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Note S1. Fabrication methods 
We form a silica layer on substrates of p-type silicon with a crystallographic orientation of ⟨100⟩ by thermal oxidation in 
a furnace at atmospheric pressure, at a temperature of 1100 °C, with an oxygen flow rate of 1000 mL min-1 (1000 sccm) 
and a ratio of hydrogen to oxygen of 1.85. We sputter-deposit chromia, Cr2O3, of at least 99.8% purity on the silica layer, 
with a deposition power of 400 W, under argon at a pressure of 1.3×10-3 Pa (9.8×10-6 Torr), and with a deposition rate of 
0.215 ± 0.005 nm s-1, for 285 s.  

We use an electron–ion beam system with a focused beam of gallium cations at an accelerating voltage of 30 kV, ion-
beam currents ranging from 82 ± 1 pA to 796 ± 4 pA, which we measure prior to fabrication by deflecting the ion beam 
into a Faraday cup, a working distance between the final lens and the substrate surface of 4.2 mm, and normal incidence 
with respect to the sample (Table S2). Uncertainties of ion-beam currents are conservative estimates of 100% coverage 
intervals. We propagate uncertainties by Monte-Carlo methods.[1] We fit manufacturer specifications of the half-width at 
half-maximum of the focused ion beam as a function of ion-beam current to the power-law model in Equation (1). 

We approximate the radius of our focused ion beam from the values of ion-beam current that we measure prior to 
fabrication (Table 11, Table S3). We use the radii from this power-law approximation to achieve an overlap of the ion 
beam of at least 50% between neighboring positions in the patterns.  

For pattern control, we use text files with matrices that define lateral positions, dwell times, and Boolean parameters 
for beam deflection. We mill two test patterns. The first is a 10 by 10 array of points with dwell times that increase linearly 
across columns. We write this pattern in multiple passes ranging in total dwell time from 0.05 to 5 s to form approximately 
Gaussian pits (Table S2). The second test pattern resembles a darkening checkerboard, being a 20 by 20 array of adjacent 
squares of 1 by 1 µm, with ion doses that alternate between 0 pC µm-2 and a value that increases from 0 to approximately 
1000 pC µm-2 across the columns and rows of the array in uniform increments of approximately 5 pC µm-2. We choose 
this dose increment to target depth increments of 1 nm between adjacent squares in the checkerboard pattern on the basis 
of tests of the milling rate of silica.[2] We remove the sacrificial chromia mask by immersion in a mixture of nitric acid, 
ceric acid, and water with respective volumetric fractions of 6%, 16%, and 78% for 5 min.  

We mill Fresnel lenses into silica coverslips with a thickness of approximately 170 µm, a root-mean-square surface 
roughness of less than 0.8 nm, and a surface quality with a scratch/dig specification of 20/10. We sputter-deposit a 
sacrificial mask of chromia with a thickness of 103 ± 2 nm onto a silica coverslip. We estimate the ion doses for radial 
profiles of Fresnel lenses from design depths and mean milling rates of chromia and silica (Note S10). We calculate the 
curvature of the lens design and trim the ion dose where the curvature drops below a critical value set by the inverse of the 
lateral extent of the ion beam (Note S11). We use the resulting radial profiles to interpolate values of ion dose for milling 
positions for each lens in a Cartesian coordinate system. We mill a single Fresnel lens directly into a silica coverslip with 
an ion-beam current of 26.3 ± 0.3 pA in a time of 3.75 h. We mill 75 Fresnel lenses in a square array through the sacrificial 
chromia mask and into silica with an ion-beam current of 2600 ± 30 pA in a time of 3.75 h. In this process, we aim to 
exhaust the mask, milling through its entire thickness to pattern each Fresnel lens and obviating the need for subsequent 
removal of the chromia by chemical etching.  
 
Note S2. Characterization methods  
We measure the thickness of the silica layer by ellipsometry. We measure the surface topography of the silica substrates 
before and after depositing the chromia mask. For all atomic force micrographs, we image regions of interest of 
approximately 25 by 25 µm with a line-scan resolution of 2048 points and at a rate of approximately 0.67 Hz. We use 
silicon-nitride cantilevers with a length of 27 µm, a resonant frequency of approximately 1400 kHz, a force constant of 
17 N m-1, and carrying a silicon tip with nominal front angle of 261 ± 44 mrad (15° ± 2.5°), a nominal back angle of 
446 ± 44 mrad (25° ± 2.5°), a nominal radius of 5 nm, and a maximum radius of 12 nm. Assuming this geometry, the width 
of the probe is nominally 75 ± 7 nm at a depth of 100 nm, which is comparable to the smallest radii of test pits that we 
measure. Such a geometry imposes an upper limit on the aspect ratio of features that we expect to measure accurately. We 
input these manufacturer specifications of the probe tip geometry into a certainty-map algorithm to identify and ignore data 
in atomic force micrographs that exhibit artifacts from tip convolution.[3] We estimate uncertainties of atomic force 
microscopy by a combination of manufacturer specifications and previous tests (Table S3).[2]  

We perform scanning electron microscopy with an acceleration voltage of 5 kV, a nominal electron-beam current of 
100 pA, a working distance of 4.2 mm, and at normal incidence with respect to the microscope stage. In all scanning 
electron micrographs, the imaging mode is of secondary electrons incident on a through-lens detector. Before ion exposure, 
we record scanning electron micrographs of the chromia mask at a magnification of 250000× ± 7500×, which corresponds 
to a horizontal field width of 597 ± 18 nm. This uncertainty is a 100% coverage interval per the microscope specification. 

We prepare a cross section of the chromia and silica layers for transmission electron microscopy by ex situ lift-out.[4] 
The dimensions of the cross section are approximately 10 µm in length, 5 µm in width, and 100 nm in depth. We image 
the cross section by brightfield transmission electron microscopy at an acceleration voltage of 300 kV.  

We determine the solid-state of chromia by X-ray diffraction from 0.35 to 1.40 rad in increments of 0.1 mrad with a 
total reflection critical angle of 7.0 mrad. The incident X-rays correspond to copper Kα transitions, which have an energy 
of 1.29 fJ (8.04 keV) and a wavelength of 0.1506 nm. We fit an X-ray reflectivity model[5] to the resulting data to measure 
density, surface roughness, and thickness. We fit all models to data by damped least-squares estimation with uniform 
weighting. We estimate the sizes of crystallites present in X-ray diffractometry data using the Scherrer equation.  

For in-line resolution metrology, we measure pits by scanning electron microscopy at a magnification of 
5000× ± 150×, which corresponds to a horizontal field width of 29.8 ± 0.9 µm. We measure the surface topography of 
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complex nanostructures that we mill through chromia and into silica by atomic force microscopy before and after removal 
of the sacrificial mask.  

We record brightfield micrographs of Fresnel lenses to characterize the projection distances and apparent sizes of focal 
spots from each lens through a focal volume of approximately 258 by 258 µm by 40 µm. We axially section the focal 
volume into 1001 micrographs, scanning vertically in increments of 40 ± 10 nm. For these micrographs, a light-emitting 
diode trans-illuminates the samples with a wavelength range from 420 to 510 nm. An objective lens with a nominal 
magnification of 50× and a numerical aperture of 0.95 collects transmission through air immersion. A tube lens projects 
the images onto a complementary metal–oxide–semiconductor (CMOS) camera with 2048 by 2048 pixels, each with an 
on-chip size of 6.5 by 6.5 µm. A mean factor of 2.0, per the specification of the camera manufacturer, converts from 
photoelectrons to analog-to-digital units. We operate the camera at a sensor temperature of -10 °C by thermoelectric and 
water cooling, without on-board correction of pixel noise, and in fast-scan mode, and we calibrate the imaging system for 
these parameters. 

We calibrate the imaging system with an aperture array that has a pitch of 5001.45 ± 1.08 nm, determining a mean 
pixel size of 126.82 ± 0.03 nm.[6]  We determine positions of best focus of lens surfaces by finding local maxima of a ninth-
order polynomial model of image contrast in a range of images that we identify by inspection to include the top surface of 
the central zones of the lenses. We determine positions of best focus of images of focal spots by fitting symmetric Gaussian 
models to image data and minimizing a ninth-order polynomial model that we fit to the resulting standard deviations in a 
range of images that we identify by inspection. We determine projection distance as the difference between the two 
positions of best focus.  
 
 

 
Figure S1. Silica and chromia. Atomic force micrographs showing a) silica before deposition of chromia and b) chromia 
before ion exposure. Comparison of the micrographs indicates that the areal densities of silica asperities and chromia 
patches with lateral dimensions exceeding 50 nm are comparable, as well as a convolution artifact of the probe tip in (b). 

 
 
 
Table S1. Material properties  

Material Composition Function Measurement method 
Density 
(g cm-3) 

Thickness 
(nm) or (µm) 

Root-mean-square 
roughness 

(nm) 

Chromia Cr2O3 Sacrificial mask 

Atomic force microscopy – – 0.6 ± 0.2 
Transmission electron 

microscopy – 63 ± 2 nm – 

X-ray diffraction 5.3 ± 0.1 65 ± 3 nm 1.5 ± 0.4 

Silica SiO2 Working material 
Atomic force microscopy – – 0.3 ± 0.2 

X-ray diffraction 2.2 ± 0.1 488 ± 2 nm 0.4 ± 0.4 

Silicon Si Substrate 
Atomic force microscopy – – 0.3 ± 0.2 

Manufacturer specification 2.3 525 ± 25 µm – 
Uncertainties of density, thickness, and roughness by X-ray diffraction are conservative estimates of 100% coverage intervals. 
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Table S2. Milling parameters  

Ion-beam 
current 

(pA) Feature 
Elements 
in array  

Lateral extent 
of array 

(µm by µm) 

Pitch of milling 
positions  

(nm) 

Number 
of milling 
positions 

Dwell time 
(µs) 

Number 
of  

passes 

Total 
milling 
time  
(s) 

82 ± 1 pits 10 by 10 18 by 18  12.3 100 100 3052 275.2 
219 ± 2 pits 10 by 10 18 by 18  19.8 100 100 1526 137.6 
407 ± 2 pits 10 by 10 18 by 18  26.8 100 100 611 55.0 
773 ± 3 pits 10 by 10 18 by 18  36.7 100 100 306 27.5 
83 ± 1 squares 20 by 20 20 by 20  12.4 1312200 100 59 1241.9 

227 ± 1 squares 20 by 20 20 by 20  20.2 472424 100 14 434.2 
421 ± 3 squares 20 by 20 20 by 20  27.3 253504 100 22 228.9 
796 ± 4 squares 20 by 20 20 by 20 37.2 133136 100 56 118.6 
26 ± 0.3 lenses 1 by 1 15 by 15 7.0 3414413 50 155 13500 

2600 ± 30 lenses 7.5 by 10 150 by 120  66.4 2791725 50 166 13500 
2600 ± 30 lenses 1 by 1 15 by 15 66.4 36473 50 143 144 

Uncertainties of ion-beam current are conservative estimates of 100% coverage intervals.  
The milling time of pits includes a 0.4 µs pause to unblank and blank the ion beam before and after milling at each beam position.  
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Table S3. Statistical variables  

