
1

∂x

∂x ∂x

∂x ∂x2

∂x2

EXODUS: Stable and Efficient Training of Spiking
Neural Networks — Appendix

1 EXAMPLES FOR APPLICATION OF IMPLICIT FUNCTION THEOREM

Figure S1. Illustration of the implicit function theorem.

Example 1. Fig. S1 illustrates the zero-set {(x1, x2) : ϕ(x1, x2) = 0} of a function ϕ : R2 → R. To
investigate the conditions of IFT, we first note that the gradient of ϕ denoted by ∇ϕ = (∂ϕ , ∂ϕ) is always ∂x1 ∂x2
orthogonal to the level-set (here the zero-set) of ϕ. Thus, by observing the orthogonal vector to the level-set,
we can verify if ∂ϕ

1
∂ϕ
∂x2 are non-singular (non-zero in the scalar case we consider here).

We consider several cases:

• point D and C: at these two points the gradient vector does not exist, so the assumptions of the IFT are
not fulfilled. However, we can see that at point C, one can still write x2 as function of x1 although this
function is not differentiable.

• point A: gradient vector has nonzero vertical and horizontal components, i.e., ∂ϕ 1 ̸= 0 and ∂ϕ 2 ̸= 0.
Thus, from IFT, one should be able to write both x1 and x2 locally as a differentiable function of the
other.

• point B: here ∂ϕ 1 ̸= 0 and x1 is locally a differentiable function of x2. However, since ∂ϕ = 0,
the assumptions of IFT do not hold for x2. And, it is seen from Fig. S1 that x2 cannot be written as
function of x1 in an open neighborhood of B.

One of the implications of the IFT is that, given an implicit functional relationship between a collection of
variables, we are not allowed to apply partial differentiation and chain rule in an ad-hoc fashion. Otherwise,
we may obtain wrong results. We illustrate this by the following example.

Example 2. (chain rule over a loopy graph) Let ϕ : R3 → R be a differentiable function and let
(x1, x2, x3) be a point in the zero-set ϕ(x1, x2, x3) = 0. By an ad-hoc application of the chain rule, one
may start from x1 = x1 and apply the chain rule to obtain

1 = ∂x1 =
∂x1 · ∂x2 · ∂x3 . (S1)

∂x1 ∂x2 ∂x3 ∂x1

Now let us go step-by-step using the IFT and show that this result is indeed wrong. Let us consider
computation of ∂x1 . This computation simply implies that x1 and x2 should be treated as dependent and

o

2

∂xi

(l)

IN T −f

'\

.

.

Supplementary Material

independent variables, respectively. Since we have only a single equation ϕ(x1, x2, x3) = 0, we can solve
one of the variables as a function of the remaining two variables. So, overall, we need to treat x1 and
(x2, x3) as dependent and independent variables, respectively. Now we can apply the IFT to obtain

∂ϕ · ∂x1 + ∂ϕ = 0, (S2)

which implies that

∂x1 ∂x2 ∂x2

∂x1
∂x2

= − ϕ2 , (S3)
ϕ1

where we defined the short-hand notation ϕi = ∂ϕ , where we assumed that all the partial derivatives are
evaluated at the point (x1, x2, x3), and where we assumed that all the partial derivative ϕi are non-zero.

Applying the symmetry, we therefore obtain that

∂x1 · ∂x2 · ∂x3 = − ϕ2 · − ϕ3 · − ϕ1
 = −1. (S4)

∂x2 ∂x3 ∂x1 ϕ1 ϕ2 ϕ3

Comparing this with (S1) simply shows that ad-hoc application of the chain rule, especially when there is a
loopy structure as in x1 → x2 → x3 → x1, yields a wrong result.

2 DETAILED DERIVATION OF GRADIENTS

In the following, we provide a detailed step-by-step derivation of the the derivatives ∂s
(l)[n]

∂z [m]

as defined in
the main document in Section 3. Since the derivation is similar for different layers, for simplicity, we drop
the superscript (l) here.

Let us vectorize the set of equations at a specific layer as ϕ = [ϕs, ϕu]⊤ where ϕu = {ϕu[n] : n ∈ [T]}
and ϕs = {ϕs[n] : n ∈ [T]}. Similarly let us vectorize the dependent variables as ψ = [ψu, ψs]⊤ where
ψu = {u[n] : n ∈ [T]} and ψs = {s[n] : n ∈ [T]}.

