 20 malarial (3.5%), and						
2 (0.3%) fungal i	nfections ide	entified across	all cohorts (Su	pplementary	Figure S1). The	ese infection	
classes were diffe	erent among	sites (chi-squa	ared test p<0.00)1).			

1 2		
3 4	225	In Cambodia, the most common bacterial infections with complete adjudicator agreement were B.
5 6	226	pseudomallei (N=10, with blood or respiratory culture growth), presumptive M. tuberculosis (N=5, with
7 8	227	acid fast positive smears), polymicrobial (N=5), and O. tsutsugamushi (N=4, determined by sequencing).
9 10	228	The most common causes of bacteraemia (17 total of 200 participants) were <i>B. pseudomallei</i> (N=8), <i>E.</i>
11 12	229	coli (N=3), and polymicrobial infections (N=3). Three participants had a positive malaria RDT. Fungal
13 14	230	infections were uncommon with 1 participant with non-albicans Candidemia and 1 with cryptococcal
15 16	231	meningitis. Two individuals had dengue fever (one PCR positive and one adjudicated IgM positive).
17 18	232	
19 20 21	233	In Ghana, the most common causes of bacteraemia (culture growth from 28 of 187 participants) were E.
21 22 23	234	coli (N=6), S. aureus (N=6), Salmonella spp. (N=5), and S. pneumoniae (N=3). Nine participants had a
23 24 25	235	positive malaria RDT and 15 had a positive hepatitis B surface antigen.
26 27	236	
28 29	237	In the United States, the most common causes of bacteraemia (culture growth from 19 of 180
30 31	238	participants) were E.coli (N=5), K. pneumoniae (N=3), polymicrobial (N=2), Pseudomonas spp. (N=2),
32 33	239	or S. aureus (N=2). Viral infections detected by PCR included rhinovirus (N=5), influenza A (N=4),
34 35	240	respiratory syncytial virus (N=4), human immunodeficiency virus (N=3), and human metapneumovirus
36 37	241	(N=3). There was one participant with Aspergillus fumigatus fungal pneumonia.
30 39 40	242	
40 41 42	243	Diagnoses and Treatments
43 44	244	Across cohorts, the most common organ system sites of infection were lower respiratory tract infection
45 46	245	(28.7%; N=163), multifocal or generalized source of infection (including malaria) (13.6%; N=77), and
47 48	246	gastrointestinal (including hepatic) (12.7%; N=72) (Figure S1a). The most common antibiotics
49 50	247	administered in United States, Ghana, and Cambodia were beta-lactam antibiotics (Supplementary
51 52	248	Figure S2), but antibiotic regimens varied widely among sites. The most common antibiotics classes used
53 54	249	were other antibacterials (e.g., glycopeptide antibiotics, 58.9%), beta-lactam antibacterials, penicillins
55 56 57 58	250	(51.7%), and cephalosporin and carbapenem antibacterials (44.4%) in the United States, cephalosporins
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1

251 and carbapenems (64.2%), macrolides, lincosamides and streptogramins (37.4%), and other antibacterials 252 (33.7%) in Ghana, and cephalosporins and carbapenems (73.0%), beta-lactam antibacterials, penicillins 253 (46.5%) and aminoglycoside antibacterials (39.0%) in Cambodia. 254 255 Survival 256 Among all cohorts, 16.4% (N=93) of participants had died at one month, including 58 (31.0%) in Ghana, 257 22 (11.0%) in Cambodia, and 13 (7.2%) in the U.S (Figure 1). Among those that died within one month, 258 median time to death was 4 days (IQR: 1 to 11) in Ghana, 7 days (IQR: 3 to 16) in Cambodia, 10 (IQR: 5 259 to 19) in the U.S., and 5 days (IQR: 2 to 13) overall. Parameters to calculate the qSOFA score and 28-day 260 mortality were available for 96.4% participants. Hypernatremia (>145 mEq/L) had the highest unadjusted 261 risk of death (hazard ratio 6.89, 95% CI: 3.43, 13.85) among parameters tested in bivariate models 262 (Supplementary Figure S3). All screening tools were associated with an increased risk of death (Figure 263 2) with the largest increase among those with an elevated UVA score (Supplementary Figure S3). For 264 individuals with a UVA ≥ 2 there was a 5.45 times increased risk of death (95% CI: 3.39 to 8.76; C-265 statistic: 0.70) and those with a gSOFA \geq 2 had a 4.11 times increased risk of death (95% CI: 2.71 to 6.22; 266 C-statistic: 0.66). Those with an elevated SIRS had a 1.81 times increased risk of death (95% CI: 0.94 to 267 3.50; C-statistic:0.53). Elevated NEWS (HR: 4.03; 95% CI: 2.24 to 7.26; C-statistic: 0.66) and MEWS 268 (HR: 2.03; 95% CI: 1.28 to 3.23; C-statistic: 0.53) had similarly increased risks (Figure 3). 269 270 Accuracy in an adjusted Cox model was highest for UVA (0.73; 95% CI 0.68-0.78) followed by qSOFA 271 (C-statistic: 0.70; 95% CI: 0.64 to 0.75) (Table 2). The sensitivity for predicting death was highest with 272 SIRS (89%; 95% CI: 80 to 94%) but specificity was lowest (19%; 95% CI: 16 to 26%). The UVA score 273 had a sensitivity of 74% and specificity of 70%. The gSOFA score had the lowest sensitivity (54%; 95% 274 CI: 44 to 65%) but highest specificity (80%; 95% CI: 76 to 84%). We observed that the qSOFA 275 discrimination for mortality was moderate with a C-statistic of 0.70 adjusting for age and sex (Figure 3). 276 There was similar qSOFA accuracy in individual cohorts from the United States (C-statistic 0.71; 95%

