Supplemental Information

Validating expression of beta cell maturation-associated genes in human pancreas development

Tremmel et al.

Supplemental Fig. 1 Gene expression of SC-islets derived from Protocols A and B

1A) Gene expression determined by QPCR of endocrine genes and maturation-associated genes in SC-islets derived from Protocols A (N=5-8) and B (N=5-6), compared to primary adult human islets (AHI)(N=5-7). All genes were normalized to β actin within the same sample, then normalized to undifferentiated H1 cells. Fold changes (FC) listed are calculated based on the relative expression between AHI and each protocol. (**Previous Page**)

1B) Gene expression determined by QPCR of endocrine genes and maturation-associated genes in SC-islets derived from Protocols A (N=5-8) and B (N=5-6), compared to primary adult human islets (AHI)(N=5-7) and human fetal pancreas (HFP)(N=5). All genes were normalized to β actin within the same sample, then normalized to undifferentiated H1 cells. To compare gene expression profiles between endocrine cells among the four samples, all samples were then normalized to CHGA within the same sample. Fold changes (FC) listed are calculated based on the relative expression between AHI and each protocol. **(Next Page)**

Supplemental Fig. 2 | Assessment of SC-islets generated in Protocols A and B

Immunofluorescent staining for insulin (green, top), glucagon (red, top), Nkx6.1 (red, bottom) and Pdx1 (green, bottom) for SC-islets from Protocol A (A) and Protocol B (B). Quantification of the percentage of cell area that is positive for insulin (C) and glucagon (D) in SC-islets dervided from Protocols A and B, and the percentage of insulin-positive area that is double positive for glucagon in SC-islets from Protocols A and B, and human fetal pancreas (HFP) (E). QPCR gene expression data for characteristic islet genes in undifferentiated cells (H1 cells, normalized to 1 for each gene), Protocol A, Protocol B and adult human islets (AHI) (F). Statistical comparisons are relative to AHI.

Supplemental Fig. 3 | ITGA1 immunostaining in human islets in situ, during isolation, and during culture

Immunofluorescent staining of ITGA1 in islets at different stages of isolation and culture, from two different islet isolations (A, Donor A and B, Donor B). **(A)** Islets from donor A were stained before isolation (*in situ*) (a), collected during isolation (b), and collected after 2 days of culture (c). **(B)** Islets from donor B were stained before isolation (*in situ*) (a), collected after 7 days of culture (c).

Supplemental Fig. 4 | Additional immunofluorescent staining of fetal and adult human islets

Immunofluorescent staining of candidate human beta cell maturation markers reveals no change in beta cell-specific expression of the markers CHGA (A), ZNT8 (B), HDAC9 (C), ERO1B (D), KLF9 (E) between human fetal and adult pancreas sections. Individual channel images are the same magnification as the larger merged images. Scale bars = 50 microns.

Supplemental Fig. 5 | MAFA expression is low in Protocol B SC-islets.

To validate the accuracy of the MAFA antibody and our findings that MAFA is expressed in human fetal beta cells, Protocol B SC-islets were stained for MAFA (red), demonstrating very low MAFA protein expression which correlates with gene expression data for these cells.

Supplemental Fig. 6 | Nuclear SIX2 expression correlates with beta cell maturation.

Nuclear expression of SIX2 is low in human fetal beta cells and significantly increased in adult beta cells **(A)**. Nuclear expression of SIX2 is high in HFP grafts after an additional 32 weeks of *in vivo*-maturation **(B)**. Representative images (N=3 donors per group).

