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EXODUS: Stable and Efficient Training of Spiking 
Neural Networks — Appendix 

1 EXAMPLES FOR APPLICATION OF IMPLICIT FUNCTION THEOREM 
 
 

 

Figure S1. Illustration of the implicit function theorem. 
 

Example 1. Fig. S1 illustrates the zero-set {(x1, x2) : ϕ(x1, x2) = 0} of a function ϕ : R2 → R. To 
investigate the conditions of IFT, we first note that the gradient of ϕ denoted by ∇ϕ = ( ∂ϕ , ∂ϕ ) is always ∂x1  ∂x2 
orthogonal to the level-set (here the zero-set) of ϕ. Thus, by observing the orthogonal vector to the level-set, 
we can verify if ∂ϕ 

1 
∂ϕ 
∂x2 are non-singular (non-zero in the scalar case we consider here). 

We consider several cases: 

• point D and C: at these two points the gradient vector does not exist, so the assumptions of the IFT are 
not fulfilled. However, we can see that at point C, one can still write x2 as function of x1 although this 
function is not differentiable. 

• point A: gradient vector has nonzero vertical and horizontal components, i.e., ∂ϕ 1 ̸= 0 and ∂ϕ 2 ̸= 0. 
Thus, from IFT, one should be able to write both x1 and x2 locally as a differentiable function of the 
other. 

• point B: here ∂ϕ 1 ̸= 0 and x1 is locally a differentiable function of x2. However, since ∂ϕ = 0, 
the assumptions of IFT do not hold for x2. And, it is seen from Fig. S1 that x2 cannot be written as 
function of x1 in an open neighborhood of B. 

One of the implications of the IFT is that, given an implicit functional relationship between a collection of 
variables, we are not allowed to apply partial differentiation and chain rule in an ad-hoc fashion. Otherwise, 
we may obtain wrong results. We illustrate this by the following example. 

Example 2. (chain rule over a loopy graph) Let ϕ : R3 → R be a differentiable function and let 
(x1, x2, x3) be a point in the zero-set ϕ(x1, x2, x3) = 0. By an ad-hoc application of the chain rule, one 
may start from x1 = x1 and apply the chain rule to obtain 

 

1 = ∂x1 = 
∂x1 · ∂x2 · ∂x3 . (S1) 

∂x1 ∂x2 ∂x3 ∂x1 

Now let us go step-by-step using the IFT and show that this result is indeed wrong. Let us consider 
computation of ∂x1 . This computation simply implies that x1 and x2 should be treated as dependent and 
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independent variables, respectively. Since we have only a single equation ϕ(x1, x2, x3) = 0, we can solve 
one of the variables as a function of the remaining two variables. So, overall, we need to treat x1 and 
(x2, x3) as dependent and independent variables, respectively. Now we can apply the IFT to obtain 

 

∂ϕ · ∂x1 + ∂ϕ = 0, (S2) 
 

which implies that 

∂x1 ∂x2 ∂x2 

 

∂x1 
∂x2 

= − ϕ2 , (S3) 
ϕ1 

 

where we defined the short-hand notation ϕi = ∂ϕ , where we assumed that all the partial derivatives are 
evaluated at the point (x1, x2, x3), and where we assumed that all the partial derivative ϕi are non-zero. 

Applying the symmetry, we therefore obtain that 
 

∂x1 · ∂x2 · ∂x3 = − ϕ2 · − ϕ3 · − ϕ1
 = −1. (S4) 

∂x2 ∂x3 ∂x1 ϕ1 ϕ2 ϕ3 

Comparing this with (S1) simply shows that ad-hoc application of the chain rule, especially when there is a 
loopy structure as in x1 → x2 → x3 → x1, yields a wrong result. 

 

2 DETAILED DERIVATION OF GRADIENTS 

In the following, we provide a detailed step-by-step derivation of the the derivatives ∂s
(l)[n]

 
∂z  [m] 

 
 

as defined in 
the main document in Section 3. Since the derivation is similar for different layers, for simplicity, we drop 
the superscript (l) here. 

Let us vectorize the set of equations at a specific layer as ϕ = [ϕs, ϕu]⊤ where ϕu = {ϕu[n] : n ∈ [T ]} 
and ϕs = {ϕs[n] : n ∈ [T ]}. Similarly let us vectorize the dependent variables as ψ = [ψu, ψs]⊤ where 
ψu = {u[n] : n ∈ [T ]} and ψs = {s[n] : n ∈ [T ]}. 