Variable 
Type of  
variable  Symbol Distribution 

Type[7] of 
evaluation Value Units 

Localization uncertainty in SEM micrographs Uncertainty 𝑢𝑢loc, SEM Normal B Mean: 𝑠𝑠0, SEM, SD: 𝜎𝜎loc, SEM nm 
Localization uncertainty in AFM micrographs Uncertainty 𝑢𝑢loc, AFM Normal B Mean: 𝑠𝑠0, AFM, SD: 𝜎𝜎loc, AFM nm 
Standard deviation of Gaussian filter Dimension 𝜎𝜎G Uniform A Range: 10 to 30 nm 
Window length of Savitzky-Golay filter Dimension 𝜔𝜔SG Uniform A Range: 13 to 27, odd values pixels 
Secondary electron scattering intensity Dimension 𝐼𝐼SE Normal B Mean: 𝐼𝐼SE�𝑠𝑠(𝜃𝜃)�, SD: 𝜎𝜎SE arb. 
Magnification uncertainty in SEM micrographs Uncertainty 𝑢𝑢mag Uniform B Range: -0.03𝑎𝑎SEM to 0.03𝑎𝑎SEM – 
Mean pixel size of SEM micrographs Dimension 𝑎𝑎SEM Delta A 4.9 nm 
Calibration errors of atomic force microscope Uncertainty 𝑢𝑢cal Normal A Mean: 0, SD: 0.0025 ∙ 𝑧𝑧 nm 
Position errors from surface roughness Uncertainty 𝑢𝑢rough Normal A Mean: 0, SD: 0.030 nm 
Position errors from flatness Uncertainty 𝑢𝑢flat Normal A Mean: 0, SD: 0.065 nm 
Position uncertainty due to AFM probe tip Dimension 𝑢𝑢tip Uniform B Range: -0.5∙ 𝑟𝑟tip to 0.5∙ 𝑟𝑟tip nm 
Maximum nominal radius of AFM probe tip Dimension 𝑟𝑟tip Delta A 5 nm 
Radius of pits in SEM micrographs Dimension 𝑟𝑟p, SEM Empirical B 𝑢𝑢loc, SEM, 𝜔𝜔SG, 𝜎𝜎G, 𝐼𝐼SE, 𝑢𝑢mag nm 
Radius of pits in AFM micrographs Dimension 𝑟𝑟p, AFM Empirical B 𝑢𝑢loc, AFM, 𝜔𝜔SG, 𝜎𝜎G, 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip nm 
X-ray diffraction intensity Dimension 𝐼𝐼XRD Normal B Mean: 𝐼𝐼XRD, SD: 𝜎𝜎XRD arb. 
Chromia density Dimension 𝜌𝜌m Normal A Mean: 5.3, SD: 0.05 g cm-3 
Silica density Dimension 𝜌𝜌s Normal A Mean: 2.2, SD: 0.05 g cm-3 
Root-mean-square roughness of chromia Dimension 𝑅𝑅q, m Normal A Mean: 1.5, SD: 0.4 nm 
Root-mean-square roughness of silica Dimension 𝑅𝑅q, s Normal A Mean: 0.4, SD: 0.2 nm 
Depth of features in AFM micrographs Dimension 𝑧𝑧𝑠𝑠 Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip nm 
Chromia thickness  Dimension 𝑧𝑧m Normal A Mean: 63, SD: 1 nm 
Milling rates of chromia on silica Dimension 𝑚𝑚𝑖𝑖 Normal B Table S6 µm3 nA-1 s-1 
Intercepts of milling responses Dimension 𝑏𝑏𝑖𝑖 Normal B Table S6 nm 
Mean milling rate of chromia Dimension 𝑚𝑚�m Normal B Mean: 0.15, SD: 0.02 µm3 nA-1 s-1 
Mean milling rate of silica Dimension 𝑚𝑚� s Normal B Mean: 0.24, SD: 0.02 µm3 nA-1 s-1 
Ion-beam current Dimension 𝐼𝐼 Normal A Table S2 pA 
Coefficient of power law of ion-beam HWHM Dimension 𝛼𝛼beam Normal B Mean: 1.43, SE: 0.12 nm pA-β 
Exponent of power law of ion-beam HWHM Dimension 𝛽𝛽beam Normal B Mean: 0.49, SE: 0.01 – 
Coefficient of power law of width of step edges Dimension 𝛼𝛼 Normal B Mean: 60, SD: 13 nm pA-β 
Exponent of power law of width of step edges Dimension 𝛽𝛽 Normal B Mean: 0.20, SD: 0.05 – 
Widths of edges before chromia removal Dimension 𝑤𝑤b Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip nm 
Widths of edges after chromia removal Dimension 𝑤𝑤a Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip nm 
Effective lateral resolution or super-resolution Dimension ℛ Empirical B 𝛼𝛼, 𝛽𝛽, ℱSR nm 
Super-resolution factor Dimension ℱSR Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip – 
Physical selectivity of chromia and silica Dimension 𝒮𝒮 Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip – 
Temporal efficiency Dimension 𝜂𝜂𝜏𝜏 Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip – 
Temporally efficient milling range Dimension 𝜁𝜁max Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip, 𝛽𝛽 – 
Volume throughput Dimension 𝒱𝒱 Empirical B 𝑢𝑢cal, 𝑢𝑢rough, 𝑢𝑢flat, 𝑢𝑢tip, 𝑚𝑚�m, 𝑚𝑚� s, 𝑖𝑖 µm3 hr-1 
Figure of merit of focused-ion-beam milling Dimension ℳ Empirical B ℛ, 𝒱𝒱 µm2 hr-1 
SEM = scanning electron microscopy 
SD = standard deviation 
AFM = atomic force microscopy 
HWHM = half width at half maximum 
SE = standard error 
We treat the bulk milling rate of silica as its mean value.  
We extend the conventional evaluation Type from uncertainties to dimensions. 
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Note S3. Image formation 
We observe a near equality of test-pit radii corresponding to the maximum signals of secondary electrons in scanning 
electron micrographs and the maximum convexity of surface profiles in atomic force micrographs. Secondary electrons 
from test pits form images with two main features of dark centers within bright rings, both of which are within the outer 
rims of the test pits (Figure 3c). In a previous study,[8] similar signals resulted from test pits in silicon 〈111〉 and glassy 
carbon. However, the authors of this previous study removed the bright rings by a threshold and approximated the dark 
central features with a symmetric bivariate Gaussian function. This approximation would be inaccurate for our scanning 
electron micrographs and would lead to errors in measurements of pit radius. To better understand the empirical correlation 
that we use for in-line resolution metrology, we investigate the influence of the surface topography on the theoretical signal 
of secondary electrons, using fundamental concepts of image formation in scanning electron microscopy. A symmetric 
bivariate Gaussian surface, which has deviations in z position of approximately 5% in comparison to the surface profiles 
of our test pits (Figure 3c), is a reasonable approximation of our pit topography for theoretical analysis. Our calculations 
lead to a new interpretation of the image data. 

We expect three effects to dominate image contrast in scanning electron micrographs of pits. First, tilt contrast results 
from the dependence of the secondary-electron yield on the tilt angle, 𝜙𝜙, of the local surface-normal relative to the incident 
electron-beam. The secant of the tilt angle, sec𝜙𝜙, is a common approximation of secondary-electron emission due to 
surface topography.[9] Second, shadow contrast results from surfaces of the pit that reabsorb secondary electrons, obscuring 
access to the top surface of the sample where an extraction bias pulls electrons toward the detector, reducing signals that 
originate within the basin of the pit.[4, 9b, 10] Third, material contrast results from local variations in secondary-electron yield 
due to the presence of the chromia–silica bilayer, gallium dopants from the ion beam, and redeposition during sputtering, 
further modulating the superimposition of tilt and shadow effects. Although diffusion effects are also relevant, we expect 
a diffusion length of order 100 nm for secondary electrons in our system. Additionally, we expect the diffusion effect to 
contribute more to image formation for surface regions of higher slope than for surface regions of lower slope. Therefore, 
we expect that our analysis of tilt contrast captures relevant spatial information from the diffusion effect.  

To investigate the effects of pit topography on image formation, we compute tilt and shadow contrast for images of 
the surface of a Gaussian pit, 𝑆𝑆(𝑥𝑥,𝑦𝑦), with an aspect ratio that is comparable to that of the test pits. With diameters ranging 
from approximately 160 to 360 nm and corresponding depths ranging from approximately 30 to 100 nm, the aspect ratios 
of test pits vary from approximately 0.2 to 0.3. For a path along the x direction and through the center of the Gaussian pit, 
we calculate the primary signal, sec𝜙𝜙 = �1 + (𝜕𝜕𝑆𝑆 𝜕𝜕𝜕𝜕⁄ )2, resulting from tilt contrast. For simplicity, we exploit the axial 
symmetry of the pit and the orientation of the path of interest in the x direction to ignore the y component of the surface in 
our calculation of the primary signal. We model shadow effects by calculating the accessibility of the surface of the pit to 
the zero plane, which corresponds to the flat surface above the pit. For any point on the zero plane, the accessibility is the 
solid angle that a hemisphere subtends, 2𝜋𝜋 sr, as any secondary electron escaping the surface is free to move toward a 
detector above the surface. The concavity of the surface of a Gaussian pit reduces the accessibility from a maximum value 
of 2𝜋𝜋 sr far from the center of the pit to a minimum value at the center of the pit (Figure S2a).  

