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Table S1. PFAS concentrations (µg/L) for the low and high counterfactual exposure profiles 

used to calculate the overall mixture effect for the metabolome wide association study. The 

geometric mean and 95% confidence intervals are provided for additional context. In this study, 

the low exposure profile is defined as setting each log-transformed and standardized PFAS at a 

z-score of -0.5 (𝑥∗ = -0.5) and the high exposure profile is defined as setting each log-

transformed and standardized PFAS at a z-score of 0.5 (z-score of 0.5; 𝑥∗ = 0.5). 

 

 SOLAR (n=312)  CHS (n = 137) 

PFAS 

Low 

(x* = -0.5) 

High  

(x* = 0.5) 

Geometric 

Mean  

[95% CI]  

Low 

(x* = -0.5) 

High 

(x* = 0.5) 

Geometric 

Mean  

[95% CI] 

PFOS 7.91 17.7 11.8 

[10.8, 12.9] 

 2.64 4.16 3.31 

[3.06, 3.58] 

PFHxS 1.02 2.04 1.44 

[1.34, 1.56] 

 0.72 1.51 1.05 

[0.922, 1.19] 

PFHpS 0.280 0.490 0.373 

[0.35, 0.397] 

 0.15 0.22 0.178 

[0.167, 0.19] 

PFOA 2.49 4.35 3.29 

[3.09, 3.5] 

 1.12 1.60 1.34 

[1.26, 1.42] 

PFNA 0.500 0.700 0.589 

[0.567, 0.612] 

 0.42 0.55 0.476 

[0.455, 0.499] 

PFDA 0.180 0.290 0.231 

[0.219, 0.243] 

 0.14 0.26 0.191 

[0.173, 0.211] 

  



 

 

Table S2. Geometric mean and 95% confidence intervals of PFAS concentrations (µg/L) in 

overweight and obese adolescents from the SOLAR cohort, young adults from the CHS cohort, 

compared to PFAS levels in young persons aged 12-19 years old from the National Health and 

Nutrition Examination Survey (NHANES) years 2007-2008 and 2017-2018.  

 

      

NHANES Serum PFAS 

concentrations, Age 12-19 years 

PFAS 

Name 

SOLAR (n = 312)  

2001-2012 

CHS (n = 137) 

2014-2018 

Survey (Years): 

07-08 

Survey (Years): 

17-18 

PFOS 11.8 [10.8, 12.9] 3.31 [3.06, 3.58] 11.3 (10.3-12.3) 2.68 (2.31-3.12) 

PFHxS 1.44 [1.34, 1.56] 1.05 [0.922, 1.19] 2.40 (2.09-2.75) .866 (.732-1.02) 

PFHpS 0.373 [0.35, 0.397] 0.178 [0.167, 0.19] N.R.  .154 (.118-.200) 

PFOA 3.29 [3.09, 3.5] 1.34 [1.26, 1.42] 3.91 (3.71-4.12) 1.42 (1.33-1.52) 

PFNA 0.589 [0.567, 0.612] 0.476 [0.455, 0.499] 1.16 (1.04-1.30) .348 (.286-.424) 

PFDA 0.231 [0.219, 0.243] 0.191 [0.173, 0.211] .231 (.214-.248) .193 (.178-.209) 

N.R.: Not Reported.  



 

 

Table S3. Metabolic pathways associated with exposure to a mixture of six PFAS in adolescents from the SOLAR cohort (n = 312) 

and young adults from the CHS cohort (n = 137). Meta-analysis p values are provided for pathways associated with PFAS in both 

cohorts. Pathway enrichment was performed using MetaboAnalyst version 5.0. The number of significant empirical compounds may 

not match the number of metabolites presented in figures 2-5 (main text) because MetaboAnalyst can annotate individual empirical 

compounds to multiple pathways and because individual LC-MS features may map to multiple empirical compounds.  