Supplemental Fig. 7 | Expression of glucose transporters GLUT1 and GLUT2

QPCR-based analysis of gene expression of glucose transporters *SLC2A1* (GLUT1) and *SLC2A2* (GLUT2) in adult human islets ("AHI"), human fetal pancreas ("HFP") and Protocols A ("A") and B ("B"). **A**) Gene expression was normalized to beta-actin within the same sample, then normalized to undifferentiated H1 cells and presented as a ratio of gene expression over *CHGA* to normalize for differences in endocrine mass between the various samples. **B**) Gene expression was normalized to beta-actin within the same sample, then normalize for differences in endocrine mass between the various samples. **B**) Gene expression was normalized to beta-actin within the same sample, then normalized to AHI are represented in black font, relative to HFP are represented in red font, relative to Protocol A are represented in light blue font, and relative to Protocol B are represented in purple font.

	Stage	Day	Media		Supplement								
	S0 (2d)	d-2	seeded 750,00	00 cells/w	ell of a 6-wel	l Transwell pla	ate (Corning, 3	3450)					
		d-1											
	S1 (3d)	dO	Begin differer	ntiation w	rhen cells read	ch ~90% conflu	ency						
		q0	Basal A1		CHIR-99021 2uM	Activin A 100ng/ml	bFGF 0.1 ug/ml	BMP4 0.01ug/ml					
		d1	Basal A1		CHIR-99021 0.2uM	Activin A 100ng/ml	bFGF 0.1 ug/ml	BMP4 0.01ug/ml					
tut		d2	Basal A1			Activin A 100ng/ml	bFGF 0.1 ug/ml	BMP4 0.01ug/ml					
7qµera	S2 (2d)	d3	Basal A1		Vitamin C 0.25mM	FGF7 50ng/ml	RA 0.5uM	LDN 100ng/ml	SB-431542 2.5mM				
1		d4	Basal A1		Vitamin C 0.25mM	FGF7 50ng/ml	RA 0.5uM	LDN 100ng/ml	•				
	() (3d)	d5 - 7	Basal A2		Vitamin C 0.25mM	FGF7 50ng/ml	RA 1.0uM	LDN 200ng/ml	Sant-1 0.25uM	TPB 0.2uM	ITS-X 0.5 x		
	S4 (3d)	d8 - 10	Basal A2		Vitamin C 0.25mM	FGF7 2ng/ml	RA 0.1uM	LDN 100ng/ml	Forskolin 10uM	SANT-1 0.25 uM	ITS-X 0.5 x		
	S5 (3d)		On day 11: S4 co sure they are no cells into ultra-	ells are tre ot too smal low attach	ated with 10un I. Spin 300xg fo ment plates or	r Y-27632 for 4 h r spin. Gently re T25s	iours, rinsed wi ssuspend pellet	th PBS -/- and 1 in stage 5 med	treated with ve ium - keeping a	rsene for 3-5 m attention to size	ins. Keep cel e of clusters,	ls in clusters try to keep ~1	, making .00um. Plate
ι		d11 - 13 50% change each day	Basal A3		Nico 10mM	ITS-X 0.5 x	Alk5i II 0.01mM	Heparin 10ug/ml	T3 1.0uM	LDN 100ng/ml	Forskolin 10uM	Exendin-4 0.01uM	RA 0.025 uM
loisnaqsu	S6 (7d)	d14 - 20 Feed every other day	Basal A3		Nico 10mM	ITS-X 0.5 x	Alk5i II 0.01mM	Heparin 10ug/ml	T3 1.0uM	LDN 100ng/ml	Forskolin 10uM	Exendin-4 0.01uM	DAPT 1 uM
S	S7 (7d)	d21 - 27 Feed every other day	Basal A3		Nico 10mM	ITS-X 0.5 x	Alk5i II 0.01mM	Heparin 10ug/ml	T3 1.0uM	BMP4 0.01ug/ml	NAC 1mM	Trolox 10uM	R428 2uM