To verify the conditions of Implicit Function Theorem (IFT), we can check that all the equations are 
differentiable functions of all the variables, provided that fs is a differentiable function. In addition, we 
need to verify that the Jacobian matrix Jψ of the partial derivatives of ϕ with respect to ψ is non-singular. 

We can write it as: 
 

Jψ = 
∂ϕ 

= 
∂ψ 

∂ϕs 
∂s 
∂ϕu 
∂s 

∂ϕs 
∂u 
∂ϕu 
∂u 

′ 
= l , 

ν−1 INlT 
 

where INlT denotes the identity matrix of order NlT , and where we define 


f′[1] 0 . . . 0 


 
0 f′[2] . . . 0 

f ′ := 
 . . . . . 

 

 0 0 . . . f′[T 
 

    

 , 
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with f′[n] denoting the diagonal matrix of the surrogate gradients {f ′(ui[n]) : i ∈ [Nl]} at time instant n, 
and where we define 



 
0 0 . . . 0




 

 


−νT −2INl −νT −3INl . . . 0


 

Since applying simple row-wise operations will not change the invertibility of Jψ, we add a f ′ multiple 
of the second row-block to the first row-block and obtain 

J-ψ = 
′ 

l . 
ν−1 INlT 

 

Because ν−1 is a lower triangular matrix with 0-diagonal and f ′ is a diagonal matrix, f ′ν−1 will be a lower 
triangular matrix with 0-diagonal. This implies that Jψ is also lower triangular with all diagonal entries 
equal to 1. The determinant of such a matrix is 1, which proves the invertibility of Jψ and verifies the 
non-singularity condition needed in IFT. 

Since the conditions of IFT are fulfilled, we know that all the dependent variables ψ are differentiable 
w.r.t. independent variables x = {z[n] : n ∈ [T ]}. 

We find the derivatives G = ∂ψ by solving 

Jψ · G = −Jx, 

where the Jacobian w.r.t. the independent variables is 
 

Jx = 
∂ϕ 

= 
∂x 

∂ϕs 
∂z 
∂ϕu 
∂z 

= 0 . 
−INlT 

 
Applying the same row-wise operations to Jx as to Jψ, we get 

 

 
 
 

To find G, we can now solve: 

J-x = 
−f ′ . 

−INlT 

 
 

⇔ 
 

Specifically, for ∂s , we find, 

′ ∂s 
l · ∂z 

ν−1 INlT ∂z 

f ′ = . 
INlT 

 

 
INlT − f ′ · ν−1 · ∂s 

= f ′. (S5) 
∂z 

l . 

  

) 

'
\ 
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Because IN T +f ′ · ν−1 has lower triangular shape, we can solve equation (S5) through forward substitution, 
yielding for any m, n ∈ [T ] 

 

∂s[n] 
∂z[m] 

n−1 

− f ′[n] ν 
k=1 

∂s[k] 
n−1−k ∂z[m] 

 
= δm,n f ′[n]  ⇒ ∂s[n] 

∂z[m] 

 
= δm,n 

n−1 

f ′[n] + f ′[n] ν 
k=1 

∂s[k] 
n−1−k ∂z[m] . 

(S6) 
 

Starting with n = 1 and applying induction on n and m, and using the right-hand-side expression for 
∂s[n] 
∂z[m] in (S6), it is not difficult to verify that 

 
∂s[n] 

 
 

∂z[m] 

 
 
= 0, for n < m. (S7) 

Using this result and replacing n = m in (S6) yields 

∂s[m] 
= f ′[m]. (S8) 

∂z[m] 

Finally, inserting (S7) and (S8) into (S6), we obtain for n > m 
 

∂s[n] 
∂z[m] 

n−1 

= f ′[n] · ν 
k=m 

∂s[k] 
n−1−k ∂z[m] 

n−1 

= f ′[n] ν 
k=m 

∂s[k] 
n−1−k ∂z[m] . 

 

Introducing the short-hand notation σm[n] := ∂s[n] and rewriting the sum as a convolution operation, 
we conclude:  

 
 

σm[n] = 

 
 

0 n < m 
f′[n] n = m 

f ′[n] ·
 

ν ∗ σm
)
[n − 1] n > m. 