During imaging, an extraction field of approximately 17 kV m-1 pulls electrons toward an in-lens detector. However, 
the extraction field changes the electron energy by less than 1 part in 1000, so that straight lines are good approximations 
of electron trajectories within submicrometer test pits. This suggests that accessibility approximates shadow contrast from 
the surface of such pits. We calculate the accessibility, 𝒜𝒜(𝑆𝑆,𝒙𝒙𝑖𝑖), of the 𝑖𝑖th point on a path through the center of 𝑆𝑆 in three 
dimensions by integrating the intervisibility function over the solid angle that the hemisphere subtends, Ω, in equation (S1), 
 
 

𝒜𝒜(𝑆𝑆,𝒙𝒙𝑖𝑖) =
1
𝜋𝜋
� 𝑣𝑣�𝑆𝑆,𝒙𝒙𝑖𝑖 , 𝒓𝒓(𝜔𝜔)�𝑑𝑑𝑑𝑑
Ω

, (S1) 

 
where the intervisibility,[11] 𝑣𝑣(𝑆𝑆, 𝒓𝒓(𝜔𝜔),𝒙𝒙𝑖𝑖), is either one or zero if 𝑆𝑆 occludes a ray, 𝒓𝒓(𝜔𝜔), emanating from a point on the 
surface profile, 𝒙𝒙𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖), in direction 𝜔𝜔 = (𝜃𝜃,𝜑𝜑), where 𝜃𝜃 is the polar angle and 𝜑𝜑 is the azimuthal angle. We 
compute the intervisibility as 
 

𝑣𝑣(𝑆𝑆, 𝒓𝒓(𝜔𝜔),𝒙𝒙𝑖𝑖) = 0�1, 𝑧𝑧𝑟𝑟 > 𝑧𝑧𝑖𝑖 +
‖𝒓𝒓(𝜔𝜔)‖
‖𝒙𝒙𝑘𝑘 − 𝒙𝒙𝑖𝑖‖

(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑖𝑖) for all 𝒙𝒙𝑘𝑘

0, otherwise
, (S2) 

 
where 𝒙𝒙𝑘𝑘 = (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘) are intermediate points on the surface of the pit between 𝒙𝒙𝑖𝑖 and the projection of 𝒓𝒓(𝜔𝜔) onto the 
surface, 𝑧𝑧𝑟𝑟 is the 𝑧𝑧 position of the terminus of 𝒓𝒓(𝜔𝜔). We use Monte-Carlo integration to compute Equation (S1) along 𝒙𝒙𝑖𝑖. 
We set the length of 𝒓𝒓(𝜔𝜔) to span the computational domain and achieve uniform sampling of 𝜔𝜔 over Ω in 105 random 
directions by  𝜃𝜃 = cos−1�𝒰𝒰(0,1)�  and 𝜑𝜑 = 2𝜋𝜋𝜋𝜋(0,1) , where 𝒰𝒰(0,1)  represents a uniform distribution of with lower 
bound of zero and an upper bound of one. Lastly, we calculate the second spatial derivative of 𝑆𝑆 and a factor of the signal 
intensity resulting from topographic contrast, 𝐼𝐼topography, as the product of the surface-tilt and shadowing effects,  



      

Supporting Information for Unmasking the resolution–throughput tradespace of focused-ion-beam machining  7 

 

𝐼𝐼topography ∝
𝒜𝒜(𝑆𝑆,𝒙𝒙𝑖𝑖)

2𝜋𝜋
sec𝜙𝜙 . (S3) 

Several results of this new analysis indicate a limit of tilt and shadow contrast to predict rings of high intensity in 
secondary electron images of Gaussian pits. First, the primary signals from tilt contrast appear as peaks in signal intensity 
at positions where the first spatial derivative, rather than the second spatial derivative, of 𝑆𝑆 are maximal (Figure S2b). Next, 
the accessibility of 𝑆𝑆 exhibits a concave structure, transitioning from maximum values of 2𝜋𝜋 sr outside of the pit to a 
minimum value of approximately 𝜋𝜋 sr in the center of the pit (Figure S2c). In comparison, the negative of the second spatial 
derivative of 𝑆𝑆 shows two maxima, each of which indicates positions of maximum convexity of 𝑆𝑆, and a global minimum 
in the center of the pit, indicating a position of maximum concavity (Figure S2d). We interpret these positions of maximum 
convexity as possible locations for material contrast to arise due to the implantation of gallium, interspersing of chromia 
and silica, and redeposition of the various materials on the surface of the pit. Last, the product of the tilt and shadow effects 
predicts a complex response that rises slowly near the outer rim of the pit and falls to a global minimum in the center of 
the pit (Figure S2e). The discrepancies between the product of tilt and shadow contrast, and the negative second derivative 
of 𝑆𝑆, also suggest that material contrast affects the formation of images of Gaussian pits. Further study is necessary to fully 
understand the cause of the empirical correlation of electron signals and pit curvature, which nonetheless enables in-line 
resolution metrology. 
 

 
Figure S2. Image formation. Plots showing a) an arbitrary surface profile of a Gaussian pit, 𝑆𝑆, b) the secant of the tilt 
angle, 𝜙𝜙, of the surface profile normal, 𝑛𝑛, c) accessibility of the surface profile, d) the negative of the second derivative 
of the surface profile, and e) an overlay of (solid orange line) the negative of the second derivative and (yellow dash line) 
the product of sec𝜙𝜙 and accessibility. Black arrows in (a) indicate rays that escape the surface and gray dash arrows 
indicate rays that the surface occludes. Abrupt changes in (c) are artifacts from discretization of the computational 
domain and numerical integration. 
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Note S4. In-line resolution metrology 
To measure pit radii in both scanning electron micrographs and atomic force micrographs, we localize pit centers using 

empirical model approximations and then localize maxima in radial sections of regions of interest of each pit. We propagate 
uncertainty through our analysis by perturbing position and image data in Monte-Carlo simulations of our measurements.  

Our analysis begins by thresholding each micrograph and computing centroids of simply connected regions to obtain 
the approximate positions of each pit. To localize the center of each pit in each imaging mode, we fit model approximations 
to image data. In images of pits in atomic force micrographs, we approximate the depths by an asymmetric bivariate 
function, 𝐺𝐺(𝑥𝑥,𝑦𝑦),  
 
 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = 𝐴𝐴G ∙ exp �−�
1

2(1 − 𝜌𝜌2) �
(𝑥𝑥 − 𝑥𝑥0)2

𝜎𝜎𝑥𝑥2
− 2𝜌𝜌

(𝑥𝑥 − 𝑥𝑥0)(𝑦𝑦 − 𝑦𝑦0)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

+
(𝑦𝑦 − 𝑦𝑦0)2

𝜎𝜎𝑦𝑦2
��� + 𝑐𝑐, (S4) 

 
where 𝐴𝐴G is the amplitude, (𝑥𝑥0,𝑦𝑦0) is the center position of the pit in the x and y directions, 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the standard 
deviations in the x and y directions, 𝜌𝜌 is the correlation coefficient between the x and y directions, and c is a constant 
background. In images of pits in scanning electron micrographs, we approximate the secondary-electron intensity as the 
sum of two functions. First, the Gaussian function in Equation (S4) approximates the intensity minimum at the center of a 
pit. Second, an elliptical annulus, 𝐸𝐸(𝑥𝑥, 𝑦𝑦), with the Gaussian profile in Equation (S5), approximates the ring of maximum 
intensity that circumscribes the center of the pit, 
 
 

𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 𝐴𝐴E ∙ exp �−�
1

2𝜔𝜔2(1 − 𝜌𝜌2) �
(𝑥𝑥 − 𝑥𝑥0)2

𝜎𝜎𝑥𝑥2
− 2𝜌𝜌

(𝑥𝑥 − 𝑥𝑥0)(𝑦𝑦 − 𝑦𝑦0)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

+
(𝑦𝑦 − 𝑦𝑦0)2

𝜎𝜎𝑦𝑦2
− 1�

2

�� + 𝑐𝑐, (S5) 

 
where 𝐴𝐴E is the amplitude, 𝜔𝜔 is the width of the annulus. We estimate the localization uncertainties of the center of pit 
images by perturbing image and position data of either micrograph, fitting models to the resulting data, and extracting the 
resulting center positions. Repeating this process 103 times for each pit, we construct distributions of center positions from 
which we calculate standard deviations as localization uncertainties of center positions for each micrograph of each pit. 
We perturb values of position within regions of interest with random noise from uniform distributions, which correspond 
to lateral uncertainties from the probe tip for atomic force micrographs, or from magnification errors for scanning electron 
micrographs. We perturb values of the z position and intensity of secondary-electron scattering in regions of interest with 
random noise from normal distributions, which respectively correspond to errors in calibration, flatness, and various 
scanning artifacts for atomic force micrographs, or to estimates of the standard deviation of the background intensity of 
secondary-electron scattering for scanning electron micrographs, which we measure on the borders of regions of interest. 
This process of perturbing position and image data forms the basis of our Monte-Carlo simulation.  

After localizing each pit, we align the array of pits in each micrograph by rotation of the micrographs so that the rows 
of pits in each micrograph are horizontal, corresponding to an angle of 0 rad. We then extract regions of interest of 1 by 
1 µm and concentric with each pit from each micrograph. A symmetric bivariate Gaussian filter with an isotropic standard 
deviation ranging from 10 to 30 nm smooths image data within the region of interest (Table S3, Figure S3, Figure S4). To 
evaluate uncertainties of pit locations, we perturb the initial values of the center position of a pit with random noise from 
normal distributions of the localization uncertainty in the x and y directions. We excise one-dimensional sections of length 
500 nm from the center position of the pit at an angle, 𝜃𝜃, with respect to the horizontal direction of each image, for angles 
ranging from 0 to 2π rad. As before, we apply our Monte-Carlo simulation approach, perturbing the position and image 
data of these radial sections to propagate uncertainty through our analysis. 

Both atomic force micrographs and scanning electron micrographs comprise discrete data with independent sources 
of noise that degrade images of the pits. Such noise complicates differentiation and may contribute to inaccurate 
measurements of the positions of extrema of the second derivative. To address this issue, we apply a Savitzky-Golay[12] 
digital smoothing filter with a cubic polynomial and a window length ranging from 13 to 27 pixels to smooth the one-
dimensional sections and to enable second-order differentiation of the sections from atomic force micrographs (Table S3, 
Figure S3, Figure S4). We vary the window length of the filter to evaluate both random and systematic effects with respect 
to mean radius (Figure S4). Optimal window length depends primarily upon the signal-to-noise ratio present within an 
image and may vary with different imaging conditions. 

After smoothing and differentiation, the sections from each micrograph include a single global maximum, with a 
position corresponding to the pit radius of the section. We model the local vicinity of the maximum with a quartic 
polynomial to localize the maximum of each radial section, 𝑠𝑠(𝜃𝜃). We define the angle-dependent radius of the pit in 
scanning electron micrographs, 𝑟𝑟p, SEM(𝜃𝜃), to be the distance between the center of the pit, 𝑠𝑠0, SEM, and the position of the 
maximum of the intensity of secondary electron scattering in scanning electron micrographs,  
 
 𝑟𝑟p, SEM(𝜃𝜃) =  arg max

𝑠𝑠(𝜃𝜃)
�𝑭𝑭SG�𝑭𝑭G�𝒩𝒩�ℐSE�𝑠𝑠(𝜃𝜃)�,𝜎𝜎SE

2 �,𝜎𝜎G
2�,𝜔𝜔SG�� − 𝒩𝒩�𝑠𝑠0, SEM,𝜎𝜎loc, SEM

2 �, (S6) 
 
where 𝑭𝑭SG denotes the application of the Savitzky-Golay filter with window length, 𝜔𝜔SG, 𝑭𝑭G denotes the application of the 
Gaussian filter with standard deviation 𝜎𝜎G , 𝒩𝒩  denotes a normal distribution, ℐSE�𝑠𝑠(𝜃𝜃)�  is the intensity of secondary 
electron scattering on the section, 𝜎𝜎SE is the standard deviation of the background intensity of secondary electron scattering, 
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𝜎𝜎loc, SEM is the localization uncertainty of the center of the pit, and the x and y components of the section on the sampling 
radius, 𝑟𝑟𝑠𝑠, 𝑠𝑠(𝜃𝜃) = (𝑟𝑟𝑠𝑠cos𝜃𝜃, 𝑟𝑟𝑠𝑠sin𝜃𝜃), are each subject to uncertainty from a uniform distribution of 𝒰𝒰�−0.5𝛿𝛿mag, 0.5𝛿𝛿mag� 
from the uncertainty of the magnification of the scanning electron micrographs, 𝛿𝛿mag = 0.03𝑎𝑎SEM, where 𝑎𝑎SEM is the mean 
value of pixel size of the scanning electron micrograph. Similarly, we define the angle-dependent radius of the pit in 
scanning electron micrographs, 𝑟𝑟p, AFM(𝜃𝜃), to be the distance between the center of the pit, 𝑠𝑠0, AFM, and the position of the 
maximum value of convexity of the pit in atomic force micrographs,  
 