Supplemental Table 1: Protocol A

	Stage	Day	Media	Supplement									
	S0 (2d)	d-2	seeded 750,000 cells,	/well of a 6-wel	l Transwell pl	ate (Corning, 3	3450)						
		d-1											
	S1 (3d)	OP	Begin differentiation	when cells read	ch ~90% conflt	rency							
		QD	Basal B1	CHIR-99021 2uM	Activin A 100ng/ml								
		d1	Basal B1		Activin A 100ng/ml	bFGF 0.005 ug/ml							
erant		d2	Basal B1		Activin A 100ng/ml	bFGF 0.005 ug/ml							
Чрү	S2 (3d)	d3 - 5	Basal B2	Vitamin C 0.50mM	FGF10 50ng/ml	CHIR-99021 2uM	LDN 100ng/ml						
	S3 (2d)	d6 - 7	Basal B3	Vitamin C 0.285mM	FGF10 50ng/ml	RA 2.0uM	LDN 100ng/ml	B27 (-VitA) 1%					
	S4 (3d)	d8 - 10	Basal B3	Vitamin C 0.285mM	EGF 100ng/ml	PDBu 0.03uM	LDN 100ng/ml	B27 1%	Nico 10mM				
	S5 (3d)		On day 11: S4 cells are too small. Spin 300xg fi attachment plates or T2	treated with 10ur or spin. Gently res 25s	r Y-27632 for 4 uspend pellet i	hours, rinsed wi 1 stage 5 mediun	ith PBS -/- and n - keeping attı	treated with ve ention to size c	rsene for 3-5 n f clusters, try t	iins. Keep ce o keep ~100u	lls in clusters ım. Plate cell	s, making sure s into ultra-lo	they are not w
		d11 - 13 50% change each day	Basal B4	Vitamin C 0.25mM	LDN 100ng/ml	Alksi II 0.01mM	He parin 10ug/ml	Comp E 1.0uM	Nico 10mM	Forskolin 10uM	Exendin-4 0.01uM	RA 0.025 uM	
uoisu	S6 (4d)	d14 - 17 Feed every other day	Basal B4	Vitamin C 0.25mM	LDN 100ng/ml	Alksi II 0.01mM	Heparin 10ug/ml	Comp E 1.0uM	Nico 10mM	T3 1.0uM	ZnSO₄ 10uM	BayK 2uM	
ədsng	S7 (7d)	d18 - 21 Feed every other day	Basal B4	Vitamin C 0.25mM	BMP4 0.01ug/ml	Alksi II 0.01mM	He parin 10ug/ml	R428 2uM	NAC 1.0mM	T3 1.0uM	ZnSO₄ 10uM	BayK 2uM	Trolox 10uM
	S8 (7d)	d21 - 27 Feed every other day	Basal B5	MK-801 10uM	T3 1.0uM	Alksi II 0.01mM							

Supplemental Table 2: Protocol B

Basal Media:							
Bacal A1		Glutamax 1	BSA	NaHC0 ₃	Glucose		
Busul AI	IVICUBISI	х	0.5%	1.5 g/L	10mM		
B	10000404	Glutamax 1	BSA	NaHC0 ₃	Glucose		
Basal AZ	MCDB131	x	2%	2.5 g/L	10mM		
Bacal A2	MCD0121	Glutamax 1	BSA	NaHC0 ₃	Glucose	P/S	
busul A3	INICOB131	x	2%	1.5 g/L	20mM	1 x	
Basal B1	RPMI						
Bread D2	IMDM: Ham's F12	P/S	Glutamax	BSA	N2	B27	MTG
Basal B2	75:25	1 x	1 x	0.05%	0.5 x	0.5 x	0.45mM
Becal P2		P/S					
Dasal D3		1 x					
		P/S	Glutamax	BSA	NaHC0 ₂	Glucose	ITS-X
Basal B4	MCDB131	1 x	1 x	2%	1.5 g/L	20mM	0.5X
Data 1 05	CMRL	P/S	AB Serum				
Basal B5	supplemented	1 x	5%				

Supplemental Table 3: Basal Media

Supplemental Table 1: Protocol A

Protocol for differentiation under Protocol A. Regent sources and abbreviations are defined in Supplemental Table 7.