To verify the conditions of Implicit Function Theorem (IFT), we can check that all the equations are
differentiable functions of all the variables, provided that fs is a differentiable function. In addition, we
need to verify that the Jacobian matrix Jψ of the partial derivatives of ϕ with respect to ψ is non-singular.

We can write it as:

Jψ =
∂ϕ

=
∂ψ

∂ϕs
∂s
∂ϕu
∂s

∂ϕs
∂u
∂ϕu
∂u

′
= l ,

ν−1 INlT

where INlT denotes the identity matrix of order NlT , and where we define

f′[1] 0 . . . 0

0 f′[2] . . . 0

f ′ :=

 0 0 . . . f′[T

 ,

Frontiers 3

s

ν

IN T + f ν−1

0

-

∂x

∂z

IN T − f ν−1

0

 '
\

−ν0IN 0 . . .
 −1

. .
 . .

J-ψ · G = −J-x

'
\

'
\

'
\

∂u

'
\

Supplementary Material

with f′[n] denoting the diagonal matrix of the surrogate gradients {f ′(ui[n]) : i ∈ [Nl]} at time instant n,
and where we define

0 0 . . . 0

−νT −2INl −νT −3INl . . . 0

Since applying simple row-wise operations will not change the invertibility of Jψ, we add a f ′ multiple
of the second row-block to the first row-block and obtain

J-ψ =
′

l .
ν−1 INlT

Because ν−1 is a lower triangular matrix with 0-diagonal and f ′ is a diagonal matrix, f ′ν−1 will be a lower
triangular matrix with 0-diagonal. This implies that Jψ is also lower triangular with all diagonal entries
equal to 1. The determinant of such a matrix is 1, which proves the invertibility of Jψ and verifies the
non-singularity condition needed in IFT.

Since the conditions of IFT are fulfilled, we know that all the dependent variables ψ are differentiable
w.r.t. independent variables x = {z[n] : n ∈ [T]}.

We find the derivatives G = ∂ψ by solving

Jψ · G = −Jx,

where the Jacobian w.r.t. the independent variables is

Jx =
∂ϕ

=
∂x

∂ϕs
∂z
∂ϕu
∂z

= 0 .
−INlT

Applying the same row-wise operations to Jx as to Jψ, we get

To find G, we can now solve:

J-x =
−f ′ .

−INlT

⇔

Specifically, for ∂s , we find,

′ ∂s
l · ∂z

ν−1 INlT ∂z

f ′ = .
INlT

INlT − f ′ · ν−1 · ∂s

= f ′. (S5)
∂z

l .

)

'
\

4

l

L L

L L

∂z[m]

Supplementary Material

Because IN T +f ′ · ν−1 has lower triangular shape, we can solve equation (S5) through forward substitution,
yielding for any m, n ∈ [T]

∂s[n]
∂z[m]

n−1

− f ′[n] ν
k=1

∂s[k]
n−1−k ∂z[m]

= δm,n f ′[n] ⇒ ∂s[n]

∂z[m]

= δm,n

n−1

f ′[n] + f ′[n] ν
k=1

∂s[k]
n−1−k ∂z[m] .

(S6)

Starting with n = 1 and applying induction on n and m, and using the right-hand-side expression for
∂s[n]
∂z[m] in (S6), it is not difficult to verify that

∂s[n]

∂z[m]

= 0, for n < m. (S7)

Using this result and replacing n = m in (S6) yields

∂s[m]
= f ′[m]. (S8)

∂z[m]

Finally, inserting (S7) and (S8) into (S6), we obtain for n > m

∂s[n]
∂z[m]

n−1

= f ′[n] · ν
k=m

∂s[k]
n−1−k ∂z[m]

n−1

= f ′[n] ν
k=m

∂s[k]
n−1−k ∂z[m] .

Introducing the short-hand notation σm[n] := ∂s[n] and rewriting the sum as a convolution operation,
we conclude:

σm[n] =

0 n < m
f′[n] n = m

f ′[n] ·

ν ∗ σm
)
[n − 1] n > m.

(S9)

■

3 GRADIENTS FOR LEAKY INTEGRATE-AND-FIRE MODEL

The Leaky Integrate-and-Fire (LIF) neuron model can be seen as a special case of the Spike Response
Model (SRM), with the spike response and reset kernels ϵ and ν given as1

ϵn = αnI{n≥0} (S10)

νn = −αnθI{n≥0}, (S11)

1 Note that the spike response kernel ϵ given here corresponds to the case where neural dynamics are modeled fully as exponential membrane decay. Synaptic
dynamics could be included by replacing ϵ with ϵ˜ := ϵ ∗ ρ, with ρ being the synaptic impulse response. The validity of the following analysis would not be
affected.