 

𝑟𝑟p, AFM(𝜃𝜃) =  arg max
𝑠𝑠(𝜃𝜃)

�−
𝜕𝜕2

𝜕𝜕𝑠𝑠2
𝑭𝑭SG�𝑭𝑭G�𝒩𝒩�𝑧𝑧�𝑠𝑠(𝜃𝜃)�,𝜎𝜎cal

2 � + 𝒩𝒩(0,𝜎𝜎r
2) + 𝒩𝒩(0,𝜎𝜎f

2),𝜎𝜎G
2 �,𝜔𝜔SG �� −𝒩𝒩�𝑠𝑠0, AFM,𝜎𝜎loc, AFM

2 �, (S7) 

 
where 𝑧𝑧�𝑠𝑠(𝜃𝜃)� is the z position on the section, 𝜎𝜎cal = 0.0025𝑧𝑧 accounts for a 0.5% systematic error from calibration of the 
atomic force microscope, 𝜎𝜎r accounts for uncertainty from the configuration of scan rate, scan resolution, and probe tip,[2] 
𝜎𝜎f  accounts for flatness errors, and the x and y components of the section, 𝑠𝑠(𝜃𝜃) = (𝑟𝑟𝑠𝑠cos𝜃𝜃, 𝑟𝑟𝑠𝑠sin𝜃𝜃) , are subject to 
uncertainty from a uniform distribution of 𝒰𝒰�−0.5𝑟𝑟tip, 0.5𝑟𝑟tip� from the probe tip, where 𝑟𝑟tip is the radius of the tip. 

For each imaging mode, we repeat these measurements 30 times for angles ranging from 0 to 2π rad in increments of 
approximately 100 mrad. To propagate uncertainty, we perturb the position and image data with random noise from 
uncertainty parameters each time, resulting in 1860 measurements of radius for each pit, and a total of 18600 measurements 
for each set of 10 replicates. We record measurements of radius from all Monte-Carlo simulations, compiling distributions 
of radii for all replicates in each micrograph. Table S3 summarizes all statistical variables that are relevant to the Monte-
Carlo simulation of the measurements of pit radii. 

Our in-line measurements and topographic analyses of test pits are highly relevant for focusing and calibrating 
electron–ion beam systems. Moreover, our methods of image analysis are broadly applicable to localizing features and 
inferring dimensions of similar nanostructures in scanning electron micrographs. 
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Figure S3. Correlative measurements. a) Scanning electron and b) atomic force micrographs showing the same 
representative array of pits that we mill with a focused ion beam with an ion-beam current of 219 ± 2 pA for dwell times 
ranging from 0.25 to 1.25 s in increments of 0.25 s. Dash boxes indicate the same region of interest in (c). c) Plots showing 
measurements of pit radius by (black) AFM and (gray) SEM for section angles ranging from 0 to 2π rad in increments of 
20 mrad. The mean radius of the pit is 122 ± 4 nm by atomic force microscopy and 122 ± 1 nm by scanning electron 
microscopy. Bars indicate radius distribution widths as 95% coverage intervals. 
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Figure S4. Filter parameters. a, b) Plots showing measurements of mean radius of a pit by (gray circles) scanning electron 
microscopy (SEM) and (black squares) atomic force microscopy (AFM) as functions of a) the standard deviation of the 
symmetric bivariate Gaussian filter and b) the window length of the Savitzky-Golay digital smoothing filter for the central 
pit in Figure S3a,b. Single values of the standard deviation of the Gaussian filter in (a) pair with a uniform distribution of 
the window length of the Savitzky-Golay filter in 1240 Monte-Carlo simulations of pit radius to isolate the effect of the 
value of standard deviation on measurements of pit radius. Similarly, single values of the window length of the Savitzky-
Golay filter in (b) pair with a uniform distribution of the standard deviation of the Gaussian filter in 1240 Monte-Carlo 
simulations of pit radius to isolate the effect of the value of window length on measurements of pit radius. Gray dash 
lines indicate experimental ranges of the standard deviation of the Gaussian filter and the window length of the Savitzky-
Golay filter (Table S3). These plots show the potential of each filter parameter to bias the measurements. Our 
simultaneous use of a range of values for each filter parameter yields measurements of mean pit radius in the center of 
these ranges with uncertainties of approximately 1 nm for scanning electron microscopy and 4 nm for atomic force 
microscopy. 
 
 
Note S5. Milling Responses 
We measure the depth, surface roughness, and edge width of the square features of checkerboard test-structures by analysis 
of atomic force micrographs. We level the atomic force micrographs and propagate uncertainties by Monte-Carlo 
simulations (Table S3). For each square feature, we extract image data from regions of interest of size 0.36 by 0.36 µm, or 
30 by 30 pixels, and concentric with the center of the square. We perturb values of the z position with random noise from 
normal distributions to account for errors in calibration, flatness, and scanning artifacts for atomic force micrographs. We 
compute the mean depth and root-mean-square value of surface roughness of the flat of each square. For each edge in the 
scanning dimension of a square feature, we extract image data from five sections within regions of interest of size 1 by 
0.36 µm, or 82 by 30 pixels. For each section, we propagate uncertainties from measurements by Monte-Carlo simulation 
and account for errors from systematic deviations in residuals from fits of models of step edges to data with leave-one-out 
jack-knife resampling.[13] We iteratively exclude one data point from the section and perturb all remaining values of position 
within this section with random noise from a uniform distribution corresponding to the lateral uncertainty from the radius 
of the probe tip. We perturb values of z position with random noise from normal distributions to account for errors from 
calibration, flatness, and scanning artifacts. We use an error function to empirically model the z position, 𝑧𝑧before(𝑠𝑠), in 
sections of atomic force micrographs that transition from the bottom of a feature that we mill to the top of the chromia 
surface before chromia removal, Equation (S8),  
 
 

𝑧𝑧before(𝑠𝑠) =
𝑑𝑑
2
�erf �

𝑠𝑠 − 𝑠𝑠0
√2𝜎𝜎edge

� + 1� + 𝑐𝑐, (S8) 

 
and we use an error function that we truncate at the zero plane to empirically model the same features after chromia 
removal, Equation (S9), 
 
 𝑧𝑧after(𝑠𝑠) = �𝑑𝑑 ∙ erf �

𝑠𝑠 − 𝑠𝑠0
√2𝜎𝜎edge

� + 𝑐𝑐 𝑠𝑠 ≤ 𝑠𝑠0

𝑐𝑐 𝑠𝑠 > 𝑠𝑠0
, (S9) 
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where 𝑑𝑑 is the depth of the feature, 𝑠𝑠0 is the location of the edge, 𝜎𝜎edge is the standard deviation of a Gaussian, c is a 
constant, and 𝑠𝑠 is subject to uncertainty from a uniform distribution of 𝒰𝒰�−0.5𝑟𝑟tip, 0.5𝑟𝑟tip� from the radius of the probe tip. 
We approximate the width of edges as the 95% coverage interval of the width of the error functions, which correspond to 
𝑤𝑤before = 4𝜎𝜎edge before chromia removal and 𝑤𝑤after = 2𝜎𝜎edge after chromia removal. We repeat this measurement 820 times 
for each section, retaining all fit parameters. This sampling results in a total of 8200 measurements of the widths of edges 
for each square feature in the checkerboard patterns. 
 
 
 
Table S4. Uncertainties and errors 

 Measurement uncertainty Estimate of error 

Ion-beam current  
(pA) 

Uncertainty of mean 
radius by atomic 
force microscopy  

(nm) 

Uncertainty of mean 
radius by scanning 

electron microscopy  
(nm) 

Root-mean-square 
residual to line of 

equality  
(nm) 

Root-mean-square  
error 
(nm) 

82 ± 1 3.1 ± 0.6 1.0 ± 0.1 3.7 ± 1.7 3.8 ± 1.8 

219 ± 2 4.1 ± 1.9 1.0 ± 0.1 3.6 ± 1.6 6.7 ± 1.6 

407 ± 2 6.5 ± 3.8 1.0 ± 0.1 3.4 ± 1.6 4.9 ± 1.1 

773 ± 3 7.4 ± 4.4 1.0 ± 0.1 5.5 ± 2.6 5.8 ± 1.4 

Uncertainties of ion-beam current are conservative estimates of 100% coverage intervals. 
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Figure S5. Complex test-structures. a-h) Atomic force micrographs showing checkerboard structures before and after 
chromia removal for several values of ion-beam current: (a,b) 83 ± 1 pA; (c,d) 227 ± 1 pA; (e,f) 421 ± 3 pA; and 
(g,h) 796 ± 4 pA. Uncertainties of ion-beam current are conservative estimates of 100% coverage intervals. 
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Figure S6. Vertical control. Plot showing milling responses of chromia and silica for a range of ion-beam currents (red 
circles) before and (blue triangles) after chromia removal. The color codes are logarithmic. The lone black cross near the 
lower left corner of the plot indicates a 100% coverage interval of dose and a 95% coverage interval of depth. 
 
 
 
 
Table S5. Depth increments 

 Depth increment before removal of chromia mask Depth increment after removal of chromia mask 
Ion-beam current  

(pA) 
Mean  
(nm) 

Standard deviation  
(nm) 

Mean  
(nm) 

Standard deviation  
(nm) 

83 ± 1 1.11 ± 0.22 1.23 ± 0.18 1.19 ± 0.24 0.94 ± 0.14 
227 ± 1 1.13 ± 0.16 0.99 ± 0.10 1.18 ± 0.16 0.93 ± 0.10 
421 ± 3 1.14 ± 0.12 0.91 ± 0.08 1.17 ± 0.14 0.99 ± 0.08 
796 ± 4 1.14 ± 0.12 0.98 ± 0.06 1.16 ± 0.12 0.97 ± 0.06 

Uncertainties of ion-beam current are conservative estimates of 100% coverage intervals. 
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Table S6. Milling responses 

Segment Material Dose offset 
(pC µm-2) 

z position  
(nm) 

Milling rate  
(µm3 nA-1 s-1) 

Intercept  
(nm) 

– – 0 ± 0 63 ± 1 – – 
1 Top surface of silica 69 ± 6 59 ± 1 0.05 ± 0.03 66 ± 2 
2 Bulk silica 366 ± 10 16 ± 3 0.15 ± 0.04 101 ± 10 
3 Chromia–silica interface 531 ± 10 -16 ± 4 0.19 ± 0.04 126 ±11 
4 Bulk chromia 1020 ± 0 -132 ± 6 0.24 ± 0.04 170 ± 14 

 
 
 
 
 
Table S7. Gallium penetration 

   z direction x and y directions 

Figure  

z 
position 

(nm) 

Chromia 
thickness 

(nm) 
Mean 
(nm) 

Standard 
deviation 

(nm) Skew Kurtosis 
Mean 
(nm) 

Standard 
deviation 

(nm) Skew Kurtosis 

Figure 5c-i 59 59 13.9 5.7 0.4 0.1 0.0 4.6 0.0 0.5 

Figure 5c-ii 16 16 15.3 7.9 1.0 1.0 0.0 5.3 0.0 1.3 
Figure 5c-iii -16 0 27.6 9.1 0.4 0.1 0.0 7.0 0.0 0.4 

All simulations are of 105 gallium ions with a landing energy of 4.81 fJ (30 keV) at normal incidence, a chromia, Cr2O3, density of 5.3 g cm-3, and a silica, 
SiO2, density of 2.2 g cm-3. 