 
 

(S9) 
 
 

■ 
 
 

3 GRADIENTS FOR LEAKY INTEGRATE-AND-FIRE MODEL 
 

The Leaky Integrate-and-Fire (LIF) neuron model can be seen as a special case of the Spike Response 
Model (SRM), with the spike response and reset kernels ϵ and ν given as1 

ϵn = αnI{n≥0} (S10) 

νn = −αnθI{n≥0}, (S11) 
 
 
 

1 Note that the spike response kernel ϵ given here corresponds to the case where neural dynamics are modeled fully as exponential membrane decay. Synaptic 
dynamics could be included by replacing ϵ with ϵ˜ := ϵ ∗ ρ, with ρ being the synaptic impulse response. The validity of the following analysis would not be 
affected. 
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which allows us to find a slightly simpler formulation for σ(l)[n] := ∂s

(l)[n] . Dropping the superscript (l), 

the derivatives in their general form are 
 
 

σm[n] = 
 
 
 

Let us introduce a new variable 

m ∂z(l)[m] 
 

0 n < m 
f′[n] n = m 

f ′[n]
 
ν ∗ σm

)
[n − 1] n > m. 

 

0 n < m 

γm[n] := I n = m 
 ν ∗ σm

)
[n − 1] n > m, 

(S12) 

such that σm[n] = f′[n]γm[n]. We first prove the following proposition. 
 

PROPOSITION 3.1. With ν as in equation (S11) and for m ≥ 1, n > m + 1, 
 

γm[n] = −θf′[m] 
n−1 

 

k=m+1 

 
(αI − θf′[k]). (S13) 

 

PROOF. We prove this by applying induction on n and m. It is helpful to note that for n > m, γm[n] 
can be written as n−1 n−1 

γm[n] = 
L 

νn−1−kσm[k] = −θ 
L 

αn−1−kσm[k]. (S14) 

Let us consider any m ≥ 1 and let us assume for now that there exists an n > m + 1 for which the 
proposition holds. Then for n + 1 we find from (S14) that 

 

n 

γm[n + 1] = −θ αn−kσm[k] 
k=m 

n−1 

= − θσm[n] + θα αn−1−kσm[k] 
k=m 

= − θγm[n]f′[n] − αγm[n] 

= −γm[n]
 
θf′[n] − αI

)
 

(i) 
= −f [m] θ 

n−1 
 

k=m+1 
n 

αI − θf′[k]
)) 

· αI − θf′[n]
)
 

= −θf′[m] 

k=

IT

m+1 

(αI − θf′[k]), 
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where in (i), we applied the induction hypothesis for the given n and m. Up to now, we have shown that if 
the result is true for a given n and m with n > m + 1, it is true for all ñ ≥ n. To complete the induction, 
therefore, we need to extend the result to n = m + 1. We verify this directly. 

By definition of γ, for n = m + 1, we have that γm[m + 1] = −θα0σm[m] = −θf′[m] and therefore 
σm[m + 1] = −θf′[m]f′[m + 1]. We can then show that for n = m + 2 the proposition is true: 

γm[m + 2] = −θα1σm[m] − θα0σm[m + 1] 

= −θ αf′[m] − θf′[m]f′[m + 1] 

= −θf′[m]
 
αI − θf′[m + 1]

)
. 

Hence the proposition holds for n = m + 2 and therefore for all n ≥ m + 2, independent of the choice 
of m. ■ 

With σm[n] = f′[n]γm[n] we can therefore write σ as: 


0 n < m 
 

σm[n] =  −θf 
 

 
′[m]f 

 
′[m + 1] 

 
n = m + 1 

) 
(S15) 

 

 
 

3.1 Computational efficiency 

We will now show that LIF neuron dynamics allow for an efficient computation of the gradients d(l)[n] := 
  ∂L  . Dropping the superscript (l), the derivatives in their general form are 
∂a  [n] 

 

d[n] = 
L L 

e[k]σm[k]ϵm−n. (S16) 
m=n k=m 

 

We rewrite Eq. (S16) in terms of γ, as defined in Eq. (S12), keeping in minde that σn[k] = f′[k]γn[k] for 
all k ≥ n. We furthermore insert the definition of ϵ for LIF neurons from Eq. (S10) and change the order of 
summation: 

 

d[n] = 
L L 

e[k]αm−nf ′[k]γm[k] = 
L
 
 

e[k]f ′[k] 
( Lk  

αm−nγm[k] 
)
. (S17) 

m=n k=m k=n m=n 

Let us introduce another variable ζn[k], defined for n ∈ [T ], l ∈ [L] and k ≥ n, as 
 

 
ζn[k] := 

k 

αm−nγm[k], (S18) 
m=n 

which allows us to write Eq. (S17) more compactly: 
 

T 

d[n] = e[k]f ′[k]ζn[k]. (S19) 
k=n 

k=m+1 

T 

αI − θf′[k] n > m + 
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We can find an expression for ζ that is easy to compute as follows: 

PROPOSITION 3.2. With σ, γ, and ζ as defined above, α > 0, and for n ≥ 1, k ≥ n, 
 

I k = n 
ITk−1 (αI − θf′[m]) k > n. 