  

  SOLAR (n=312)   CHS (n=137)   

Super Pathway Pathway Name 

Significant 

Compounds 

(number) p-value   

Significant 

Compounds 

(number) p-value 

Meta-

analysis 

p-value 

Amino acid 

metabolism 

(Aromatic 

Amino Acids) 

Tyrosine metabolism 24 0.00019   8 0.022 0.000023 

Tryptophan metabolism 9 0.47   4 0.89 0.73 

Amino acid 

metabolism 

(Branched-

chain) 

Valine, leucine and isoleucine degradation 5 0.14   1 0.25 0.11 

Amino acid 

metabolism 

Glutathione Metabolism 4 0.0095   1 0.27 0.011 

Urea cycle/amino group metabolism 10 0.096   4 0.088 0.033 

Arginine and Proline Metabolism 9 0.1   4 0.1 0.04 

Lysine metabolism 8 0.056   2 0.24 0.043 

Aspartate and asparagine metabolism 13 0.085   4 0.32 0.08 

Glutamate metabolism 4 0.37   1 0.3 0.29 

Methionine and cysteine metabolism 5 0.61   3 0.094 0.31 

Glycine, serine, alanine and threonine metabolism 7 0.61   3 0.17 0.38 

Beta-Alanine metabolism 5 0.12         

Alanine and Aspartate Metabolism 5 0.25         

Lipid 

metabolism 

De novo fatty acid biosynthesis 5 0.024   2 0.38 0.034 

Bile acid biosynthesis 4 0.33   5 0.061 0.11 

Prostaglandin formation from arachidonate 6 0.032   1 0.9 0.2 



 

 

Glycerophospholipid metabolism 8 0.5   2 0.56 0.53 

Glycosphingolipid metabolism 4 0.57   1 0.48 0.54 

Putative anti-Inflammatory metabolites formation from 

EPA 

4 0.0032         

Fatty Acid Metabolism 5 0.0051         

Linoleate metabolism 8 0.0063         

Arachidonic acid metabolism 5 0.057         

Leukotriene metabolism 5 0.072         

Carbohydrate 

metabolism 

Butanoate metabolism 5 0.36   2 0.23 0.24 

Aminosugars metabolism 4 0.41   1 0.7 0.54 

Ascorbate (Vitamin C) and Aldarate Metabolism 5 0.27         

Energy 

metabolism 

Nitrogen metabolism 4 0.041         

Metabolism of 

cofactors and 

vitamins 

Porphyrin metabolism 6 0.0032   1 0.49 0.011 

Vitamin B6 (pyridoxine) metabolism 4 0.0051         

Vitamin B3 (nicotinate and nicotinamide) metabolism 4 0.28         

Nucleotide 

metabolism 

Purine metabolism 8 0.25   4 0.12 0.11 

Pyrimidine metabolism 10 0.15   1 0.59 0.23 

Xenobiotics 

biodegradation 

and metabolism 

Drug metabolism - cytochrome P450 4 0.041         



 

 

Table S4. Effect estimates of individual annotated metabolites associated with exposure to a mixture of six PFAS in overweight and 

obese adolescents from the SOLAR cohort (n = 312), in young adults from the CHS cohort (n = 137), and in a pooled analysis with 

both the SOLAR and CHS cohorts. Effect estimates for PFAS mixture (ψ) and the 95% Bayesian credible interval (BCI) estimate the 

change in metabolite levels (SD of the log transformed feature intensity) when increasing all PFAS in the mixture from the 30th 

percentile to the 70th percentile. This estimate is also equivalent to a standardized mean difference calculated between a hypothetical 

group of individuals with all PFAS at the ~70th percentile versus a hypothetical group of individuals with all PFAS at the ~30th 

percentile. 