 
 
 
 
 

 
Figure S7. Model summary. a-d) Plots showing representative (a,c) model fits and (b,d) residuals (a,b) before, and (c,d) 
after chromia removal. Overshoot artifact is apparent in (c). The root-mean-square of residuals in (a,b) and (c,d) are 
respectively 1.9 and 2.0 nm. e) Histograms showing the root-mean-square of residuals of fits of all test structures and 
ion-beam currents. Lone black bars in (a) and (c) indicate representative uncertainties of x position as 95% coverage 
intervals. Uncertainties of z position are smaller than the data markers. 
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Figure S8. Measurement and prediction. a) Plots showing representative edge profiles. The solid regions show profiles 
resulting from a dose of 536 pC µm-2 and from an ion-beam current of 227 ± 1 pA, (red circles) before and (blue triangles) 
after removal of the chromia mask. The dark red squares are from a feature with a similar depth resulting from a dose of 
189 pC µm-2 and from an ion-beam current of 227 ± 1 pA. The lone black bar in (a) indicates a representative uncertainty 
of x position as a 95% coverage interval. Uncertainties of z position are smaller than the data markers. The inset bar chart 
shows the edge width of each profile with black bars indicating edge width distributions as 95% coverage intervals. b) 
Histograms showing edge widths (light red) before and (dark blue) after removal of the chromia mask. c) Histograms 
showing super-resolution factors, ℱSR, from (dark blue) measurement and (magenta) prediction by the spatial masking 
model. Additional details are in Table S8. 
  
 
 
 
 
Table S8. Measurement and prediction 

Method 
Depth  
(nm) 

Depth after  
normalization by 
mask thickness 

Edge width  
(nm) Super-resolution 

factor  
(𝓕𝓕SR) 

Before removal  
(𝒘𝒘b) 

Before removal at reference 
depth (𝒘𝒘b, ref) 

After removal 
(𝒘𝒘a) 

Measurement 17.7 +0.8
-0.9�  0.278 +0.014

-0.014�  195 +16
-18�  139 +9

-9�  54 +11
-12�  3.6 +1.2

-0.7�  

Prediction – 0.278 +0.010
-0.010�  – – – 4.3 +1.0

-0.7�  

Fractional notation denotes 95% coverage intervals that are asymmetric. 
The sample size is 830 for all values. 
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Figure S9. Numerical analysis. a,c,e,g) Histograms showing edge widths (light shading) before and (dark shading) after 
chromia removal and b,d,f,h) histograms showing super-resolution factors for three simulation and resampling methods: 
(white region with gray outline) jack-knife resampling only; (magenta and black hash region) Monte-Carlo simulation 
only; and (black region) jack-knife resampling with Monte-Carlo simulation. (a,b) A feature resulting from a dose of 
561 ± 2 pC µm-2 and having a depth of 24 ± 1 nm. (c,d) A feature resulting from a dose of 663 ± 3 pC µm-2 and having a 
depth of 49 ± 1 nm. (e,f) A feature resulting from a dose of 765 ± 3 pC µm-2 and having a depth of 71 ± 2 nm. (g,h) A 
feature resulting from a dose of 969 ± 4 pC µm-2 and having a depth of 114 ± 4 nm. In each panel, counts of distributions 
from the Monte-Carlo and jack-knife Monte-Carlo methods correspond to vertical axes on the left, and counts of 
distributions from the jack-knife method correspond to vertical axes on the right. Depths after normalization by mask 
thickness appear in the lower right corner of panels (b,d,f,h). Additional details are in Table S9. 
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Table S9. Numerical analysis 
   Depth Super-resolution factor 

Method 
Feature 
number Samples 

Mean  
(nm) 

Mean after 
normalization 

(–) 
Mean 

(–) 
Standard deviation 

(–) 
Jack-knife 110 8300 23.7 ± 0.02 0.373 ± 0.0004 4.531 ± 0.006 0.302 ± 0.003 
Monte-Carlo 110 8300 23.6 ± 0.02 0.372 ± 0.0004 4.660 ± 0.012 0.564 ± 0.008 
Jack-knife Monte-Carlo 110 8300 23.7 ± 0.02 0.373 ± 0.0004 4.691 ± 0.014 0.618 ± 0.010 
Jack-knife 130 8300 48.2 ± 0.03 0.759 ± 0.0004 2.709 ± 0.004 0.206 ± 0.004 
Monte-Carlo 130 8300 48.2 ± 0.03 0.760 ± 0.0004 2.857 ± 0.006 0.290 ± 0.004 
Jack-knife Monte-Carlo 130 8300 48.2 ± 0.03 0.760 ± 0.0004 2.862 ± 0.008 0.316 ± 0.005 
Jack-knife 150 8300 70.8 ± 0.03 1.115 ± 0.0006 2.325 ± 0.001 0.026 ± 0.001 
Monte-Carlo 150 8300 70.8 ± 0.04 1.115 ± 0.0006 2.336 ± 0.004 0.151 ± 0.002 
Jack-knife Monte-Carlo 150 8300 70.8 ± 0.03 1.115 ± 0.0006 2.339 ± 0.004 0.157 ± 0.002 
Jack-knife 190 8300 114.3 ± 0.05 1.801 ± 0.0008 2.212 ± 0.001 0.021 ± 0.001 
Monte-Carlo 190 8300 114.3 ± 0.05 1.800 ± 0.0008 2.222 ± 0.004 0.167 ± 0.002 
Jack-knife Monte-Carlo 190 8300 114.3 ± 0.05 1.800 ± 0.0008 2.220 ± 0.004 0.172 ± 0.002 

 
 
Table S10. Edge widths  

 Ion-beam current  
(pA) 

 83 ± 1 227 ± 1 421 ± 3 796 ± 4 

Metric 
Before 
(nm) 

After 
(nm) 

Before 
(nm) 

After 
(nm) 

Before 
(nm) 

After 
(nm) 

Before 
(nm) 

After 
(nm) 

2.5th percentile 117 32 116 51 127 64 137 66 

25th percentile 133 43 135 67 157 83 165 94 

Mean 142 54 154 79 174 101 195 113 

75th percentile 148 59 171 84 185 105 221 132 

97.5th percentile 173 87 216 117 241 165 276 179 
Uncertainties of ion-beam current are conservative estimates of 100% coverage intervals. 
Uncertainties of values of percentiles[14] are all less than 1 nm.  
 
 
 

 
Figure S10. Patterning resolution. a) Plot showing pit radius by scanning electron microscopy as a function of charge, 𝑄𝑄, 
with fits of power-law models. The non-monotonic trend in pit radius as a function of ion-beam current shows 
imperfections in the reproduction of ion-beam focus due to manual operation of the system, motivating development of 
methods for complete automation of ion-beam focusing, which our study of in-line resolution metrology enables. b) Plot 
showing edge width by atomic force microscopy before chromia removal as a function of ion-beam current, 𝐼𝐼. Violin plots 
show distributions of edge widths from complex test-structures below the zero plane, corresponding to the metrics in 
Table S10 for edge widths (red) before and (blue) after removal of chromia. The dark lines in violin plots indicate mean 
values. The solid and dash lines indicate representative fits of power-law models to data. 
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Table S11. Symbols, values, and definitions  

Symbol 
Range of 

values Units Definition 

𝐼𝐼 83 to 796 pA Ion-beam current 
𝑧𝑧 −150 to 65 nm 𝑧𝑧 position of edge profile resulting from exposure of substrate to a focused ion beam 
𝑧𝑧m 61 to 65 nm Mask thickness 
𝑧𝑧s 0 to 150 nm Milling depth into the substrate 
𝜁𝜁 0 to 2.2 – Milling depth into the substrate after normalization by mask thickness, 𝜁𝜁 = |𝑧𝑧|𝑧𝑧m

−1 
𝑚𝑚�m 0.11 to 0.19 – Average milling rate of the mask 
𝑚𝑚� s 0.20 to 0.28 – Average milling rate of the substrate 
𝒮𝒮 1.0 to 2.1 – Physical selectivity, the ratio of average milling rates of the substrate, 𝒮𝒮 = 𝑚𝑚� s𝑚𝑚�m

−1 
𝑤𝑤b 116 to 276 nm Width of nanostructure edges before removal of the mask 
𝑤𝑤a 32 to 179  nm Width of nanostructure edges after removal of the mask 
ℱSR 1 to 6 – Super-resolution factor, ratio of widths of step edges before and after removal of the mask, ℱSR = 𝑤𝑤b𝑤𝑤a

−1 
ℛ 32 to 276  nm Effective lateral patterning resolution or super-resolution 
𝑉𝑉m 0.000 to 0.065  µm3 Volume of the mask that the ion-beam mills for each square feature of the complex test-structures  
𝑉𝑉s 0.000 to 0.150 µm3 Volume of the substrate that the ion-beam mills for each square feature of the complex test-structures 
𝒱𝒱 55 to 530  µm3 hr-1 Volume throughput of material that the ion-beam mills per unit time 
𝛼𝛼 34 to 86  nm pA-β Coefficient in power-law model of the widths of step edges with respect to ion-beam current 
𝛽𝛽 0.1 to 0.3 – Exponent in power-law model of the widths of step edges with respect to ion-beam current 
𝜂𝜂𝜏𝜏 10-1 to 105 – Temporal efficiency, ratio of milling times in the absence, 𝑡𝑡s, and presence, 𝑡𝑡s + 𝑡𝑡m, of a mask, 𝜂𝜂𝜏𝜏 = 𝑡𝑡s(𝑡𝑡s + 𝑡𝑡m)−1  
ℳ 102 to 105  µm2 hr-1 Figure of merit for focused-ion-beam milling, ℳ = 𝒱𝒱 ℛ−1  

 
 
 
Note S6. Bi-Gaussian approximation 
Under the conditions that are necessary to mill a semi-infinite edge, an error function is a good approximation of the total 
dose pattern from both Gaussian and bi-Gaussian approximations of the current density distribution of a focused ion beam. 
The bi-Gaussian[15] model, 𝐵𝐵𝐵𝐵(𝑥𝑥;𝐴𝐴,𝜎𝜎core,𝜎𝜎tail,𝜔𝜔, 𝑥𝑥𝑖𝑖), in Equation (S10) accounts for contributions to the total current 
density from both the core and the tails of the ion beam in a summation of two Gaussian functions,  
 
 

