Supporting Information

Hydrogels from TEMPO-oxidized nanofibrillated cellulose support *in vitro* cultivation of encapsulated human mesenchymal stem cells

Ilias Nikolits¹, Sara Radwan², Falk Liebner³, Wolf Dietrich⁴, Dominik Egger¹, Farhad Chariyev-Prinz¹ and Cornelia Kasper¹, *

 ¹ Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences BOKU Vienna, Muthgasse 18, 1190 Vienna, Austria
² Department of Life Science Engineering, University of Applied Sciences Technikum Vienna, Höchstädtplatz 6, 1200 Vienna, Austria

³ Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences BOKU Vienna, Konrad Lorenz Straße 24, 3430 Tulln, Austria ⁴ Department of Gynecology and Obstetrics, Karl Landsteiner University of Health Sciences,

Alter Ziegelweg 10, 3430 Tulln, Austria

Corresponding Author: *Cornelia Kasper. Email: cornelia.kasper@boku.ac.at

Figure S1. Mechanical characterization of CNF hydrogels. Elastic shear modulus measurements for different CNF concentration hydrogels with and without MSCs after 1, 7 and 14 days from cell

encapsulation. Significantly higher G' in relation to the CNF wt% concentration of the samples at different time points of culture (a=0.05).

Figure S2. SAOS measurements performed to evaluate the viscoelastic properties of the different CNF concentration hydrogels with and without MSCs after 1, 7 and 14 days from cell encapsulation. The elastic shear modulus G' was determined at a strain of 0.5%, which was within the linear viscoelastic regime for all samples.