Cohort Super pathway Metabolite Name ψ (95% BCI) P-value Q-value 

SOLAR Aromatic Amino 

Acid Metabolism 
Hippuric acid 1.40 (0.72, 2.00) 5.10E-05 0.0065 

  Phenylacetaldehyde 1.20 (0.81, 1.60) 4.10E-10 2.00E-07 

  Ascorbate 1.00 (0.58, 1.40) 1.50E-06 0.00032 

  Metanephrine 0.99 (0.35, 1.50) 0.002 0.14 

  Norepinephrine sulfate 0.78 (0.35, 1.20) 0.0002 0.02 

  Norepinephrine 0.74 (0.37, 1.10) 0.00011 0.012 

  Thyroxine 0.72 (0.00, 1.20) 0.0065 0.39 

  Tyramine-O-sulfate 0.72 (0.12, 1.40) 0.037  >0.99 

  Phenylacetylglutamine 0.71 (0.26, 1.20) 0.002 0.14 

  3-Methoxytyramine 0.66 (0.37, 0.96) 8.50E-06 0.0015 

  3-O-methyldopa 0.63 (0.19, 1.00) 0.0014 0.1 

  L-Glutamic acid 0.50 (0.11, 1.00) 0.024  >0.99 

  Pyruvic acid -0.53 (-0.91, 0.00) 0.022  >0.99 

  4-Hydroxyphenylacetaldehyde -0.54 (-1.10, 0.00) 0.046  >0.99 

  Acetoacetic acid -0.60 (-1.00, 0.00) 0.041  >0.99 

  1,2-dehydrosalsolinol -0.76 (-1.30, 0.00) 0.027  >0.99 

  Vanylglycol -0.92 (-1.50, -0.46) 0.00095 0.075 

  Homovanillin -1.10 (-1.60, -0.55) 7.60E-05 0.0089 

  Lipid Metabolism 15-Keto-prostaglandin E2 1.20 (0.75, 1.70) 2.60E-07 7.00E-05 

  Dodecanoic acid 1.20 (0.68, 1.70) 5.70E-06 0.001 

  Prostaglandin E2 1.10 (0.35, 1.70) 0.0022 0.15 



 

 

  Glycerol 1.00 (0.60, 1.50) 1.70E-05 0.0025 

  Arachidonic acid 0.81 (0.37, 1.30) 0.001 0.081 

  Linoleic acid 0.78 (0.19, 1.20) 0.0022 0.15 

  13-OxoODE 0.77 (0.31, 1.20) 0.001 0.081 

  Elaidic acid 0.64 (0.00, 1.10) 0.034  >0.99 

  13(S)-HPOT 0.64 (0.06, 1.00) 0.0043 0.27 

  Pelargonic acid 0.63 (0.00, 1.20) 0.027  >0.99 

  LysoPC(18:1(9Z)) 0.61 (0.00, 1.00) 0.016 0.82 

  Leukotriene C5 0.59 (0.00, 1.00) 0.012 0.65 

  12,13-epoxy-9-alkoxy-10E-octadecenoate -0.47 (-0.93, 0.00) 0.091  >0.99 

  (E)-4-hydroxynon-2-enal -0.55 (-0.96, 0.00) 0.019 0.95 

  Non-aromatic 

Amino Acid 

Metabolism 

N-Acetylornithine 1.40 (0.90, 1.80) 1.60E-09 7.10E-07 

  N-Acetylputrescine 1.20 (0.70, 1.70) 1.50E-05 0.0023 

  6-Amino-2-oxohexanoate 0.93 (0.53, 1.40) 1.90E-05 0.0027 

  Aminoadipic acid 0.70 (0.20, 1.20) 0.0057 0.34 

  Citrulline 0.54 (0.02, 1.20) 0.075  >0.99 

  5-Amino-2-oxopentanoic acid -0.59 (-1.00, 0.00) 0.02 0.98 

  L-Carnitine -0.73 (-1.20, -0.25) 0.0019 0.13 

  Aspartic acid -0.87 (-1.30, -0.35) 0.00034 0.031 

  Other met. 