𝐵𝐵𝐵𝐵(𝑥𝑥;𝐴𝐴,𝜎𝜎core,𝜎𝜎tail,𝜔𝜔, 𝑥𝑥𝑖𝑖) = 𝐴𝐴 �𝜔𝜔 exp �−
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2

2𝜎𝜎core
2 � + (1 − 𝜔𝜔) exp �−

(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2

2𝜎𝜎tail
2 �� , (S10) 

 
where 𝐴𝐴 is the amplitude of the ion beam dose, 𝜔𝜔 is a parameter that varies between 0 and 1 to weight the Gaussian 
components, 𝜎𝜎core is the standard deviation of the core of the ion beam, 𝜎𝜎tail is the standard deviation of the tail of the ion 
beam, and 𝑥𝑥𝑖𝑖 is the milling location of the ion beam. Equation (S10) reduces to a Gaussian model when 𝜔𝜔 = 1. Models of 
the ion-beam shape and size inform discrete positioning of the ion beam during the direct-write process of focused-ion-
beam milling. In particular, the full-width at half-maximum of the core of the ion beam is a common approximation of the 
diameter of the ion beam, 𝑑𝑑beam = 2�2 ln(2)𝜎𝜎core. The diameter of the ion beam and the overlap, 𝜊𝜊, define the pitch or 
spacing of adjacent milling positions in a rectilinear coordinate system, Δ𝑥𝑥 = (1 − 𝜊𝜊)𝑑𝑑beam. As such, a semi-infinite dose 
pattern comprises a series of milling positions that occur with equal spacing, Δ𝑥𝑥, on the half-line in one-dimensional space. 
As previous studies[8, 16] show, an overlap greater than or equal to 0.35 ensures the delivery of a uniform dose in the bulk 
of the half-line. 

Our study of spatial masking motivates an inquiry into the effect of the bi-Gaussian approximation of the profile of a 
focused ion beam on the edge of a semi-infinite dose pattern. In particular, the deviation from an error function of a semi-
infinite dose pattern that the bi-Gaussian model imposes is of interest. We model a semi-infinite dose pattern in one 
dimension, 𝐷𝐷(𝑥𝑥), as a series of discrete milling locations of a focused ion beam that follows the bi-Gaussian approximation, 
 
 

𝐷𝐷(𝑥𝑥) =
𝐷𝐷0
𝐷𝐷𝑁𝑁

� 𝐵𝐵𝐵𝐵(𝑥𝑥;𝐴𝐴,𝜎𝜎core,𝜎𝜎tail,𝜔𝜔, 𝑥𝑥𝑖𝑖),
𝑁𝑁

𝑖𝑖
 (S11) 

 
where 𝐷𝐷0 is the value of dose in the bulk of the half-line and 𝐷𝐷𝑁𝑁 is a factor that normalizes the maximum value of the 
summation in Equation (S11) to unity. To quantify the deviation of the semi-infinite dose pattern from an error function, 
we simulate dose patterns for ratios of 𝜎𝜎tail to 𝜎𝜎core ranging from 1 to 10, a range of weights ranging from 0 to 0.5, an 
amplitude of the bi-Gaussian model of 1, and an overlap of 0.5 (50%). We fit an error function, 
 
 

𝐷𝐷(𝑥𝑥) =
𝐷𝐷0
𝐷𝐷𝑁𝑁

� 𝐵𝐵𝐺𝐺(𝑥𝑥;𝐴𝐴,𝜎𝜎core,𝜎𝜎tail,𝜔𝜔, 𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖
≅ 𝐷𝐷0 �1 −

1
2
�erf �

𝑥𝑥 − 𝑥𝑥0
√2𝜎𝜎eff

� + 1�� , (S12) 

 
the resulting dose patterns, where 𝜎𝜎eff is the effective standard deviation of the edge of the dose pattern and 𝑥𝑥0  is the 
position of the center of the edge. For each parameterization, we compute the root-mean-square error between each dose 
pattern and its corresponding fit.  
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Values of root-mean-square error are less than 2.5% for all parameterizations of the focused-ion-beam shape (Figure 
S11). This good agreement indicates a general consistency between the bi-Gaussian approximation of the current density 
distribution of a focused ion beam and the error function model of the semi-infinite dose pattern that results from milling 
in discrete positions, which supports the validity of our use of the error function in our model of the lateral super-resolution 
effect. 
 
 

 
Figure S11. Bi-Gaussian approximation. a) Plots showing (solid black line) the relative amplitude of ion dose resulting 
from milling an array of (gray ticks) discrete positions and (red dash line) fits of the error function in Equation (S12) for 
four combinations of values of 𝜎𝜎tail𝜎𝜎core

−1  and 𝜔𝜔 : (i) 𝜎𝜎tail𝜎𝜎core
−1 = 1.00 , 𝜔𝜔 = 1.000 ; (ii) 𝜎𝜎tail𝜎𝜎core

−1 = 3.25 , 𝜔𝜔 = 0.125 ; 
(iii) 𝜎𝜎tail𝜎𝜎core

−1 = 5.5, 𝜔𝜔 = 0.250; and (iv) 𝜎𝜎tail𝜎𝜎core
−1 = 7.75, 𝜔𝜔 = 0.375. The insets of panels (a-i–a-iv) show the spatial 

profile of the ion beam over the extents of the spatial domain, ±10𝜎𝜎core, for each parameterization. b) Contour plot 
showing root-mean-square error of fits of the error function to relative dose profiles for a subset of the parameter space 
of the bi-Gaussian function. The position on the contour plot of the Gaussian profile in (a-i) is beyond the vertical extent 
of the plot. The root-mean-square error of fits of the error function to the relative dose profile corresponding to the 
Gaussian profile is zero. 
  



      

Supporting Information for Unmasking the resolution–throughput tradespace of focused-ion-beam machining  21 

 
Figure S12. Spatial masking. a) Plot showing z position as a function of dose for a simple model of milling in which a 
sacrificial mask of thickness, 𝑧𝑧m, and average milling rate, 𝑚𝑚�m, screens a substrate with an average milling rate of 𝑚𝑚� s. b) 
Plot showing spatial ion-dose pattern from (violet) discrete positions of an ion beam as a function of x position. c) Plot 
showing (solid black line) a theoretical surface profile resulting from application of the dose in (b) to the milling model in 
(a). The red dash-dot line is a theoretical surface profile that results from the application of a dose of similar magnitude 
to that in (b) but from a lower value of ion current and milling directly into the silica substrate. Consequently, the red 
profile has a different shape from the black profile. After removal of the chromia mask, both profiles have an edge width 
of 2𝜎𝜎 + 𝑥𝑥m. The red profile includes the entire transition region of the sigmoid of the dose profile, whereas after removal, 
the black profile shows truncation of a sigmoid. The black and the red profiles are simplifications that neglect the 
dependence of incidence angle on milling rate, any effects of redeposition, and any defocus of the ion-beam due to 
charging. However, the standard deviation of the ion-beam that yields the black profile, which has the greater value of 
current, is 𝜎𝜎high = 𝜎𝜎 while the standard deviation of the ion-beam that yields the red profile is 𝜎𝜎low = 0.53𝜎𝜎. An exponent 
of 𝛽𝛽 = 0.2 in the power-law model from Equation (1) implies a ratio of the two currents of �𝜎𝜎high𝜎𝜎low

−1�
1 𝛽𝛽⁄ , or approximately 

24. 
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Figure S13. Super-resolution. Plot showing values of super-resolution factors, ℱSR, as a function of the ratio of milling 
depth into the substrate after normalization by mask thickness, 𝜁𝜁, for features below the zero plane resulting from four 
values of ion-beam current. The light and dark gray shading respectively indicate the 95% coverage interval and the 
interval between the lower and upper quartiles of the spatial masking model. The triangles are features that we mill with 
ion-beam currents that range from approximately 80 to 800 pA. The white circles are mean super-resolution factors from 
the entire data set. For clarity, we show only a fraction of these values. The black bars indicate uncertainties of mean 
super-resolution factor as 95% coverage intervals. Uncertainties of ζ are smaller than the data markers. 
 
 
Note S7. Spatial masking of a line or point 
We derive an analytic expression for the spatial limit of a sacrificial mask to screen the tails of ion beam from an underlying 
substrate during exposure in one dimension. We apply the resulting model to fit the experimental data of Menard and 
Ramsey,[17] with several simplifying assumptions. We assume that the mask has a bulk milling rate, 𝑚𝑚m, and a thickness, 
𝑧𝑧m, and similarly, that the substrate has a bulk milling rate, 𝑚𝑚s, and a final depth, 𝑧𝑧s, and that the spatial profile of the ion 
dose along the x direction, 𝐷𝐷(𝑥𝑥), follows a Gaussian function of the form, 
 
 

𝐷𝐷(𝑥𝑥) = 𝐷𝐷0 exp �−
(𝑥𝑥 − 𝑥𝑥0)2

2𝜎𝜎2
� , (S13) 

 
where 𝐷𝐷0 is the dose that is necessary to mill through the mask and into the working material, 𝑥𝑥0 is the center position of 
the line scan, which we assign to be 0, and 𝜎𝜎 is the effective standard deviation of the Gaussian profile of the ion beam. 
Substitution into Equation (S13) of 𝐷𝐷0 = 𝐷𝐷m + 𝐷𝐷s = 𝑧𝑧m𝑚𝑚m

−1 + 𝑧𝑧s𝑚𝑚s
−1, the ratio of milling depth of the substrate to the 

thickness of the mask, 𝜁𝜁 = 𝑧𝑧s𝑧𝑧m
−1, and the ratio of the milling rate of the substrate to the milling rate of the mask, 𝒮𝒮 =

𝑚𝑚s𝑚𝑚m
−1, yields the condition for spatial masking of the dose pattern, where 

 
 

𝐷𝐷m =
𝑧𝑧m

𝑚𝑚m
= �

𝑧𝑧m

𝑚𝑚m
+
𝑧𝑧s

𝑚𝑚s
� exp �−

𝑥𝑥2

2𝜎𝜎2
� =

𝑧𝑧m𝑚𝑚s + 𝑧𝑧s𝑚𝑚m

𝑚𝑚m𝑚𝑚s
exp �−

𝑥𝑥2

2𝜎𝜎2
� , (S14) 

 
which implies 
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 𝒮𝒮

𝒮𝒮 + 𝜁𝜁
= exp �−

𝑥𝑥2

2𝜎𝜎2
� . (S15) 

 
Solving Equation (S15) for 𝑥𝑥 yields the positions at which the mask begins to screen the tails of the ion beam, 
 
 

𝑥𝑥 = ±𝜎𝜎�−2 ln �
𝒮𝒮

𝒮𝒮 + 𝜁𝜁
� . (S16) 

 
The diameter of a pit or the width of a nanochannel resulting after removal of the sacrificial mask is the distance between 
these positions, 
 
 