Frontiers 5

IT

L

 L
)

)

′ IT (

k=m k=m

Supplementary Material

which allows us to find a slightly simpler formulation for σ(l)[n] := ∂s

(l)[n] . Dropping the superscript (l),

the derivatives in their general form are

σm[n] =

Let us introduce a new variable

m ∂z(l)[m]

0 n < m
f′[n] n = m

f ′[n]

ν ∗ σm

)
[n − 1] n > m.

0 n < m

γm[n] := I n = m
 ν ∗ σm

)
[n − 1] n > m,

(S12)

such that σm[n] = f′[n]γm[n]. We first prove the following proposition.

PROPOSITION 3.1. With ν as in equation (S11) and for m ≥ 1, n > m + 1,

γm[n] = −θf′[m]
n−1

k=m+1

(αI − θf′[k]). (S13)

PROOF. We prove this by applying induction on n and m. It is helpful to note that for n > m, γm[n]
can be written as n−1 n−1

γm[n] =
L

νn−1−kσm[k] = −θ
L

αn−1−kσm[k]. (S14)

Let us consider any m ≥ 1 and let us assume for now that there exists an n > m + 1 for which the
proposition holds. Then for n + 1 we find from (S14) that

n

γm[n + 1] = −θ αn−kσm[k]
k=m

n−1

= − θσm[n] + θα αn−1−kσm[k]
k=m

= − θγm[n]f′[n] − αγm[n]

= −γm[n]

θf′[n] − αI

)

(i)
= −f [m] θ

n−1

k=m+1
n

αI − θf′[k]
))

· αI − θf′[n]
)

= −θf′[m]

k=

IT

m+1

(αI − θf′[k]),

6

)

(l)

T T

T T

L

L

f′[m] n =
m
−θf′[m]f′[n]

ITn−1

Supplementary Material

where in (i), we applied the induction hypothesis for the given n and m. Up to now, we have shown that if
the result is true for a given n and m with n > m + 1, it is true for all ñ ≥ n. To complete the induction,
therefore, we need to extend the result to n = m + 1. We verify this directly.

By definition of γ, for n = m + 1, we have that γm[m + 1] = −θα0σm[m] = −θf′[m] and therefore
σm[m + 1] = −θf′[m]f′[m + 1]. We can then show that for n = m + 2 the proposition is true:

γm[m + 2] = −θα1σm[m] − θα0σm[m + 1]

= −θ αf′[m] − θf′[m]f′[m + 1]

= −θf′[m]

αI − θf′[m + 1]

)
.

Hence the proposition holds for n = m + 2 and therefore for all n ≥ m + 2, independent of the choice
of m. ■

With σm[n] = f′[n]γm[n] we can therefore write σ as:

0 n < m

σm[n] = −θf

′[m]f

′[m + 1]

n = m + 1

)
(S15)

3.1 Computational efficiency

We will now show that LIF neuron dynamics allow for an efficient computation of the gradients d(l)[n] :=
 ∂L . Dropping the superscript (l), the derivatives in their general form are
∂a [n]

d[n] =
L L

e[k]σm[k]ϵm−n. (S16)
m=n k=m

We rewrite Eq. (S16) in terms of γ, as defined in Eq. (S12), keeping in minde that σn[k] = f′[k]γn[k] for
all k ≥ n. We furthermore insert the definition of ϵ for LIF neurons from Eq. (S10) and change the order of
summation:

d[n] =
L L

e[k]αm−nf ′[k]γm[k] =
L

e[k]f ′[k]
(Lk

αm−nγm[k]
)
. (S17)

m=n k=m k=n m=n

Let us introduce another variable ζn[k], defined for n ∈ [T], l ∈ [L] and k ≥ n, as

ζn[k] :=

k

αm−nγm[k], (S18)
m=n

which allows us to write Eq. (S17) more compactly:

T

d[n] = e[k]f ′[k]ζn[k]. (S19)
k=n

k=m+1

T

αI − θf′[k] n > m +

Frontiers 7

m=n

 L
(

k

k

k

 L
(

 L
(

k

)

Supplementary Material

We can find an expression for ζ that is easy to compute as follows:

PROPOSITION 3.2. With σ, γ, and ζ as defined above, α > 0, and for n ≥ 1, k ≥ n,

I k = n
ITk−1 (αI − θf′[m]) k > n.