Equivalently, ζ can be expressed recursively as ζn[n] = I and ζn[k + 1] = ζn[k]
 

αI − θf′[k]
)
. 

PROOF. For k = n the proposition follows from the definitions of γ (S12) and ζ (S18): 

ζn[n] = αn−nγn[n] = I. 

For k > n first note that ζn[k] can be rewritten as: 
 

k−1 k−1 

ζn[k] = αk−nI + 
L 

αm−nγm[k] = αk−nI + 
L 

αm−n
 
ν ∗ σm

)
[k − 1] 

 

= αk−nI + 

m=n 
k−1 

 

m=n 

 
αm−n 

k−1 

r=m 

m=n 
 

− θαk−1−rf ′[r]γm[r] 
)
, (S20) 

where we inserted the definition of γ (S12), wrote out the convolution operation as a sum and inserted the 
definition of ν (S11). Applying similar considerations to ζn[k + 1], we get: 

 

 
ζn[k + 1] = αk+1−nI + 

 

= αk+1−nI + 

m

L

=n 
k−1 

 
m=n 

 

αm−n 

 
αm−n 

r

L

=m 

( 

r

L

=m 

(

 

− θαk−rf ′[r]γm[r]
)
 

− θαk−rf ′[r]γm[r]
)
 

 
 
 
− θαk−nf ′[k]γk[k] 

k−1 

= αk+1−nI + αm−n 

m=n 

k−1 

α 
r=m 

− θαk−1−rf ′[r]γm[r]
)
 − θαk−kf′[k]γm[k]

'\
 

− θαk−nf ′[k]γk[k] 
 

= α  αk−nI + 
k−1 

 

m=n 

 

αm−n 
k−1 
 

r=m 

 
− θαk−1−rf ′[r]γm[r] 

)'\  
− θf [k] 

m

L

=n 

 
αm−nγm[k] 

= αζn[k] − θf ′[k]ζn[k] = ζn[k] αI − θf ′[k] . (S21) 

For the last equality we used Eq. (S20) as well as the definition of ζ (S18). Also note that f ′, and 
therefore also γ and ζ, are diagonal and thus commute. The recursive expression, as well as the equivalent 
closed-from in the proposition follow directly. ■ 

 
The gradient term in Equation (S19) can therefore be computed in O(T ) time, by calculating ζn[k] 

recursively and obtaining each summand by multiplying with e(l)[k]f′[k]. 

[k] = 

(

 ζ
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4 TRAINING PARAMETERS 
 

We list the parameters that we trained our networks with. In architecture, first element is the input 
dimensions for one time step, a layer of 16c5 is a convolutional layer with 16 channels and a kernel size of 
5 and a layer of 10l would be a simple linear layer with 10 output features. Between all weight layers we 
employ IF spiking layers to generate non-linear output. 

 
Table S1. Training parameters for classification tasks. 

 
CIFAR10-DVS DVS Gesture HSD SSC 

sequence length 8 300 250 250 
Wide-7B-Net as in 
Fang et al. (2021) 

64x64x2-2c3-2p-4c3- 
2p-8c3-2p-16c3-11l 

100-128l- 
128l-20l 

100-128l- 
128l-35l 

optimiser ADAM ADAM ADAM ADAM 
sum over 
time CE 

sum over 
time CE 

max over 
time CE 

max over 
time CE 

learning rate 1e-3 1e-3 1e-3 1e-3 
mini-batch size 16 32 128 128 
epochs 100 100 200 200 

5 SIMILARITY TO BPTT GRADIENTS 

To illustrate numerically the equivalence of the gradients computed by EXODUS to those obtained from 
BPTT, we measure the cosine similarity of the gradients after the first iteration when training on the Spiking 
Speech Commands dataset (see Section 4.4 in the main document). It is defined as 

g · h D = 
||g|| ||h|| 

and can be interpreted as the cosine of the angle between the two gradient vectors. Here, g and h are two 
gradient vectors, · denotes the Euclidean dot product, and ||.|| the Euclidian norm. The cosine similarity is 
between −1 (vectors point in opposite directions) and 1 (vectors point in same direction). The left plot 
of Figure S2 shows the similarities to corresponding gradients from BPTT, for the different layers of 
the model. For the output layer the similarity to BPTT is 1.0 for both EXODUS and SLAYER because 
the gradients have not yet been propagated back through any spiking layer. For layers further down the 
backward pass, the similarity of SLAYER to BPTT drops down to 0.88 corresponding to an angle between 
the gradient vectors of about 28◦. In contrast, for EXODUS it remains 1.0. 