BMJ Open

277	CI: 0.54 to 0.89), Cambodia (C-statistic: 0.68; 95% CI: 0.59 to 0.77), or Ghana (C-statistic: 0.72; 95% CI:
278	0.64 to 0.79) (Figure 3). Similarly, the UVA score had moderate accuracy with a C-statistics on 0.73
279	(95% CI: 0.68 to 0.78). Other screening scores had similar moderate C-statistic values. The SIRS C-
280	statistic was 0.60 (95% CI: 0.54 to 0.65). Among participants with a NEWS score of \geq 5 (62% of the
281	pooled cohort), the C-statistic was 0.68 (95% CI: 0.64 to 0.73) and among those with a MEWS score of
282	\geq 4 (58% of the pooled cohort), the C-statistic was 0.63 (95% CI: 0.58 to 0.68) for death. The qSOFA and
283	UVA scores were significantly greater than baseline risk in Ghana in contrast to other scores or cohorts
284	(Table 3). The qSOFA score increased prognostication accuracy in the United States cohort with a p=0.02
285	but this was not significant after correcting for multiple comparisons. In Cambodia, while not significant Table 2 , Performance characteristics of sensis score across cohorts for predicting 28-day mortality

Score	Sensitivity	Specificity	PPV	NPV	Unadjusted	Adjusted*	p-value
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	Bivariate	Cox	(Wald
					Cox model	model	test)
					C-statistic	C-statistic	
					(95% CI)	(95% CI)	
Age and	-	_	_	_	—	0.59	
sex						(0.53,0.64)	
MEWS≥4*	0.73 (0.63,	0.45 (0.40,	0.21 (0.16,	0.89 (0.85,	0.59 (0.54,	0.63	0.002**
	0.82)	0.49)	0.26)	0.93)	0.63)	(0.58,0.68)	
NEWS≥5*	0.86	0.43	0.25	0.93 (0.89,	0.65 (0.64,	0.68	<0.001**
	(0.77,0.93)	(0.38,0.48)	(0.23,0.28)	0.95)	0.67)	(0.64,0.73)	
qSOFA	0.54 (0.44,	0.80 (0.76,	0.35 (0.27,	0.90 (0.87,	0.66 (0.61,	0.70	<0.001**
$\geq 2^*$	0.65)	0.84)	0.44)	0.93)	0.71)	(0.64,0.75)	
SIRS ≥2*	0.89 (0.80,	0.19 (0.16,	0.17 (0.14,	0.90 (0.82,	0.53 (0.50,	0.60	0.134
	0.94)	0.23)	0.21)	0.95)	0.57)	(0.54,0.65)	
UVA≥2*	0.74	0.70 (0.65,	0.33 (0.27,	0.93	0.70 (0.65,	0.73	<0.001**
	(0.64,	0.74)	0.40)	(0.90,0.95)	0.74)	(0.68,0.78)	
	0.83)						

*Adjusted Cox model C-statistic is adjusted for age and gender. Note: p-value are from Wald test of the adjusted Cox regression model. **Significant at p<0.002

after correction, NEWS (p=0.01) and UVA (p=0.01) scores increased accuracy greater than baseline risk.

