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Supplemental Table 6a: Measurement Invariance Analyses Narrative 
 
Our measurement invariance analyses followed the strategies of Widman & Reise (1997) and 
Widaman and Olivera-Aguilar (in press).  These methods were applied to each of the four major 
instruments, to investigate measurement invariance for the preferred models as indicated in the 
manuscript.  The following narrative explicates the processing steps used and the rationale for 
decisions made in the modeling.  Further details of the models and fit statistics are provided in 
Supplemental Table 6b: Factorial Invariance Models and Fit Statistics. 
 
WAIS-IV 
 Factor invariance analyses. The optimal model for the WAIS-IV had a similar form in 
both the NNN and Pearson samples, as shown in Figure 1. Thus, we started with this model 
when performing factor invariance analyses to examine the degree of invariance of factor model 
parameter estimates across the NNN and Pearson samples. To implement these analyses, we 
followed standard steps to evaluate models with increasing cross-group constraints, as discussed 
by Widaman and Reise (1997) and Widaman and Olivera-Aguilar (in press). The initial model, 
termed the configural invariance model, had identical patterns of variables loading on factors, 
with the Verbal Comprehension and Perceptual Reasoning factors each having three indicators, 
the Working Memory and Processing Speed factors each having two indicators, and the second-
order General factor having loadings from the four first-order factors (cf. Figure 1). To identify 
this model, we fixed all factor means to zero and factor variances to unity in the Pearson sample, 
which served as the reference group. Then, the first factor loading and the first intercept on each 
factor were constrained to invariance across groups to identify the factors in the NNN sample 
model (see Widaman & Olivera-Aguilar, in press, for additional detail and justification).  
 The configural invariance model had rejectable statistical fit to the data, χ2(60) = 372.72, 
p < .0001, as expected, given the large sample size. But the TLI of .972 and RMSEA of .050 
both indicated close model fit to the data, and the BIC of 152531.38 served as a reference value 
for this series of models. The second model, for weak factorial invariance, constrained the 
remaining factor loadings to invariance across groups. Although this model was associated with 
a significant increase (i.e., worsening) in model fit, with Δχ2(10) = 56.25, p < .0001, the TLI and 
RMSEA were unchanged, and the lowered BIC value of 152504.41 indicated improved fit of the 
model to data. 
 The third model was the strong factorial invariance model, which added cross-group 
constraints on intercepts to the weak factorial invariance model. The strong invariance model led 
to a rather large increase in the statistical index of model misfit, Δχ2(6) = 229.66, p < .0001, the 
TLI (.958) and RMSEA (.061) both worsened by more than .01, and the increased BIC value of 
152684.14 all indicated much poorer fit of the model to data. Modification indices indicated that 
two intercepts were rather different across samples, the intercepts for the Information and Block 
Design indicators. When invariance constraints were freed on these two intercepts, the resulting 
partial strong factorial invariance model displayed much improved fit to the data, χ2(74) = 
486.87, p < .0001, and the TLI (.970) and RMSEA (.052) were also considerably improved. 
 The fourth model added invariance constraints across groups on unique factor variances 
to the strong invariance model and is termed the strict factorial invariance model. We continued 
to allow the intercepts for the Information and Block Design indicators to vary across groups, but 
imposed cross-group constraints on all 10 unique variances. Given the non-invariance of two 
intercepts, this model should be identified as a partial strict factorial invariance model. This 
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model displayed non-significant loss in fit relative to the partial strong invariance model, Δχ2(10) 
= 13.43, p = .20, and the TLI of .973, RMSEA of .049, and BIC of 152459.23 were all the best 
of any models considered thus far.  
 Given the close fit of the partial strict factorial invariance model, we fit two additional 
models. The first of these models added cross-group constraints on the factor variances. 
Although the index of statistical fit worsened significantly, Δχ2(5) = 18.36, p = .003, the TLI of 
.974, RMSEA of .048, and BIC of 152.435.99 all exhibited improved fit of the model to data. 
The final model additionally imposed cross-group invariance constraints on factor means. This 
model showed very large worsening of statistical fit, Δχ2(4) = 497.23, p < .0001, and the TLI of 
.946, RMSEA of .069, and BIC of 152899.93 were all the worst of any of the models. 
 Group differences in factor mean levels are of notable importance in these WAIS-IV 
analyses, as these were the only model parameter estimates that differed across groups. Because 
of the way in which models were identified – with factor means of zero and variances of 1.0 in 
the Pearson sample, mean differences for the NNN sample were in a Cohen’s d metric. Relative 
to the Pearson sample, the NNN sample had a mean on the General factor that was about one-
third of a SD lower, M = −0.326 (SE = 0.036). Interestingly, the NNN sample exhibited little 
mean difference from the Pearson sample on the Verbal Comprehension, M = 0.027 (SE = .041), 
and Perceptual Reasoning factors, M =  −0.118 (SE = 0.044). However, relative to the Pearson 
sample, the NNN sample had mean levels on the Working Memory and Processing Speed factors 
that were substantially lower, more than a half-SD in magnitude lower, with M = −0.598 (SE = 
0.043) and M = −0.615 (SE = 0.046), respectively. 
 