𝑤𝑤a = 2𝜎𝜎�−2 ln �
𝒮𝒮

𝒮𝒮 + 𝜁𝜁
� .  (S17) 
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Figure S14. Comparison to a previous study. Plot showing widths of channels as a function of the thickness of sacrificial 
masks of chromium after removal of the mask. The channels result from the spatial masking of line scans of a focused 
beam of gallium ions, milling through sacrificial chromium masks and into underlying quartz substrates. The data markers 
show the experimental results from Menard and Ramsey.[17] Using approximate values of experimental parameters from 
correspondence with these scholars, we bound the values of the effective standard deviation of the ion beam to the 
range from 20 to 60 nm, the milling depth parameter to the range from 0 to 20 nm, and the value of the physical 
selectivity parameter to the range from 0 to 3, and we fit our spatial masking model of a line scan in Equation (S17). This 
fit yields a reduced chi-square statistic, 𝜒𝜒𝜈𝜈2 , of 5.3, extracts reasonable values of experimental parameters including 
standard deviation of the ion-beam profile, milling depth, and physical selectivity, and indicates that our spatial masking 
model is generally applicable beyond the specific system in our current study. The light and dark magenta regions indicate 
uncertainties of mean channel width respectively as 95% coverage intervals and interquartile ranges of fit results to our 
spatial masking model. This analysis yields estimates of experimental parameters, including an effective standard 
deviation of the ion beam of 46 +14 nm

−15 nm� , a milling depth of 7.8 +3.9 nm
−4.2 nm� , and a physical selectivity of quartz to 

chromium of 1.5 +1.0
−0.6� . Uncertainties of these parameters and of the data markers are 95% coverage intervals.  
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Figure S15. Line–space patterns. Plots showing theoretical profiles of lines and spaces that result from a) direct milling of 
silica and b) milling of silica through a sacrificial mask of chromia for nine combinations of pitch, ranging from 3.25𝜎𝜎 to 
8𝜎𝜎, and duty cycle, ranging from 20% to 80%. Purple regions indicate the floor of the profile. Yellow regions indicate 
segments of profiles that exceed a tolerance threshold of 0.975. The profiles in (a) are ideal cases which neglect the 
dependence of incidence angle on milling rate, any effects of redeposition, and any defocus of the ion-beam due to 
charging. c) Contour plot showing the fraction of design depths for the set of profiles in panels (a-i–a-ix) that result from 
the direct milling of silica. d) Contour plot showing the fraction of design depth for the set of profiles in panels (b-i–b-ix) 
that result from milling of silica through a sacrificial mask of chromia. Our selection of nine combinations of pitch and 
duty cycle highlights the transition regions in both contour plots. In each contour plot, a sampling artifact, which is 
inconsequential to our analysis, is aparent for values of pitch of approximately 7𝜎𝜎. 
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Figure S16. Minimum pitch ratio. a) Plot showing fraction of design depth as a function of pitch at a duty cycle of 50% 
and a design depth of 𝜁𝜁 ≈ 0.5 for (solid green line) milling of silica with a sacrificial mask of chromia and (solid red line) 
direct milling of silica. The trends in (a) represent ideal cases that neglect the dependence of incidence angle on milling 
rate, any effects of redeposition, and any defocus of the ion-beam due to charging. The gray dash line indicates a 
tolerance threshold of 0.975. The green and red vertical dash lines respectively indicate a minimum pitch for spatial 
masking of approximately 3𝜎𝜎 and a minimum pitch for direct milling of approximately 3𝜎𝜎, yielding a ratio of minimum 
pitch of 3. b) Plot showing ratios of minimum pitch as a function of milling depth for duty cycles ranging from 40% to 60%. 
The green roundel corresponds to the simulation result in (a).  
 
 
Note S8. Temporal efficiency 
The time that is necessary to mill a certain nanostructure is typically inversly proportional to ion-beam current. 
Consequently, simply reducing the ion-beam current to improve lateral patterning resolution can dramatically increase the 
milling time. Furthermore, multicurrent processes involving a high current to mill coarse structures and a low current to 
mill fine structures increase the complexity of the process, requiring realignment after switching between the two ion beams, 
and can still require long milling times, depending on constraints of lateral resolution. These issues motivate our study of 
the temporal efficiency of sacrificial masking of a focused ion beam.  

We derive an analytic expression for temporal efficiency, defining the theoretical condition for which the use of a 
sacrificial mask and a high value of ion-beam current is faster than milling a structure with similar edge width directly into 
the substrate by use of a lower value of ion-beam current. We assume that the nominal radius of the ion-beam follows a 
power law approximation, 𝑟𝑟beam ≅ 𝛼𝛼𝐼𝐼𝛽𝛽 , where 𝛼𝛼 is a constant, 𝐼𝐼 is the ion-beam current, and the scaling exponent, 𝛽𝛽, 
typically ranges from 0.3 to 1 for ion-beam currents of less than 10 nA.[18] In the absence of a sacrificial mask, the lateral 
resolution is, ℛ ≅ 𝑟𝑟beam. The presence of a sacrificial mask improves the lateral resolution by a multiplicative super-
resolution factor, ℱSR, where 𝜁𝜁 = |𝑧𝑧s|𝑧𝑧m

−1 is the ratio of the depth of the nanostructure, 𝑧𝑧s to the thickness of the mask, 𝑧𝑧m, 
and 𝒮𝒮 = 𝑚𝑚� s𝑚𝑚�m

−1 is the physical selectivity of the substrate and the mask, which we define as the ratio of their average 
milling rates, 𝑚𝑚� s and 𝑚𝑚� s, respectively. We consider an equality of lateral resolution from a low value of ion-beam current, 
𝐼𝐼low, and lateral super-resolution from a high value of ion-beam current, 𝐼𝐼high, milling through a sacrificial mask. Then, 
 
 ℛ =  𝛼𝛼𝑖𝑖low

𝛽𝛽 = ℱSR
−1𝛼𝛼𝐼𝐼high

𝛽𝛽 ,  (S18) 
 
which implies generally that  
 
 

ℱSR�𝜎𝜎low,𝜎𝜎high, 𝑧̃𝑧,𝒮𝒮� = �
𝐼𝐼high

𝐼𝐼low
�
𝛽𝛽

. (S19) 

 
The condition of equivalent edge widths for the high and low values of ion-beam current from Equations (11) and (12) 
imply that 
 
 𝑤𝑤low = 𝑤𝑤high = 4𝜎𝜎low = √2𝜎𝜎higherf−1 �1 −

2𝒮𝒮
𝒮𝒮 + 𝜁𝜁

� + 2𝜎𝜎high = 𝜎𝜎high �√2 erfc−1 �
2𝒮𝒮
𝒮𝒮 + 𝜁𝜁

� + 2� , (S20) 

 
where we apply the identity, erf−1(1 − 𝑥𝑥) = erfc−1(𝑥𝑥). The power-law approximation of the radius of the ion beam relates 
our model of super-resolution factor from Equation (13) to values of ion-beam current that are necessary to achieve 
equivalent lateral resolution, 
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�
𝐼𝐼high

𝐼𝐼low
� = �

𝜎𝜎high

𝜎𝜎low
�
1
𝛽𝛽

= �
2

1
√2

erfc−1 � 2𝒮𝒮
𝒮𝒮 + 𝜁𝜁� + 1

�

1
𝛽𝛽

= ℱSR(𝜁𝜁,𝒮𝒮)
1
𝛽𝛽 . (S21) 

 
The time that is necessary to mill a nanostructure of arbitrary rectangular volume, 𝑉𝑉s, through the sacrificial mask, 𝑡𝑡M, with 
a high value of ion-beam current is the sum of the time that is necessary to mill through the chromia mask, 𝑡𝑡m, and the time 
that is necessary to mill the underlying substrate, 𝑡𝑡s, 
 
 

𝑡𝑡M = 𝑡𝑡m + 𝑡𝑡s ≈
𝑉𝑉m

𝑚𝑚�m𝐼𝐼high
+  

𝑉𝑉s

𝑚𝑚� s𝐼𝐼high
=

𝑧𝑧m𝑙𝑙2

𝑚𝑚�m𝐼𝐼high
+

𝑧𝑧s𝑙𝑙2

𝑚𝑚� s𝐼𝐼high
, (S22) 

 
where 𝑙𝑙2 is the area of the rectangular nanostructure and 𝑉𝑉m is the volume of the mask above the milling area. For clarity, 
𝑚𝑚�m and have 𝑚𝑚� s units of volume per current per second or µm3 nA-1 s-1. Therefore, in Equation (S22), dividing a volume 
by the product of a milling rate and ion-beam current yields a value with units of time. In contrast, the time that is necessary 
to mill a similar nanostructure directly into the substrate with a low value of ion-beam current is 
 
 

𝑡𝑡s ≈  
𝑉𝑉s

𝑚𝑚� s𝐼𝐼low
=

𝑧𝑧s𝑙𝑙2

𝑚𝑚� s𝐼𝐼low
. (S23) 

 
We define the temporal efficiency, 𝜂𝜂𝜏𝜏, to be the ratio of these milling times, 
 
 

𝜂𝜂𝜏𝜏 =
𝑡𝑡s

𝑡𝑡M
=

𝑧𝑧s𝑙𝑙2
𝑚𝑚� s𝐼𝐼low

𝑧𝑧m𝑙𝑙2
𝑚𝑚�m𝐼𝐼high

+ 𝑧𝑧s𝑙𝑙2
𝑚𝑚� s𝐼𝐼high

= �
𝐼𝐼high

𝐼𝐼low
�

𝑧𝑧s𝑚𝑚�m

𝑧𝑧m𝑚𝑚� s + 𝑧𝑧s𝑚𝑚�m
. (S24) 

 
Substitution of 𝑧𝑧s = 𝜁𝜁𝑧𝑧m , 𝑚𝑚� s = 𝒮𝒮𝑚𝑚�m , and Equation (S21) into Equation (S24) yields an analytic expression for the 
temporal efficiency, which we argue must be greater than unity for masking to be beneficial, 
 
 

𝜂𝜂𝜏𝜏 = �
𝐼𝐼high

𝐼𝐼low
�

𝜁𝜁
𝒮𝒮 + 𝜁𝜁

= ℱSR(𝜁𝜁,𝒮𝒮)
1
𝛽𝛽

𝜁𝜁
𝒮𝒮 + 𝜁𝜁

. (S25) 

 
 
Table S12. Power-law models 

 Model parameters 
Tradespace 𝜶𝜶 

(nm (µm3 h-1)-β) 
𝜷𝜷 
(–) 

Resolution 76.4 ± 0.1 0.154 ± 0.001 
Super-resolution 16.2 ± 0.1 0.314 ± 0.010 

 
 
 
Note S9. Milling currents of equivalent resolution 
For two power law models, the condition of equivalent resolution is 
 
 ℛR = 𝛼𝛼R𝒱𝒱R

𝛽𝛽R = ℛSR = 𝛼𝛼SR𝒱𝒱SR
𝛽𝛽SR. (S26) 

 
Solving for 𝒱𝒱SR and accounting for the two different milling rates and thickness of the bilayer gives the volume 
throughput in terms of a high value of ion-beam current with equaivalent resolution, 
 
 

𝒱𝒱SR = �
ℛSR

𝛼𝛼SR
�
1
𝛽𝛽SR

= 𝐼𝐼high �
𝑧𝑧m + 𝑧𝑧s
𝑧𝑧m
𝑚𝑚�m

+ 𝑧𝑧s
𝑚𝑚� s

� . (S27) 