287 When pooling LMIC cohorts (i.e., Ghana and Cambodia), after adjustment for age and sex, the qSOFA

288 (C-statistic: 0.71; 95% CI: 0.66 to 0.77) and UVA scores (C-statistic: 0.76; 95% CI: 0.71 to 0.81) had

Table 3. Performance characteristics of sepsis score across cohorts for predicting 28-day mortality stratified by site.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ModelTakeo, CambodiaDurham, USAKumasi, GhanaC-statistic (95% p-valueC-statistic (95% p-valueC-statisticp-valueCI)CI)(95% CI)										
Age and Sex	0.68 (0.59, 0.78)	_	0.68 (0.54,0.81)	_	0.57 (0.49, 0.64)	_				
MEWS	0.68 (0.59, 0.78)	0.2102	0.68 (0.57, 0.79)	0.4991	0.63 (0.56, 0.70)	0.0097				
NEWS	0.73 (0.63, 0.83)	0.0106	0.71 (0.59, 0.84)	0.2557	0.64 (0.57, 0.70)	0.0022				
qSOFA	0.68 (0.59, 0.77)	0.5101	0.71 (0.54, 0.89)	0.0365	0.72 (0.64, 0.79)	<0.001*				
SIRS	0.69 (0.60, 0.78)	0.5020	0.69 (0.55, 0.83)	0.5831	0.58 (0.51, 0.65)	0.1882				
UVA	0.71 (0.60, 0.83)	0.0109	0.70 (0.55, 0.85)	0.4753	0.77 (0.71,0.83)	<0.001*				
Note: p-value are from Wald test of the adjusted Cox regression model. Each model is adjusted for age and sex. *Significant at p<0.002 higher accuracy compared with MEWS (C-statistic: 0.66 (95% CI 0.61 to 0.72), NEWS (C-statistic: 0.70										

(95% CI: 0.65 to 0.76), and SIRS (C-statistic: 0.61; 95% CI: 0.55 to 0.67) (Supplementary Table S2). In

02.0

contrast, in the United States cohort, NEWS, MEWS, SIRS, qSOFA, and UVA scores after age and sex

adjustment each had similar accuracy with C-statistics ranging from 0.66 to 0.71 (Table 3 and

Supplementary Table S3).

DISCUSSION

In pooled prospective international cohorts in Cambodia, Ghana, and the United States, the UVA score

and Sepsis-3 (qSOFA) performed well with a C-statistic around 0.7 for predicting 28-day mortality.

However, this improvement was largely identified in the cohort in Ghana and the accuracy was no

different than baseline risk in the Cambodia cohort. There was a trend towards improving prognostication

accuracy with the NEWS and UVA score in Cambodia and only with the qSOFA score in the United

States. These results suggest that widely used sepsis screening tools may have varying performance for

prognostication in diverse settings with different treatment regimens and aetiologies of sepsis. Therefore,

screening tools should be selected after validation within populations prior to widespread adoption.

Page 17 of 33

1

BMJ Open

2
3
4
5
6
7
/
8
9
10
11
12
13
1.0
14
15
16
17
18
19
20
 21
∠ı 22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
38
39
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
53
55
54 55
55
56
57
58
59
60

305 High sodium (hypernatremia) was associated with the highest risk of 28-day death among individual 306 clinical parameters. Hypernatremia during critical illness has been previously associated with mortality in 307 large observational studies from high resource settings [25, 26]. Hypernatremia can occur in sepsis due to 308 intravascular fluid loss due to breakdown of vascular cell junctions, insensible fluid losses, or dehydration 309 from the disease process [27]. There can also be an iatrogenic contribution from diuretics, sodium from 310 intravenous fluids, or with inadequate fluid resuscitation. Ultimately, there is not data available to 311 precisely determine the causes of hypernatremia among the participants in our cohorts. However, our 312 results highlight the universal risk of death among those with hypernatremia among those with sepsis and 313 emphasize the need for close management of fluid and electrolytes across critical care settings. 314