WMS-IV 
 Factor invariance analyses. The best fit models for the WMS-IV also had a similar form 
in both the NNN and Pearson samples, as shown in Figure 2. Factor invariance analyses for the 
WMS-IV followed the same steps as outline above in analyses of the WAIS-IV. Thus, we started 
with a configural invariance model that had minimal constraints, specifically only the constraints 
required to identify the model statistically in both samples. As shown in Figure 2, each of the 
latent variables in these analyses had three indicators. Because the distributions of the 
recognition manifest variables were strongly negatively skewed and had a ceiling effect, these 
three variables were identified as censored above, and the recommended WLSMV method of 
estimation was used. Unfortunately, the BIC is not available under WLSMV estimation, wo we 
sued the SRMR as an additional index of fit, with values < .08 indicating close model fit. In 
addition, given the constraints to identify the model, differences in the χ2 index of fit could not 
be estimated, so only overall model fit values are reported. 
 The configural invariance model had rejectable statistical fit to the data, χ2(36) = 76.41, p 
< .0001, as expected, given the large sample size. But the TLI of .981 and RMSEA of .030 both 
indicated close model fit to the data, and the SRMR was very small, at .021. The second model, 
for weak factorial invariance, constrained the remaining factor loadings to invariance across 
groups. This model had a modest increase (i.e., worsening) in model fit, with model χ2(46) = 
100.65, p < .0001, but the TLI of .979 and RMSEA of .031 were essentially unchanged, and the 
SRMR increased only slightly, to .034. 
 The third model was the strong factorial invariance model, which added cross-group 
constraints on intercepts to the weak factorial invariance model. The strong invariance model had 
fairly good overall model fit, χ2(51) = 110.81, p < .0001, and all three measures of practical fit – 
the TLI (.980), RMSEA (.030), and SRMR (.035) – were essentially unchanged, so model fit 
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was deemed close 
 The fourth model added invariance constraints across groups on unique factor variances 
to the strong invariance model and is termed the strict factorial invariance model. This model 
displayed only slightly worse overall fit relative to the strong invariance model, χ2(62) = 134.39, 
p < .0001, and the TLI of .980 and RMSEA of .030 were unchanged, and the SRMR increased 
only slightly to .053, but all indices indicated close model fit to the data..  
 Given the close fit of the strict factorial invariance model, we fit two additional models. 
The first of these models added cross-group constraints on the factor variances. The index of 
statistical fit worsened considerably, χ2(68) = 530.81, p < .0001. Moreover, the TLI of .882, 
RMSEA of .073, and SRMR of .249 all indicated very poor fit of the model to data. The final 
model additionally imposed cross-group invariance constraints on factor means. This model also 
showed much worse statistical fit, Δχ2(72) = 1333.47, p < .0001, and the TLI of .697, RMSEA of 
.118, and SRMR of .386 were all the worst of any of the models. 
 Group differences in factor means and factor variances across groups were present in 
these WMS-IV analyses. Given limitations of space, we present here only the group differences 
in mean levels; differences in factor variance are shown in supplemental material. Because of the 
way in which models were identified – with factor means of zero and variances of 1.0 in the 
Pearson sample, mean differences for the NNN sample were in a Cohen’s d metric. Relative to 
the Pearson sample, the NNN sample had a large mean difference on the General factor that was 
about one full SD in magnitude, M = −0.986 (SE = 0.075). The NNN sample exhibited similar 
large differences on the first-order Visual Reproduction, M = −1.077 (SE = .096), Logical 
Memory, M = −0.897 (SE = .085), and Verbal Paired Associate factors, M = −0.983 (SE = .126). 
For the Recognition-Familiarity factor, given unequal variances, we set the mean of the NNN 
sample to zero and variance to 1.0, and relative to this the Pearson sample mean was M = 1.026, 
SE = .061) 
 