pathways 
Bilirubin 1.20 (0.63, 1.80) 0.0002 0.02 

  Pyridoxamine 1.10 (0.62, 1.60) 1.60E-05 0.0023 

  Biliverdin 0.78 (0.30, 1.30) 0.0027 0.18 

  4-Pyridoxic acid 0.61 (0.20, 1.00) 0.0045 0.28 

CHS Aromatic Amino 

Acid Metabolism 
Thyroxine 1.60 (0.39, 2.80) 0.023  >0.99 

  Hippuric acid 1.30 (0.76, 1.90) 4.40E-06 0.0027 

  Dopaquinone 1.30 (0.58, 2.00) 0.00035 0.094 

  Homovanillic acid 1.10 (0.16, 1.80) 0.0072 0.97 

  Acetoacetic acid 1.00 (0.06, 1.80) 0.012  >0.99 

  L-Glutamic acid 0.87 (0.00, 1.70) 0.088  >0.99 

  Vanylglycol 0.84 (0.08, 1.40) 0.0066 0.91 



 

 

  Lipid Metabolism 11-hydroxyeicosatetraenoate glyceryl ester 1.60 (0.96, 2.30) 2.20E-06 0.0014 

  Behenic acid 1.40 (0.61, 2.10) 0.00014 0.046 

  Docosahexaenoic acid 1.40 (0.35, 2.30) 0.0059 0.81 

  Arachidonic acid 0.67 (0.00, 1.50) 0.15  >0.99 

  Non-aromatic 

Amino Acid 

Metabolism 

Aminoadipic acid 1.30 (0.59, 2.30) 0.0016 0.31 

  5'-Methylthioadenosine 1.00 (0.00, 1.90) 0.02  >0.99 

  3-Dehydroxycarnitine 0.84 (0.00, 1.50) 0.046  >0.99 

Pooled Aromatic Amino 

Acid Metabolism 
Thyroxine 1.40 (0.94, 2.00) 1.70E-07 4.40E-05 

  Hippuric acid 1.10 (0.58, 1.40) 1.10E-06 0.00024 

  Noradrenochrome 1.10 (0.46, 1.60) 0.00052 0.048 

  Lipid Metabolism Glycerol 2.30 (1.40, 2.90) 6.60E-10 3.20E-07 

  Prostaglandin E2 1.30 (0.66, 1.80) 1.20E-05 0.002 

  Non-aromatic 

Amino Acid 

Metabolism 

N-Acetylornithine 1.10 (0.82, 1.30) 1.60E-18 2.70E-15 

  Aminoadipic acid 0.67 (0.31, 1.10) 0.00075 0.065 

  Other met. 

pathways 
Bilirubin 1.90 (1.30, 2.50) 1.20E-10 6.80E-08 

  Pyridoxamine 1.40 (0.71, 2.10) 5.60E-05 0.0074 



 

 

Table S5. Metabolic pathways associated with exposure to a mixture of six PFAS in the pooled 

analysis of adolescents from the SOLAR cohort (n = 312) and young adults from the CHS cohort 

(n = 137). Pathway enrichment was performed using MetaboAnalyst version 5.0.  

Super Pathway Pathway 

Significant 

Compounds 

(number) 

Enrichment 

p-value 

Amino acid metabolism 

(Aromatic Amino Acids) 

Tyrosine metabolism 14 0.016 

Amino acid metabolism Urea cycle/amino group metabolism 6 0.042 

Aspartate and asparagine metabolism 5 0.359 

 

 

 



 

 

Figure S1. Directed Acyclic Graph (DAG) showing the covariates included in the models 

between PFAS exposure and metabolites. 

 

  



 

 

Figure S2. Correlation between plasma PFAS concentrations in A) adolescents from the SOLAR 

cohort (n = 312) and B) young adults from the CHS cohort (n = 137). The upper triangle shows 

the pairwise spearman correlation coefficient for all PFAS, the lower triangle shows a scatter 

plot between each pair of PFAS, and the diagonal shows a density plot of PFAS concentrations 

in each cohort.  