Applying the right side of the power-law equation (S26) gives 
 
 

𝒱𝒱SR = �
𝛼𝛼R

𝛼𝛼SR
𝒱𝒱R
𝛽𝛽R�

1
𝛽𝛽SR = 𝐼𝐼high �

𝑧𝑧m + 𝑧𝑧s
𝑧𝑧m
𝑚𝑚�m

+ 𝑧𝑧s
𝑚𝑚� s

� . (S28) 

Applying the left side of equation (S26) and solving for 𝐼𝐼high, 
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𝐼𝐼high = �
𝛼𝛼R

𝛼𝛼SR
[𝑚𝑚s𝐼𝐼low]𝛽𝛽R�

1
𝛽𝛽SR �

𝑧𝑧m
𝑚𝑚�m

+ 𝑧𝑧s
𝑚𝑚� s

𝑧𝑧m + 𝑧𝑧s
�. (S29) 

Conversely,  
 

𝐼𝐼low =
1
𝑚𝑚� s

�
𝛼𝛼SR

𝛼𝛼R
�𝐼𝐼high

𝑧𝑧m + 𝑧𝑧s
𝑧𝑧m
𝑚𝑚�m

+ 𝑧𝑧s
𝑚𝑚� s

�

𝛽𝛽SR

�

1
𝛽𝛽R

. (S30) 

 
 
 
 
Table S13. Factors of improvement 

 Before chromia removal After chromia removal Factor of improvement 

Ion-beam 
current 

(pA) 
Throughput 

(µm3 hr-1) 
Resolution 

(nm) 

Figure of 
merit 

(µm2 hr-1) 

Equivalent 
throughput 
(µm3 hr-1) 

Super-
resolution 

(nm) 

Figure of 
merit 

(µm2 hr-1) Throughput Resolution 
Figure of 

merit 

83 ± 1 54.5 ± 0.2 144.4 ± 0.2 385 ± 2 0.10 ± 0.02 53.9 ± 0.4 1112 ± 2 528 ± 28 2.678 ± 0.016 2.890 ± 0.006 

227 ± 1 151.0 ± 0.2 160.7 ± 0.2 986 ± 2 1.25 ± 0.04 79.2 ± 0.2 2058 ± 4 119 ± 4 2.029 ± 0.006 2.088 ± 0.004 

421 ± 3 280.7 ± 0.2 180.1 ± 0.2 1621 ± 2 5.52 ± 0.22 99.3 ± 0.6 3115 ± 6 51 ± 3 1.814 ± 0.010 1.921 ± 0.004 

796 ± 4 529.8 ± 0.4 202.5 ± 0.2 2773 ± 4 12.72 ± 0.22 112.9 ± 0.2 5103 ± 10 42 ± 2 1.794 ± 0.004 1.840 ± 0.006 

 
 
 

 
Figure S17. Figure of merit. a) Plot showing figure of merit, ℳ, as a function of ion-beam current, 𝐼𝐼, for a constant value 
of milling depth after normalization by mask thickness of 𝜁𝜁 = 1 and values of physical selectivity, 𝒮𝒮, ranging from 0.4 to 
6.4. Solid lines indicate the trends from experimental data and dash lines indicate values that we calculate using the 
relations in Equations (1) and (5). b) Plot showing figure of merit as a function of ion-beam current for a constant value 
of 𝒮𝒮 = 1.6 and values of 𝜁𝜁 ranging from 0.1 to 10.0. Solid lines indicate the trends from experimental data and dash lines 
indicate values that we calculate using the relation in Equations (1) and (5). 
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Note S10. Design of Fresnel lenses 
A plane wave of incident light along the optical axis has a constant phase over the lateral extent of a spherical lens.[19] As 
a result of diffraction through the lens, the converging wave has the phase retardation distribution,  
 
 𝜓𝜓(𝑟𝑟) =

2𝜋𝜋
𝜆𝜆
�𝑓𝑓 − �𝑓𝑓2 − 𝑟𝑟2� . (S31) 

 
where 𝑟𝑟 is the radial position orthogonal to the optical axis, 𝑓𝑓 is the focal length of the lens, and 𝜆𝜆 is the wavelength. Fresnel 
lenses with blazing exploit a sawtooth profile to modify 𝜓𝜓(𝑟𝑟) with a modulo 2𝜋𝜋 phase structure, 
 
 𝜓𝜓F(𝑟𝑟) = 𝜓𝜓(𝑟𝑟) + 2𝑚𝑚𝑚𝑚, (S32) 
 
for 𝑟𝑟𝑚𝑚 < 𝑟𝑟 ≤ 𝑟𝑟𝑚𝑚+1 where 𝑟𝑟𝑚𝑚 = �2𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑚𝑚𝑚𝑚)2 is the inner radius of the zone radii. 
 
The phase shift in the converging wave results from differences in the relative optical path length along the lens profile. In 
the design process, the phase retardation distribution determines the thickness of the Fresnel lens, 
 
 𝑇𝑇(𝑟𝑟) = 𝜆𝜆

Δ𝑛𝑛
�𝜓𝜓F(𝑟𝑟)

2
+ 1�. (S33) 

 
Fresnel lenses of this design have a numerical aperture of, 
 
 NA = 1

�1+�𝑓𝑓𝑅𝑅�
2 = sin𝜃𝜃. (S34) 

 
The Rayleigh criterion is, 
 
 𝑑𝑑=0.61 𝜆𝜆

NA
. (S35) 

  
 
Note S11. Dose trimming 
Tests of dose delivery are generally necessary in nanofabrication, and optimization methods can be either computational[15b] 
or empirical.[20] Our simple model of the bilayer response provides useful insights but ignores many details of the milling 
process, which would be desirable to account for in a computational optimization of dose delivery. At this state of the art, 
we develop an empirical method of dose optimization to minimize the differences between design and actual structure. 
This method involves trimming the ion dose near regions of high negative curvature to improve the masking of features 
that are sensitive to unintentional ion bombardment. Regions with high aspect ratios and extrema of negative curvature 
such as pillars, ridges, or blaze peaks are susceptible to such unintentional damage, which is likely to occur if actual and 
theoretical models of ion-beam profile deviate significantly or if dependences of milling rates on incidence angle are 
unknown. Reducing the ion dose in regions where the design of the surface specifies a curvature that exceeds a certain 
threshold can compensate for such discrepancies. The curvature of an axially symmetric surface, 𝑧𝑧(𝑟𝑟), is 
 
 

𝜅𝜅(𝑟𝑟)=
𝑧𝑧′′

(1 + 𝑧𝑧′2)
3
2

, (S36) 

 
where 𝑧𝑧′ = 𝜕𝜕𝜕𝜕(𝑟𝑟)

𝜕𝜕𝜕𝜕
 and 𝑧𝑧′′ = 𝜕𝜕2𝑧𝑧(𝑟𝑟)

𝜕𝜕𝜕𝜕2
 respectively denote the first and second derivatives of 𝑧𝑧(𝑟𝑟) with respect to 𝑟𝑟. A natural 

choice for a curvature threshold is the inverse of the lateral extent of the ion-beam profile, which we select to be a value of 
−(4𝜎𝜎)−1, corresponding to the maximum negative curvature from the 95% coverage interval of a Gaussian approximation. 
Figure S18 shows the best result of three tests of trimming the ion dose around the blaze peaks in the milling of a Fresnel 
lens through chromia and into silica with an ion-beam current of 2600 pA. 
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Figure S18. Dose trimming. a) Plot showing the radial profile of the design of a Fresnel lens, showing (black circles and 
solid black line) milling positions and (inset) an approximate profile of a Gaussian ion beam. b) Plot showing the curvature 
of the profile in (a) and (red dash line) a curvature threshold of −(4𝜎𝜎)−1. c) Plot showing the radial dose profile resulting 
from trimming the ion dose at (white circles) milling positions that drop below the curvature threshold. 
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Figure S19. Fresnel lens characterization. a) and b) Scanning electron micrographs at a tilt angle of 0.9075 rad (52°) 
showing Fresnel lenses. c) and d) Atomic force micrographs at the same tilt angle showing the same Fresnel lenses in (a) 
and (b). e) and f) Plots showing (blue) contrast and (orange) standard deviation of Gaussian model fits to focal spot images 
from Fresnel lenses as functions of z position. (i-iv) Brightfield optical micrographs showing (i,iii) focal spots and (ii,iv) top 
surfaces of Fresnel lenses. Panels (a,c,e) correspond to Fresnel lenses that we mill directly into silica with an ion-beam 
current of 26 pA. Panels (b,d,f) correspond to Fresnel lenses that we mill through chromia and into silica with an ion-
beam current of 2600 pA. Artifacts from charging are apparent in (a) and (b). Convolution artifacts of the probe tip are 
apparent in (c) and (d). The black triangle in (c,d) indicates the zero plane in both atomic-force micrographs and brightfield 
optical micrographs. Root-mean-square values of surface roughness in the central regions of either lens are approximatly 
4 nm. Differences in contrast between (e-ii) and (f-iv) are partially attributable to diffraction effects from multiple lenses 
in close proximity in (f-iv). Lone blue bars in (e) and (f) indicate representative uncertainties of contrast as 95% coverage 
intervals. Uncertainties of standard deviation and z position from measurement repeatability are smaller than the data 
markers. 
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Figure S20. Fresnel lens comparison. a-d) Brightfield optical micrographs showing focal spots from Fresnel lenses that we 
machine under a variety of conditions (Table S14). e-h) Scanning electron micrographs showing the Fresnel lenses that 
project the focal spots in (a-d). Machining defects from charge accumulation extend beyond the region of interest in (f).  
 
 
 
Table S14. Fresnel lens parameters 

Material system 

Ion-
beam 

current 
(pA) 

FWHM 
of ion 
beam  
(nm) 

Electron-beam  
current 

(pA) 

Number of 
lenses 

(–) 

Milling 
time  
(h) 

Lenses 
per hour 

(–) 

Projection 
distance  

(µm) 

Apparent  
standard deviation 

of focal spot 
(nm) 

Data 
location 

(–) 
Silica 26 14 100 1 3.75 0.27 11.97 ± 0.01 440.3 ± 0.1 Fig. S20 a,e 
Silica 2600 133 0 1 0.04 25 – – Fig. S20 b,f 
Silica 2600 133 6400 1 0.04 25 12.38 ± 0.40 503.6 ± 0.1 Fig. S20 c,g 
Chromia on silica 2600 133 0 75 3.75 20 11.98 ± 0.19 439.1 ± 3.9 Fig. S20 d,h 

FWHM = full width at half maximum 
95% coverage intervals for the single lens in silica are measurement uncertainty. 
95% coverage intervals for the 75 lenses through chromia in silica are measurement uncertainty and fabrication variability.  
Uncertainties in this table are from measurement repeatibility only, neglecting systematic effects such as actuator non-linearity and image scale 
uncertainty. We make the approximation that these systematic effects cancel in a calculation of ratios of distances and standard deviations to determine 
relative differences with corresponding uncertainties. 
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