Equivalently, ζ can be expressed recursively as ζn[n] = I and ζn[k + 1] = ζn[k]

αI − θf′[k]
)
.

PROOF. For k = n the proposition follows from the definitions of γ (S12) and ζ (S18):

ζn[n] = αn−nγn[n] = I.

For k > n first note that ζn[k] can be rewritten as:

k−1 k−1

ζn[k] = αk−nI +
L

αm−nγm[k] = αk−nI +
L

αm−n

ν ∗ σm

)
[k − 1]

= αk−nI +

m=n
k−1

m=n

αm−n

k−1

r=m

m=n

− θαk−1−rf ′[r]γm[r]
)
, (S20)

where we inserted the definition of γ (S12), wrote out the convolution operation as a sum and inserted the
definition of ν (S11). Applying similar considerations to ζn[k + 1], we get:

ζn[k + 1] = αk+1−nI +

= αk+1−nI +

m

L

=n
k−1

m=n

αm−n

αm−n

r

L

=m

(

r

L

=m

(

− θαk−rf ′[r]γm[r]
)

− θαk−rf ′[r]γm[r]
)

− θαk−nf ′[k]γk[k]

k−1

= αk+1−nI + αm−n

m=n

k−1

α
r=m

− θαk−1−rf ′[r]γm[r]
)
 − θαk−kf′[k]γm[k]

'\

− θαk−nf ′[k]γk[k]

= α αk−nI +
k−1

m=n

αm−n
k−1

r=m

− θαk−1−rf ′[r]γm[r]

)'\
− θf [k]

m

L

=n

αm−nγm[k]

= αζn[k] − θf ′[k]ζn[k] = ζn[k] αI − θf ′[k] . (S21)

For the last equality we used Eq. (S20) as well as the definition of ζ (S18). Also note that f ′, and
therefore also γ and ζ, are diagonal and thus commute. The recursive expression, as well as the equivalent
closed-from in the proposition follow directly. ■

The gradient term in Equation (S19) can therefore be computed in O(T) time, by calculating ζn[k]

recursively and obtaining each summand by multiplying with e(l)[k]f′[k].

[k] =

(

 ζ

8

Supplementary Material

4 TRAINING PARAMETERS

We list the parameters that we trained our networks with. In architecture, first element is the input
dimensions for one time step, a layer of 16c5 is a convolutional layer with 16 channels and a kernel size of
5 and a layer of 10l would be a simple linear layer with 10 output features. Between all weight layers we
employ IF spiking layers to generate non-linear output.

Table S1. Training parameters for classification tasks.

CIFAR10-DVS DVS Gesture HSD SSC

sequence length 8 300 250 250
Wide-7B-Net as in
Fang et al. (2021)

64x64x2-2c3-2p-4c3-
2p-8c3-2p-16c3-11l

100-128l-
128l-20l

100-128l-
128l-35l

optimiser ADAM ADAM ADAM ADAM
sum over
time CE

sum over
time CE

max over
time CE

max over
time CE

learning rate 1e-3 1e-3 1e-3 1e-3
mini-batch size 16 32 128 128
epochs 100 100 200 200

5 SIMILARITY TO BPTT GRADIENTS

To illustrate numerically the equivalence of the gradients computed by EXODUS to those obtained from
BPTT, we measure the cosine similarity of the gradients after the first iteration when training on the Spiking
Speech Commands dataset (see Section 4.4 in the main document). It is defined as

g · h D =
||g|| ||h||

and can be interpreted as the cosine of the angle between the two gradient vectors. Here, g and h are two
gradient vectors, · denotes the Euclidean dot product, and ||.|| the Euclidian norm. The cosine similarity is
between −1 (vectors point in opposite directions) and 1 (vectors point in same direction). The left plot
of Figure S2 shows the similarities to corresponding gradients from BPTT, for the different layers of
the model. For the output layer the similarity to BPTT is 1.0 for both EXODUS and SLAYER because
the gradients have not yet been propagated back through any spiking layer. For layers further down the
backward pass, the similarity of SLAYER to BPTT drops down to 0.88 corresponding to an angle between
the gradient vectors of about 28◦. In contrast, for EXODUS it remains 1.0.