CVLT3 

Factor invariance analyses. As found for the preceding instruments, the optimal model 
for the CVLT3 had a similar form in both the NNN and Pearson samples, as shown in Figure 3. 
Once again, we followed the same modeling steps in our invariance analyses as we had used for 
the WAIS-IV and WMS-IV. Thus, the configural invariance model for the CVLT3 had the basic 
form as that shown in Figure 3 for both the NNN and Pearson samples, a model with a single 
second-order factor and four first-order factors.   
 The configural invariance model had rejectable statistical fit to the data, χ2(116) = 547.30, 
p < .0001, as expected, given the large sample size. But the TLI of .954 and RMSEA of .074 
were in an acceptable range, and the BIC of 77584.65 served as a reference value for these 
CVLT3 models. The second model, weak factorial invariance, constrained the remaining factor 
loadings to invariance across groups. This model led to a non-significant increase (i.e., 
worsening) in model fit, with Δχ2(12) = 13.28, p = .35, and the TLI of .959, RMSEA of .071, and 
BIC value of 77511.39 all indicated improved fit of the model to data. 
 The third model was the strong factorial invariance model, which added cross-group 
constraints on intercepts to the weak factorial invariance model. The strong invariance model led 
to a moderate increase in the statistical index of model misfit, Δχ2(9) = 81.50, p < .0001, but the 
TLI (.955) and RMSEA (.074) worsened only slightly, so no model modifications were pursued. 
 The fourth model added invariance constraints across groups on unique factor variances 
to the strong invariance model and is termed the strict factorial invariance model. This model 
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displayed a significant loss in statistical fit relative to the strong invariance model, Δχ2(16) = 
39.77, p < .0001, but the TLI of .958, RMSEA of .071, and BIC of 77452.37 all displayed 
improved levels of fit.   
 Given the close fit of the strict factorial invariance model, we fit two additional models. 
The first of these models added cross-group constraints on the factor variances. Although the 
index of statistical fit worsened significantly, Δχ2(5) = 18.99, p = .002, the TLI of .958 and 
RMSEA of .071 were unchanged, and BIC of 77435.30 was the best of any of the models. The 
final model additionally imposed cross-group invariance constraints on factor means. This model 
showed relatively large worsening of statistical fit, Δχ2(4) = 72.47, p < .0001, and the TLI of 
.954, RMSEA of .075, and BIC of 77478.92 all had somewhat poor fit. 
 Group differences in factor mean levels are of notable importance in these CVLT3 
analyses, as these were the only model parameter estimates that differed substantially across 
groups. Because of the way in which models were identified – with factor means of zero and 
variances of 1.0 in the Pearson sample, mean differences for the NNN sample were in a Cohen’s 
d metric. Relative to the Pearson sample, the NNN sample had a mean on the General factor that 
was about one-third of a SD lower, M = −0.337 (SE = 0.059). The NNN sample had a moderatly 
large mean difference on the Attention Span factor, M = −0.583 (SE = 0.078). The NNN sample 
exhibited relatively small mean difference from the Pearson sample on the Learning Efficiency, 
M = −0.181 (SE = .061), and Delayed Memory factors, M =  −0.200 (SE = 0.057). Relative to the 
Pearson sample, the NNN sample had a mean level on the Inaccurate Memory that was rather  
lower, over than one-third-SD in magnitude, with M = −0.384 (SE = 0.075). 
 