 

 

  



 

 

Figure S3. Heatmap showing the posterior inclusion probabilities (PIPs) between individual 

PFAS and metabolites associated with the metabolism of aromatic amino acids in A) adolescents 

from the SOLAR cohort (n = 312) and B) young adults from the CHS cohort (n = 137). The PIP 

is the posterior probability that the coefficient is non-zero, and higher PIPs suggest that the 

specific PFAS congener is more likely to have a causal effect in the true model. PIPs greater than 

1/6 (~0.167) indicate a greater likelihood that the individual PFAS has a non-zero effect on the 

overall mixture; PIPs > 1/6 are labeled with text. Metabolites are grouped by aromatic amino 

acid metabolism sub pathways, indicated on the right of the plot. 

  



 

 

Figure S4. Heatmap showing the posterior inclusion probabilities (PIPs) between individual 

PFAS and metabolites associated with lipid metabolism pathways in A) adolescents from the 

SOLAR cohort (n = 312) and B) young adults from the CHS cohort (n = 137). The PIP is the 

posterior probability that the coefficient is non-zero, and higher PIPs suggest that the specific 

PFAS congener is more likely to have a causal effect in the true model. PIPs greater than 1/6 

(~0.167) indicate a greater likelihood that the individual PFAS has a non-zero effect on the 

overall mixture; PIPs > 1/6 are labeled with text. 

 

 



 

 

Figure S5. Heatmap showing the posterior inclusion probabilities (PIPs) between individual 

PFAS and metabolites associated with the metabolism of non-aromatic amino acids in A) 

adolescents from the SOLAR cohort (n = 312) and B) young adults from the CHS cohort (n = 

137). The PIP is the posterior probability that the coefficient is non-zero, and higher PIPs suggest 

that the specific PFAS congener is more likely to have a causal effect in the true model. PIPs 

greater than 1/6 (~0.167) indicate a greater likelihood that the individual PFAS has a non-zero 

effect on the overall mixture; PIPs > 1/6 are labeled with text. Metabolites are grouped by non-

aromatic amino acid metabolism pathways, indicated on the right of the plot. 

  



 

 

 

Figure S6. Heatmap showing the posterior inclusion probabilities (PIPs) between individual 

PFAS and metabolites associated with metabolism of cofactors in adolescents from the SOLAR 

cohort (n = 312). No significant associations were observed in the CHS cohort. The PIP is the 

posterior probability that the coefficient is non-zero, and higher PIPs suggest that the specific 

PFAS congener is more likely to have a causal effect in the true model. PIPs greater than 1/6 

(~0.167) indicate a greater likelihood that the individual PFAS has a non-zero effect on the 

overall mixture; PIPs > 1/6 are labeled with text. 

 

 

  



 

 

Supplemental Code. R code used to generate the function for the Bayesian Hierarchical 

Regression Model with g-computation (BHRM-g). The complete code for this analysis can be 

found at github.com/chatzilab/PFAS_metabolomics_EHP_2022.  

# Description  

# input variables 

# X: A NxP matrix of exposures for mixture analysis (on the original scale 

#    with NA's for individuals with BLD) 

# Y: A N-length vector for a continuous outcome 

# U: A NxQ matrix of covariates (variables included in the regression  

#    model but not included in the g-estimation) 

# LOD: A P-length vector of LODs for each exposure. Individuals with missing 

#    data will have data imputed below this level of detection   

# profiles: A 2xP matrix of two counterfactual profiles of exposures for 

#    which a potential outcomes risk difference is calculated (as the  

#    exposures are standardized within the function, these profiles should 

#    be on the standard normal scale) 

 

library(R2jags) 

library(tidyverse) 

 

# Create Function --------------------------------------------- 

BHRMA.g <- function(X=NULL, Y=NULL, U=NULL, LOD=NULL, profiles=NULL) { 

   

  # JAGS model 

  ridge.BDL.model <-  

    "model { 

  for(i in 1:N) { 

    Y[i] ~ dnorm(mu[i], prec.sigma.Y) 

    mu[i] <- alpha +  

             inprod(beta[1:P], X.s[i,1:P]) +  

             inprod(delta[1:Q], U[i,1:Q]) 

     

    # imputation BDL 

    for(p in 1:P) { 

      X[i,p] ~ dnorm(X.true[i,p],prec.X[p])  