315 Current sepsis screening tools have had variable performance when applied for prognostication. SOFA or 316 APACHE scores have been developed specifically for prognostication but required parameters including 317 arterial blood oxygen saturation are often not available [9]. Performance of qSOFA and SIRS for 318 mortality have performed poorly (SIRS, area under the receiving operator curve [AUROC], 0.61; qSOFA: 319 AUROC, 0.61) for prognostication in high-resource settings intensive care unit (ICU) settings [14] and in 320 diverse LMICs (adjusted SIRS: AUROC, 0.59; adjusted qSOFA: AUROC, 0.70) [9] in prior studies for 321 mortality prognostication. While qSOFA is generally more specific than other screening tools, it is less 322 sensitive than SIRS, MEWS, and NEWS, which is consistent with our data[28]. When applied to sepsis 323 identification, Surviving Sepsis 2021 guidelines recommend against solely using qSOFA, [29] due to 324 being a more specific rather than sensitive screening test. Additionally, qSOFA has been found to be 325 inferior to MEWS, and NEWS but more accurate and specific than SIRS for predicting in-hospital 326 mortality and ICU transfer in a large retrospective cohort of over 30 thousand patients in the United States 327 (NEWS: AUROC, 0.77; MEWS: AUROC, 0.73; qSOFA: AUROC, 0.69; SIRS: AUROC, 0.65) [28]. 328 Different screening scores have been evaluated in prospective cohorts in sub-Saharan Africa (SSA) 329 previously in Tanzania (qSOFA: AUROC, 0.57; MEWS: AUROC, 0.49) [30] and Rwanda [31] (MEWS: 330 AUROC, 0.69; UVA: AUROC, 0.71; qSOFA: AUROC, 0.65) and in Gabon [32] (UVA: AUROC, 0.90;

gSOFA: AUROC, 0.77; MEWS: AUROC, 0.72; SIRS: AUROC, 0.70). Given the performance variability

that has been previously observed and was observed in this study, it is prudent to evaluate prediction scores within the populations they serve prior to widespread promotion. The UVA score performed better than baseline risk in the Ghana cohort. Our results externally validated the UVA score for use prognostication of hospitalized patients with suspected sepsis in Kumasi, Ghana and potentially in the region when demographics are similar. The superiority of the UVA score in the Ghana cohort could be related to similarities in infectious causes of illness with other countries in SSA populations from which the UVA score was derived[12]. In contrast to the score derivation study[12], UVA score performed similarly to qSOFA in Ghana. The accuracy of the UVA scores was not greater than baseline risk in the cohort in Cambodia after adjustment for multiple comparisons. While conclusions may be limited by sample size, sepsis scores derived from the regions of the world with more similar infectious aetiologies may perform better. Our results highlight the importance of validating scores in new patient populations prior to widespread use. This study had multiple limitations. First, exclusion criteria of immunocompromising conditions except HIV may have led to a skewed populations from Ghana and Cambodia. These exclusion criteria were created to decrease the effect of comorbid conditions or medications on immune biomarkers. However, in Cambodia and Ghana, immunosuppressive medications or diagnoses of chronic liver or kidney disease may be less common in the general population due to limited access to specialists or specialized medications. Additionally, while there were differences in the baseline severity between cohorts, study processes including inclusion criteria were largely standardized across sites improving the comparability of the cohorts in diverse settings and baseline risk was adjusted in models using age and sex. Diagnostic testing differed at each site and mortality specifically due to sepsis could not be determined. Enrolment was by convenience sampling within the referral hospital catchment area and may not be representative of the general population within these countries. Approximation of the mental status for the MEWS scoring

1 2		
2 3 4	357	using GCS may not be generalizable to the use of GCS at other sites. However, similar MEWS and
5 6 7 8 9 10	358	NEWS performance was observed across sites. Lastly, due to the limited sample size in each of the
	359	cohorts, smaller improvements in accuracy may not have been identified in the Cambodia and United
	360	States cohorts that had less deaths compared to the Ghana cohort.
11 12	361	
13 14	362	Inexpensive and readily available tools are needed for triage in resource-limited areas in the world to help
15 16	363	identify patients that need escalation and possible transfer to higher levels of care. Current widely used
17 18 10	364	sepsis screening tools represent a clinical benchmark for the development of future triage tools. Research
19 20 21	365	is ongoing to assess point-of-care diagnostics within our sepsis cohort research network. Assays with
22 23	366	portable and low-cost inflammation biomarkers tests, molecular diagnostics, or point-of-care ultrasound
23 24 25 26 27 28 29 30 31 32 33 34 35 26	367	(POCUS) have the potential to augment the performance of clinical screening tools towards a more
	368	personalized approach to sepsis recognition and triage.
	369	
	370	CONCLUSION
	371	Sepsis screening tools that are widely used during clinical care had sub-optimal performance for risk
	372	stratification in three international cohorts with increased performance of the UVA and qSOFA scores in
36 37 28	373	Ghana compared to baseline risk. There remains a need for reliable, low-cost, and scalable
 39 40 41 42 43 44 45 46 47 48 49 50 51 	374	prognostication methods that are validated in diverse settings.
	375	
	376	Funding: Defense Threat Reduction Agency (JSTO-CBA) to Naval Medical Research Center (NMRC)
	377	(HDTRA1516108), Defense Health Bureau of Medicine & Surgery to NMRC for Combating Antibiotic
	378	Resistance Bacteria (FY1819 0130.1832), Naval Medical Logistics Command Cooperative Agreement
	379	(N626451920001).
51 52 53	380	
55 55		
55 56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

381 Conflicts of Interest: ELT has held equity and consulted for Predigen and Biomeme, and he is an employee
 382 of Danaher Diagnostics. All other authors declared no competing interests.