While the cosine similarity compares the direction of gradient vectors, we compare the lengths by 
examining the Euclidean norms. The right hand side of Figure S2 shows the lengths of the EXODUS and 
SLAYER gradient vectors normalized by the lengths of the corresponding BPTT gradients. Similar to the 
direction, for EXODUS gradients always have the same length as in BPTT. For SLAYER, on the other 
hand, the lengths match only for the output layer. After that they grow exponentially in comparison to 
those from BPTT. This highlights that EXODUS does indeed compute the same gradients as BPTT, which 
is not the case for SLAYER. 

architecture 

loss 
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Figure S2. Comparison of gradients with from EXODUS and SLAYER to corresponding gradients from 
BPTT, for different layers in the network, after first iteration of training on Spiking Speech Commands 
dataset. Left: Cosine similarity. While for EXODUS the cosine similarity is 1 for all layers, for SLAYER 
it decreases towards the input. Right: Lengths of gradient vectors normalized to BPTT gradient lengths. 
For all EXODUS gradients the length is the same as with BPTT. For SLAYER the length is the same in the 
output layer and then increases exponentially. 

 
6 POISSON SPIKE TRAIN FITTING 

Similarly as in Shrestha and Orchard (2018), we generate a 250-dimensional input Poisson spike train 
across 200 ms as well as a target spike train for a single output neuron with 4 spikes at random times. We 
feed it to a single hidden layer with 25 LIF neurons, which in turn connects to a single LIF output neuron. 
We use mean squared error loss and the ADAM optimiser, as it is invariant to different scaling factors 
of the gradient. We study convergence speeds for different parameters. Example output and target spike 
trains can be seen in Figure S3 on top. The same figure also shows loss curves over 3000 epochs. Whereas 
EXODUS converges around epoch 1850 in this example, SLAYER fails to do so. We repeat our experiment 
for different parameters, including the time constant of the membrane potential of our LIF neurons and the 
learning rate. We average the loss over 5 runs for each method with different input and target spike trains 
and then sum up the averaged loss. This gives us an idea of speed of convergence. Figure S3 shows such 
summed losses for different parameters. In all cases, calculating gradients using EXODUS results in lower 
losses on average. 

 
7 GRADIENTS WHEN OUTPUT IS NOT FILTERED WITH SPIKE RESPONSE 

 T T (L) (L) T T 

d(L)[n] = 
 ∂L  

= 
L

 
L   ∂L ∂s [k] ∂z [m] = 

L L   ∂L σ(L)[k]ϵ . 
 

  
 

The term e(L) disappears. For l < L, d(l) and e(l) are defined the same way as before. 
 
8 TRAINING TIME RAW NUMBERS 

k=m m=n m=n k=m 
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Figure S3. Poisson spike train fitting. Upper: spike output for networks when trained with EXODUS 
and SLAYER as well as target spike train, all tracked across epochs. Lower: Loss over time for example 
experiment. EXODUS shows faster convergence than SLAYER. Right: Sum of averaged loss across 
5 experiments for one parameter combination (learning rate, LIF time constant tau) as well as method 
EXODUS/SLAYER. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time per training step [ms] 
EXODUS SLAYER BPTT 

forward backward forward backward forward backward 
 

DVS 147.47 ± 0.4 89.63 ± 0.3 246.13 ± 0.7 105.41 ± 0.2 970.72 ± 861.2 1485.28 ± 1.1 
HSD 14.84 ± 0.0 26.24 ± 0.1 64.48 ± 0.3 21.26 ± 0.0 334.74 ± 180.5 238.63 ± 0.9 
SSC 4.60 ± 0.0 9.60 ± 0.0 36.54 ± 0.2 11.38 ± 0.0 123.29 ± 10.6 166.08 ± 0.8 

Table S2. Training time is measured in ms per training step, on a NVIDIA GeForce 1080 Ti averaged across 3 epochs. 
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