While the cosine similarity compares the direction of gradient vectors, we compare the lengths by
examining the Euclidean norms. The right hand side of Figure S2 shows the lengths of the EXODUS and
SLAYER gradient vectors normalized by the lengths of the corresponding BPTT gradients. Similar to the
direction, for EXODUS gradients always have the same length as in BPTT. For SLAYER, on the other
hand, the lengths match only for the output layer. After that they grow exponentially in comparison to
those from BPTT. This highlights that EXODUS does indeed compute the same gradients as BPTT, which
is not the case for SLAYER.

architecture

loss

Frontiers 9

∂a(L)[n] ∂s(L)[k] ∂z(L)[m] ∂a(L)[n] ∂s(L)[k] m m−n

Supplementary Material

Figure S2. Comparison of gradients with from EXODUS and SLAYER to corresponding gradients from
BPTT, for different layers in the network, after first iteration of training on Spiking Speech Commands
dataset. Left: Cosine similarity. While for EXODUS the cosine similarity is 1 for all layers, for SLAYER
it decreases towards the input. Right: Lengths of gradient vectors normalized to BPTT gradient lengths.
For all EXODUS gradients the length is the same as with BPTT. For SLAYER the length is the same in the
output layer and then increases exponentially.

6 POISSON SPIKE TRAIN FITTING

Similarly as in Shrestha and Orchard (2018), we generate a 250-dimensional input Poisson spike train
across 200 ms as well as a target spike train for a single output neuron with 4 spikes at random times. We
feed it to a single hidden layer with 25 LIF neurons, which in turn connects to a single LIF output neuron.
We use mean squared error loss and the ADAM optimiser, as it is invariant to different scaling factors
of the gradient. We study convergence speeds for different parameters. Example output and target spike
trains can be seen in Figure S3 on top. The same figure also shows loss curves over 3000 epochs. Whereas
EXODUS converges around epoch 1850 in this example, SLAYER fails to do so. We repeat our experiment
for different parameters, including the time constant of the membrane potential of our LIF neurons and the
learning rate. We average the loss over 5 runs for each method with different input and target spike trains
and then sum up the averaged loss. This gives us an idea of speed of convergence. Figure S3 shows such
summed losses for different parameters. In all cases, calculating gradients using EXODUS results in lower
losses on average.

7 GRADIENTS WHEN OUTPUT IS NOT FILTERED WITH SPIKE RESPONSE

 T T (L) (L) T T

d(L)[n] =
 ∂L

=
L

L ∂L ∂s [k] ∂z [m] =

L L ∂L σ(L)[k]ϵ .

The term e(L) disappears. For l < L, d(l) and e(l) are defined the same way as before.

8 TRAINING TIME RAW NUMBERS

k=m m=n m=n k=m

10

Supplementary Material

Figure S3. Poisson spike train fitting. Upper: spike output for networks when trained with EXODUS
and SLAYER as well as target spike train, all tracked across epochs. Lower: Loss over time for example
experiment. EXODUS shows faster convergence than SLAYER. Right: Sum of averaged loss across
5 experiments for one parameter combination (learning rate, LIF time constant tau) as well as method
EXODUS/SLAYER.

Time per training step [ms]
EXODUS SLAYER BPTT

forward backward forward backward forward backward

DVS 147.47 ± 0.4 89.63 ± 0.3 246.13 ± 0.7 105.41 ± 0.2 970.72 ± 861.2 1485.28 ± 1.1
HSD 14.84 ± 0.0 26.24 ± 0.1 64.48 ± 0.3 21.26 ± 0.0 334.74 ± 180.5 238.63 ± 0.9
SSC 4.60 ± 0.0 9.60 ± 0.0 36.54 ± 0.2 11.38 ± 0.0 123.29 ± 10.6 166.08 ± 0.8

Table S2. Training time is measured in ms per training step, on a NVIDIA GeForce 1080 Ti averaged across 3 epochs.

	1 EXAMPLES FOR APPLICATION OF IMPLICIT FUNCTION THEOREM
	2 DETAILED DERIVATION OF GRADIENTS
	(S6)
	(S9)

	3 GRADIENTS FOR LEAKY INTEGRATE-AND-FIRE MODEL
	(S12)
	(S15)

	4 TRAINING PARAMETERS
	5 SIMILARITY TO BPTT GRADIENTS
	6 POISSON SPIKE TRAIN FITTING
	7 GRADIENTS WHEN OUTPUT IS NOT FILTERED WITH SPIKE RESPONSE
	8 TRAINING TIME RAW NUMBERS