Ethics approval: Study protocols were approved by the Naval Medical Research Center (NMRC) Institutional Review Board (IRB) (Cambodia sepsis study # NMRC.2013.0019; Ghana sepsis study # NMRC.2016.0004-GHA; Duke sepsis study Duke#PRO00054849) in compliance with all applicable Federal regulations governing the protection of human subjects as well as host country IRBs. The study protocol in Cambodia was approved by the Cambodian National Ethics Committee for Health Research (NECHR). The protocol in Ghana was approved by the Committee on Human Research, Publication and Ethics (CHRPE) at Kwame Nkrumah University of Science & Technology. All procedures were in accordance with the ethical standards of the Helsinki Declaration of the World Medical Association. All patients, or their legally authorized representatives, provided written informed consent.

Disclaimer: K.L.S. is an employee of the US government, and C.B, N.A., C.D., M.P., and A.L. are military service members. This work was prepared as a part of official duties. Title 17 U.S.C. 105 provides that 'Copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. 101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of a person's official duties. The views expressed reflect the results of research conducted by the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the United States Government.

402 Contributorship Statement: PWB, RM, JB, LM, DAS, REM performed data curation and analyses. PWB,
403 KLS, and DVC developed the manuscript concept. DVC and KLS provided resources for research
404 development. AL, KLS, CO, JC, TS, ERK, ELT, CB, CWW, AF, AL, DF, JVL, MP, MR, NA, CD, MGG,