Supplemental Table 1: Protocol A

Protocol for differentiation under Protocol B. Regent sources and abbreviations are defined in Supplemental Table 7.

Supplemental Table 3: Basal Media

Recipes for basal media used in Protocols A and B. Regent sources and abbreviations are defined in Supplemental Table 7.

Supplemental Table 4: Donor Tissues

Isolated Adult Human islets

Islet Source	Islet RRID	Age	Sex	BMI	Islet Purity	lslet Viability	Cause of Death
IIDP	SAMN08768974	28 years	Male	29.2	85%	98%	Head trauma
IIDP	SAMN08768991	51 years	Male	29	80%	95%	Head trauma
IIDP	SAMN08769201	24 years	Male	34.8	95%	97%	Head trauma
IIDP	SAMN08769390	33 years	Female	34.2	95%	98%	Cerebrovascular/stroke
IIDP	SAMN08769826	30 years	Male	56.8	95%	98%	Anoxia
IIDP	SAMN12670838	40 years	Male	30.7	90%	90%	Head trauma
Internal	UWHI325R	46 years	Male	39.5	80%	98%	Cardiac Arrest

Adult Human Pancreas

Donor	Age	Sex	BMI
Donor 52	61 years	Female	25
Donor 64	22 years	Male	33.6
Donor 66	38 years	Male	23.6
Donor 68	57 years	Female	27.2
Donor 84	46 years	Male	31.9
Donor 92	42 years	Male	23.3
Donor 93	24 years	Female	24
Donor 98	35 years	Male	26.5

Human Fetal Pancreas

Donor	Age	Sex
HFP 85	18 gw	Male
HFP 88	18 gw	Unk
HFP 92	19 gw	Unk
HFP 99	17 gw	Female
HFP 102	18 gw	Male

gw = gestational week

Target	Species	Dilution	Product
CHGA	Rabbit	1:400	23342-1-AP (Proteintech)
CHGB	Rabbit	1:200	14968-1-AP (Proteintech)
ERO1LB	Rabbit	1:50	ab230540 (Abcam)
FAM159B*	Rabbit	1:50*	PA5-52855 (ThermoFisher)
GCG	Mouse	1:1000	G2654 (Sigma)
GCG	Rabbit	1:2000	ab92517 (Abcam)
G6PC2*	Rabbit	1:250*	LS-C678007 (LS Bio)
GLUT1*	Rabbit	1:250*	ab115730 (Abcam)
HDAC9	Rabbit	1:100	MA5-33151 (ThermoFisher)
IAPP	Rabbit	1:1000	ab254259 (Abcam)
INS	Mouse	1:5000	I2018 (Sigma)
INS	Guinea Pig	1:2000	18510 (Sigma)
ITGA1*	Rabbit	1:200*	22146-1-AP (Proteintech)
KLF9*	Mouse	1:150*	CF808444 (Origene)
MAFA	Rabbit	1:200	BLR067G (Bethyl)
NTPDase3	Mouse	1:50	hN3-B3s (http://ectonucleotidases-ab.com/)
SIX2	Rabbit	1:500	11562-1-AP (Proteintech)
SST	Mouse	1:100	sc-74556 (Santa Cruz)
			Code PBL #7218, 01/12/11 bleed (from Dr. Paul
UCN3	Rabbit	1:2000	Sawchenko and the Salk Institute)
ZNT8	Rabbit	1:2000	ab244550 (Abcam)

Supplemental Table 5: Antibodies used for IF

Target	Color	Dilution	Product
Anti-Mouse	488	1:800	A11001 (Life Technologies)
Anti-Mouse	568	1:800	A11031 (Life Technologies)
Anti-Mouse	647	1:800	A21235 (Life Technologies)
Anti-Rabbit	488	1:800	A21206 (Life Technologies)
Anti-Rabbit	568	1:800	A11011 (Life Technologies)
Anti-Guinea Pig	488	1:800	A11073 (Life Technologies)