D-KEFS 

Factor invariance analyses. As with preceding instruments, the optimal model for the 
D-KEFS had a similar form in both the NNN and Pearson samples, as shown in Figure 4. The 
model has a second-order General factor, three first-order factors that are test-based (for Color 
Word Interference, Trail Making, and Fluency), and a fourth first-order factor for 
Inhibition/Switching that has at least one indicator from each test. 
 The configural invariance model had rejectable statistical fit to the data, χ2(90) = 179.47, 
p < .0001, as expected, given the large sample size. But, the TLI of .974 and RMSEA of .037 
both indicated close model fit to the data, and the BIC of 66231.63 served as a reference value 
for this series of models. The second model, for weak factorial invariance, constrained the 
remaining factor loadings to invariance across groups. Although this model was associated with 
a significant increase (i.e., worsening) in model fit, with Δχ2(15) = 32.33, p = .006, the TLI 
(.974) and RMSEA (.038) were essentially unchanged, and the lowered BIC value of 66155.04 
indicated improved fit of the model to data. 
 The third model was the strong factorial invariance model, which added cross-group 
constraints on intercepts to the weak factorial invariance model. The strong invariance model led 
to a rather large increase in the statistical index of model misfit, Δχ2(8) = 66.26, p < .0001, the 
TLI (.962) and RMSEA (.045) both worsened noticeably, and the increased BIC value of 
66163.20 all indicated poorer fit of the model to data. Modification indices indicated that the 
intercept for the Motor Speed indicator was responsible for the worsened model fit. When the 
invariance constraints were freed on this intercept, the resulting partial strong factorial invariance 
model displayed much improved fit to the data, χ2(112) = 242.94, p < .0001, and the TLI (.970), 
RMSEA (.041), and BIC (66135.34) all improved. 
 The fourth model added invariance constraints across groups on unique factor variances 
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to the strong invariance model, leading to the strict factorial invariance model. We continued to 
allow the intercept for Motor Speed to vary across groups but imposed cross-group constraints 
on all 12 unique variances. This initial partial strict factorial invariance model had a rather large 
increase in statistical fit relative to the partial strong invariance model, Δχ2(12) = 39.75, p < 
.0001. In this model, it appeared that the unique variance for the Motor Speed indicator was 
responsible for most of the worsened fit. So, relaxing the invariance constraint on the Motor 
Speed unique variance led to a model with improved overall fit,  χ2(123) = 258.01, p < .0001, 
and the TLI (.972), RMSEA (.039), and BIC (66070.53) all improved. 
 Given the close fit of the partial strict factorial invariance model, we fit two additional 
models. The first of these models added cross-group constraints on the factor variances. The 
index of statistical fit worsened significantly, Δχ2(5) = 99.51, p < .0001, and the TLI of .955, 
RMSEA of .050, and BIC of 66133.74 all exhibited clearly worsened fit of the model to data. 
The final model additionally imposed cross-group invariance constraints on factor means. This 
model also showed a relatively large worsening of statistical fit, Δχ2(4) = 94.53, p < .0001, and 
the TLI of .937, RMSEA of .058, and BIC of 66199.22 were all in the unacceptable range. 
 Group differences in factor means and factor variances were in evidence in these D-
KEFS models. Given constraints of space, we discuss here only the mean level differences. 
Relative to the Pearson sample, the NNN sample had a mean on the General factor that was over 
one-half of a SD lower, M = −0.569 (SE = 0.098). The NNN had its lowest mean level on a first-
order factor on the Color-Word Interference factor, with M = −0.906 (SE = 0.108). The NNN 
sample exhibited smaller, but still fairly large mean difference from the Pearson sample on the 
Trail Making, M = −0.594 (SE = .147), Fluency, M = −0.316 (SE = .109), and Perceptual 
Reasoning factors, M =  −0.459 (SE = 0.135).  
 
 
 