Page 21 of 33

1 2			
3 4	405	TV, A	O, DA, and GO were involved in protocol development and data generation. LM, MS, WH, SK, were
5 6	406	involve	ed in research operations. AL, KLS, CWW, DF, ELT, CB, DVC, and PWB were involved in
7 8	407	manus	cript revisions. All authors reviewed and approved of this manuscript.
9 10 11	408		
12 13	409	Data s	sharing statement: De-identified data may be made available upon reasonable request to the
14 15 16	410	corresp	bonding author.
17 18 10	411		
20	412	Refere	ences
21 22 23	413	1.	Reinhart, K., et al., Recognizing Sepsis as a Global Health Priority - A WHO Resolution. N Engl
24	414		J Med, 2017. 377 (5): p. 414-417.
25 26 27	415	2.	Rudd, K.E., et al., Global, regional, and national sepsis incidence and mortality, 1990-2017:
28	416		analysis for the Global Burden of Disease Study. Lancet, 2020. 395(10219): p. 200-211.
30 31	417	3.	Maitland, K., et al., Mortality after fluid bolus in African children with severe infection. N Engl J
32 33	418		Med, 2011. 364 (26): p. 2483-95.
34 35	419	4.	Andrews, B., et al., Effect of an Early Resuscitation Protocol on In-hospital Mortality Among
36 37 29	420		Adults With Sepsis and Hypotension: A Randomized Clinical Trial. Jama, 2017. 318(13): p. 1233-
38 39	421		1240.
40 41 42	422	5.	WHO, in Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition.
43	423		2009: Geneva.
44 45 46	424	6.	Singer, M., et al., The Third International Consensus Definitions for Sepsis and Septic Shock
47 48	425		(Sepsis-3). JAMA, 2016. 315(8): p. 801-810.
49 50	426	7.	Zimmerman, J.E., et al., Acute Physiology and Chronic Health Evaluation (APACHE) IV:
51 52	427		hospital mortality assessment for today's critically ill patients. Crit Care Med, 2006. 34(5): p.
53 54 55 56 57 58	428		1297-310.
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	429	8.	Singer, M., et al., The Third International Consensus Definitions for Sepsis and Septic Shock
5 6 7 8 9 10 11 12 13 14	430		(Sepsis-3). Jama, 2016. 315(8): p. 801-10.
	431	9.	Rudd, K.E., et al., Association of the Quick Sequential (Sepsis-Related) Organ Failure
	432		Assessment (qSOFA) Score With Excess Hospital Mortality in Adults With Suspected Infection in
	433		Low- and Middle-Income Countries. Jama, 2018. 319(21): p. 2202-2211.
	434	10.	Subbe, C.P., et al., Validation of a modified Early Warning Score in medical admissions. Qjm,
15 16	435		2001. 94 (10): p. 521-6.
17 18	436	11.	Smith, G.B., et al., The ability of the National Early Warning Score (NEWS) to discriminate
19 20 21	437		patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death.
21 22 23	438		Resuscitation, 2013. 84(4): p. 465-70.
23 24 25	439	12.	Moore, C.C., et al., Derivation and validation of a universal vital assessment (UVA) score: a tool
26 27 28 29 30 31 32 33 34 35	440		for predicting mortality in adult hospitalised patients in sub-Saharan Africa. BMJ Glob Health,
	441		2017. 2 (2): p. e000344.
	442	13.	Adegbite, B.R., et al., A comparison of different scores for diagnosis and mortality prediction of
	443		adults with sepsis in Low-and-Middle-Income Countries: a systematic review and meta-analysis.
	444		EClinicalMedicine, 2021. 42 : p. 101184.
36 37	445	14.	Raith, E.P., et al., Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for
38 39 40	446		In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care
40 41 42	447		Unit. Jama, 2017. 317(3): p. 290-300.
43 44	448	15.	Krishnan, S., et al., Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO).
44 45 46	449		Shock, 2020. 53 (3): p. 377-378.
47 48	450	16.	Schully, K.L., et al., Melioidosis in lower provincial Cambodia: A case series from a prospective
49 50	451		study of sepsis in Takeo Province. PLoS Negl Trop Dis, 2017. 11(9): p. e0005923.
51 52	452	17.	Rozo, M., et al., An Observational Study of Sepsis in Takeo Province Cambodia: An in-depth
53 54	453		examination of pathogens causing severe infections. PLoS Negl Trop Dis, 2020. 14(8): p.
55 56	454		e0008381.
57 58			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	455	18.	Kelly, C.A., A. Upex, and D.N. Bateman, Comparison of consciousness level assessment in the
5 6	456		poisoned patient using the alert/verbal/painful/unresponsive scale and the Glasgow Coma Scale.
7 8	457		Ann Emerg Med, 2004. 44(2): p. 108-13.
9 10	458	19.	Nedea, D. AVPU Scale. 18 January, 2022]; Available from: https://www.mdapp.co/avpu-scale-
11 12	459		calculator-163/.
13 14	460	20.	Harrell, F.E., Jr, et al., Evaluating the Yield of Medical Tests. JAMA, 1982. 247(18): p. 2543-
15 16 17	461		2546.
17 18 10	462	21.	Han, X., Y. Zhang, and Y. Shao, On comparing 2 correlated C indices with censored survival
20 21	463		<i>data</i> . Stat Med, 2017. 36 (25): p. 4041-4049.
22 23	464	22.	Pepe, M.S., et al., <i>Testing for improvement in prediction model performance</i> . Stat Med, 2013.
24 25	465		32 (9): p. 1467-82.
26 27	466	23.	Team, T.R.D.C., R: A language environment for statistical computing. R Foundation for
28 29 30 31 32 33	467		Statistical Computing. 2020.
	468	24.	StataCorp, L., Stata statistical software: release 16 College Station. TX StataCorp LP, 2019.
	469	25.	Castello, L.M., et al., Hypernatremia and moderate-to-severe hyponatremia are independent
34 35	470		predictors of mortality in septic patients at emergency department presentation: A sub-group
36 37 38	471		analysis of the need-speed trial. Eur J Intern Med, 2021. 83: p. 21-27.
30 39 40	472	26.	Olsen, M.H., et al., Association Between ICU-Acquired Hypernatremia and In-Hospital
41 42	473		Mortality: Data From the Medical Information Mart for Intensive Care III and the Electronic
43 44	474		ICU Collaborative Research Database. Crit Care Explor, 2020. 2(12): p. e0304.
45 46	475	27.	Lindner, G. and G.C. Funk, Hypernatremia in critically ill patients. J Crit Care, 2013. 28(2): p.
47 48	476		216.e11-20.
49 50	477	28.	Churpek, M.M., et al., Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory
51 52	478		Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected
53 54	479		Patients outside the Intensive Care Unit. Am J Respir Crit Care Med, 2017. 195(7): p. 906-911.
55 56			
57 58 50			
60 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2			
3 4	480	29.	Evans, L., et al., Surviving sepsis campaign: international guidelines for management of sepsis
5 6	481		and septic shock 2021. Intensive care medicine, 2021. 47(11): p. 1181-1247.
7 8	482	30.	Carugati, M., et al., Predicting Mortality for Adolescent and Adult Patients with Fever in
9 10	483		Resource-Limited Settings. Am J Trop Med Hyg, 2018. 99(5): p. 1246-1254.
11 12	484	31.	Klinger, A., et al., Predicting mortality in adults with suspected infection in a Rwandan hospital:
13 14	485		an evaluation of the adapted MEWS, qSOFA and UVA scores. BMJ Open, 2021. 11(2): p.
15 16	486		e040361.
17 18	487	32.	Schmedding, M., et al., A Prospective Comparison of Quick Sequential Organ Failure
19 20 21	488		Assessment, Systemic Inflammatory Response Syndrome Criteria, Universal Vital Assessment,
21 22 23	489		and Modified Early Warning Score to Predict Mortality in Patients with Suspected Infection in
23 24 25	490		Gabon. Am J Trop Med Hyg, 2019. 100(1): p. 202-208.
26 27	491		
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55 56 7 58 59			