*Required signal amplification (Tyramide SuperBoost™ Kit)

Alexa Fluor™ 488 Tyramide SuperBoost™ Kit, goat anti-rabbit IgG: ThermoFisher B40922 Alexa Fluor™ 594 Tyramide SuperBoost™ Kit, goat anti-mouse IgG: ThermoFisher B40915

Supplemental Table 6: Primers used for QPCR

Gene	Product Number
ARNTL	Hs00154147_m1
CHGA	Hs00154441_m1
CHGB	Hs01084631_m1
ENTPD3	Hs00154325_m1
ERO1LB	Hs00219877_m1
FAM159B	Hs00971129_m1
G6PC2	Hs01549772_m1
GCK	Hs01564555_m1
GCG	Hs01031536_m1
HDAC9	Hs01081558_m1
НОРХ	Hs05028646_s1
IAPP	Hs00169095_m1
INS	Hs02741908_m1
ITGA1	Hs00235006_m1
KLF9	Hs00230918_m1
MAFA	Hs01651425_s1
NR1D1	Hs00253876_m1
OC2	Hs00191477_m1
SIX2	Hs00232731_m1
SIX3	Hs00193667_m1
SYT4	Hs01086433_m1
SLC2A1	Hs00892681_m1
SLC2A2	Hs01096908_m1
SLC30A8	Hs00545183_m1
SST	Hs00356144_m1
SYT4	Hs01086433_m1
UCN3	Hs00846499_s1

Supplemental Table 7: Sources of re	reagents used for differentiation
-------------------------------------	-----------------------------------

Product	Product Number	Supplier
Activin A	338-AC-050	R&D
CHIR-99021	NC9785126	ThermoFisher
Vitamin C (Ascorbic Acid)	A4544	Millipore Sigma
FGF10	PHG0204	ThermoFisher
LDN (LDN183189)	S2618-2MG	ThermoFisher
RA (Retinoic Acid)	R2625	Millipore Sigma
SB-431542	NC9993293	Stemgent
FGF7	251-KG-050	ThermoFisher
SANT-1	S4572-5MG	Cayman Chemical
ТРВ	565740	Millipore Sigma
ITS-X	51500056	ThermoFisher
Nico (Nicotinamide)	N0636-100G	Millipore Sigma
Heparin	H3149	Millipore Sigma
ТЗ	T6397	Millipore Sigma
Alk5i II	ALX-270-445-M005	Enzo
Compound E (Comp E) (GSI XXI)	82602-302	ThermoFisher
Forskolin	F6886-10MG	Millipore Sigma
Exendin-4 (Ex-4)	E71441MG	Millipore Sigma
R4028	NC0532629	ThermoFisher
BMP4	314-BP-050	R&D
Trolox	648471-500MG	Millipore Sigma
NAC (N-Acetyl Cysteine)	A9165-5G	Millipore Sigma
Bay-K (R(+) Bay K 8644)	04-0013	Stemgent
MK-801	M107-5MG	Millipore Sigma
ZnSO4	Z0251-100G	Millipore Sigma
Glutamax	35050061	ThermoFisher
BSA	A7030-50G	Millipore Sigma
N2	17502001	ThermoFisher
B27	17504044	ThermoFisher
MTG (1-Thioglycerol)	M6145-25ML	Millipore Sigma
P/S (Penicillin/Streptomycin)	15140122	ThermoFisher
MCDB131	10372019	ThermoFisher
CMRL	99-603-CV	Cellgro

Supplemental Methods

Image Quantification

For quantification of SIX2 in images (Supplemental Fig. 5), to clean up non-specific signal, merged images were generated between the DAPI and SIX2 channels to establish the "SIX2+ nuclei" overlap. The merged image clearly revealed localization of SIX2 to the nuclei of the adult islets only and absence in the fetal tissues, in correlation with previous studies using the same antibody (Arda et al. 2016).