1 2 3	492	Figure Legends
4 5 6 7	493 494 495 496	Figure 1. Enrolment flow diagram across cohorts. Figure 2. Kaplan-Meier survival plot of 28-day mortality stratified by site. Figure 3. The C-statistic by score overall and by cohort (adjusted for age and sex).
8 9 10	497	
10 11 12		
12 13 14		
15 16		
17 18		
19 20		
21 22		
23 24 25		
25 26 27		
28 29		
30 31		
32 33		
34 35		
36 37 38		
39 40		
41 42		
43 44		
45 46		
47 48 40		
49 50 51		
52 53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2. Kaplan-Meier survival plot of 28-day mortality stratified by site.

387x258mm (236 x 236 DPI)

165x96mm (800 x 800 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghana Median (IQR)
Physiologic parameters				
Respiratory rate (breaths per minute)	24 (20, 30)	24 (20, 28)	24 (20, 31)	26 (22, 30)
Systolic blood pressure (mmHg)	120 (100, 130)	110 (100, 130)	113 (96, 129)	127.5 (110, 140)
Diastolic blood pressure (mmHg)	70 (60, 80)	70 (70, 80)	64 (56, 75)	80 (60, 90)
Oxygen saturation (%)	97 (94, 98)	98 (96, 98)	95 (92, 97.5)	97 (95, 98)
Temperature (°C)	37.9 (37, 38.7)	37.5 (37, 38.5)	38.1 (36.9, 38.89)	38.2 (37.4, 38.8
Heart rate (beats per minute)	105 (94, 118)	96 (86.5, 105.5)	111 (99.5, 124)	111 (99, 118)
Clinical laboratory parameters				
White blood cells (x10 ⁹ cells/L)	12.05 (8.13, 16.6)	11.9 (8.2, 16.6)	13.35 (9.7, 17.6)	10.76 (7.68, 15.41)
Platelets (x10 ⁹ cells/L)	222 (152.5, 321.5)	262 (169, 366)	236.5 (160, 291)	193 (137, 284)
Sodium (mEq/L)	135 (132, 138)	135 (131, 138)	137 (134, 139)	134 (130, 138)
Potassium (mEq/L)	3.7 (3.3, 4.2)	3.7 (3.2, 4.1)	3.9 (3.5, 4.3)	3.6 (3.2, 4)
Sodium Bicarbonate (mmol/L)	24 (21, 26)	24 (22, 27)	25 (22, 27)	22 (19, 25)
Glucose (mg/dL)	6.56 (5.4, 10)	6.44 (5.39, 8.28)	6.69 (5.67, 10.06)	6.65 (5.2, 12)
Blood Urea Nitrogen (mg/dL)	5 (3.57, 7.9)	4.29 (3.21, 5.71)	5.71 (3.57, 10)	5.4 (3.5, 9.4)
Creatinine (mg/dL)	88.42 (66, 130)	79.58 (53.05, 88.42)	106.1 (70.74, 150.31)	91 (70, 135)
Alkaline Phosphatase (U/L)	86.5 (65, 132)	98.5 (72, 172)	80 (63, 106)	85 (63, 125)
Alanine Transaminase (U/L)	32 (22, 58)	46 (27, 86)	22 (18, 40)	29 (22, 48)
Aspartate Aminotransferase (U/L)	42 (27, 76)	61 (38, 117)	29 (21, 45)	35.5 (25, 65)
Bilirubin (mg/dL)	15 (10.26, 21)	13.68 (10.26, 20.52)	15.39 (10.26, 20.52)	15 (11, 23)

T-1-1 d alimiaal lab .11

Parameter	Total Median (IQR)	Takeo, Cambodia Median (IQR)	Durham, USA Median (IQR)	Kumasi, Ghan Median (IQR)
Albumin (g/dL)	3.0 (2.5, 3.5)	2.9 (2.5, 3.4)	3.0 (2.5, 3.5)	3.0 (2.3, 3.6)
Total protein (g/dL)	73 (65, 79)	74 (68, 79.5)	67 (57, 72)	75 (69, 83)
Lactate (mmol/L)	2.27 (1.66, 3.09)	2.33 (1.79, 3.03)	1.5 (1, 2.4)	2.54 (1.8, 3.42)

3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
75 16
40 //7
4/ 10
4ð
49 50
50
51
52
53
54
55
56
57

predicting 28-day mortality.	Table S	2. Performa	nce charac	teristics	of sepsis	score across	Cambodia	and G	hana sites cor	nbined for
	predictin	ig 28-day m	ortality.							

Score	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Unadjusted Bivariate Cox model C-statistic (95% CI)	Adjusted* Cox model C-statistic (95% CI)	p-value
Baseline						0.60 (0.54 – 0.66)	
MEWS ≥4	0.74 (0.64 - 0.84)	0.50 (0.44.3 – 0.56)	0.28 (0.25 – 0.32)	0.88 (0.84 - 0.92)	0.62 (0.57 – 0.66)	0.66 (0.61 – 0.72)	<0.001
NEWS ≥5	0.85 (0.75- 0.92)	0.46 (0.38- 0.52)	0.33 (0.29- 0.36)	0.91 (0.85 – 0.94)	0.65 (0.62 – 0.70)	0.70 (0.65 – 0.76)	0.001
qSOFA ≥2	0.54 (0.42 - 0.65)	0.84 (0.80 - 0.88)	0.47 (0.39 – 0.55)	0.87 (0.84 – 0.90)	0.67 (0.62 – 0.73)	0.71 (0.66- 0.77)	<0.001
SIRS ≥2	0.88 (0.78 = 0.94)	0.24 (0.19 (0.30)	0.23 (0.21 – 24)	0.89 (0.81 – 0.94)	0.55 (0.51 – 0.59)	0.61 (0.55 – 0.67)	0.066
UVA ≥2	0.75 (0.65 - 0.84)	0.74 (0.70 - 0.80)	0.45 (0.40 - 0.52)	0.92 (0.88 - 0.94)	0.73 (0.68 – 0.77)	0.76 (0.71- 0.81)	<0.001

2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
27	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
47 50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
20	
59	

Table S3.	Performance characteristics of sepsis score	across the United States	site for predicting 28-day
mortality.	_		

Score	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Unadjusted Bivariate Cox model C-statistic (95% CI)	Adjusted* Cox model C-statistic (95% CI)	p-value
Baseline (age +sex)						0.61 (0.52 – 0.66)	
MEWS≥4	0.60 (0.26-0.87)	0.33 (0.26 - 0.41)	0.05 (0.03 - 0.09)	0.92 (0.85 - 0.96)	0.53 (0.38 - 0.67)	0.68 (0.57 – 0.79)	0.743
NEWS≥5	0.90 (0.56 – 0.99)	0.37 (0.29 - 0.45)	0.09 (0.07 - 0.11)	0.98 (0.89-0.99)	0.63 (0.54 - 0.71)	0.71 (0.59-0.84)	0.256
qSOFA ≥2	0.60 (0.26 - 87)	0.72 (0.65 - 0.79)	0.13 (0.08	0.96 (0.93 - 0.98)	0.66 (0.51 – 0.81)	0.71 (0.54 – 0.89)	0.019
SIRS ≥2	0.92 (0.64 - 0.99)	0.11 (0.07 - 0.16)	0.08 (0.07 - 0.09)	0.94 (0.72 - 0.99)	0.51 (0.45 – 0.58)	0.66 (0.54 – 0.82)	0.694
UVA≥2	0.60 (0.26 – 0.88)	0.58 (0.50 - 0.66)	0.09 (0.05 -0.14)	0.95 (0.90 -0.98)	0.59 (0.44 – 0.73)	0.70 (0.50 – 0.87)	0.281

Supplementary Figure S3. Forest plot of hazard ratios from bivariate Cox regression models for risk of death at 28-day for sepsis scores, physiologic parameters, and clinical laboratory parameters.