      X.true[i,p] <- X.notmiss[i,p]*(1-R[i,p]) + X.miss[i,p]*R[i,p] 

      X.notmiss[i,p] ~ dnorm(mu.X[p], tau.X[p])T(LOD[p], ) 

      X.miss[i,p] ~ dnorm(mu.X[p], tau.X[p])T( , LOD[p]) 

      X.s[i,p] <- (X.true[i,p] - mu.X[p])/sigma.X[p] 

    } 

  } 

  # prior on outcome variance 

  prec.sigma.Y <- 1/(sigma.Y*sigma.Y) 

  sigma.Y ~ dunif(0,3) 

   

  # prior on covariate effects 

  for(q in 1:Q) { delta[q] ~ dnorm(0, 1.0E-06) } 

   

  # prior on intercept 

  alpha ~ dnorm(0, 1.0E-06) 

   

  # prior on exposure effects 

  beta[1:P] ~ dmnorm(mu.beta[1:P], T[1:P, 1:P]) 

  for(j in 1:P) { 

    mu.beta[j] <- (1-gamma[j])*prop.mu.beta[j] 



 

 

    b[j] <- beta[j]*gamma[j] 

    gamma[j] ~ dbern(pi) 

    for(k in 1:P) { 

      T[j,k] <- gamma[j]*gamma[k]*XtX[j,k]/(G) +  

                (1-gamma[j]*gamma[k])*equals(j,k)*pow(prop.sd.beta[j],-2) 

    } 

    tau.X[j] <- 1/(sigma.X[j]*sigma.X[j]) 

    sigma.X[j] ~ dunif(0,5) 

    mu.X[j] ~ dnorm(0, 1.0E-06) 

    prec.X[j] <- 10000 

  } 

  pi ~ dbeta(1,P)  

  

  # Hyper-g prior (following Perrakis 2018, note that this is on  

  # the G^-1 so the Beta distribution is switchd in terms of a and 

  # b from Li and Clyde 2019 equation 34) 

  a <- 3 

  bw <- a/2 - 1 

  w~dbeta(1,bw)  

  G <- w/(1-w) 

 

 

  # g-estimation 

  eta.low <- inprod(b[1:P], profiles[1,1:P]) 

  eta.high <- inprod(b[1:P], profiles[2,1:P]) 

  psi <- eta.high-eta.low 

   

}" 

   

  # Set N,P,Q,R, and exposure names  

  N <- length(Y) 

  P <- ncol(X) 

  Q <- ncol(U) 

  R <- ifelse(is.na(X), 1,0) 

  exposure.Names <- colnames(X) 

   

  ### get the univariate result 

  univariate.results <- t(sapply(1:P, FUN=function(p) {   

    x <- as.matrix(X[,p]) 

    reg <- glm(Y~x, family=gaussian) # perform logistic regression 

    s.reg <- summary(reg)     # get the summary for the regression 

    c.reg <- s.reg$coef["x",] # select the coefficients for the exposure 

    return(c.reg)                     

  }, simplify=T)) 

  univariate.results <- data.frame(exposure.Names,univariate.results) 

   

  ### g prior model result 

  prop.mu.beta <- rep(0, P) 

  prop.sd.beta <- univariate.results$Std..Error 

  XtX <- t(as.matrix(X))%*%as.matrix(X)  

   

  # run jags 

  jdata <- list(N=N, Y=Y, X=X, R=R, U=U, P=P, Q=Q,  

                profiles=profiles, LOD=LOD,XtX=XtX,  

                prop.mu.beta=prop.mu.beta,  

                prop.sd.beta=prop.sd.beta) 

   



 

 

  var.s <- c("beta", "gamma", "eta.low", "eta.high",  "psi") 

  model.fit <- jags.model(file=textConnection(ridge.BDL.model),  

                          data=jdata, n.chains=1, n.adapt=4000, quiet=T) 

  update(model.fit, n.iter=1000, progress.bar="none") 

  model.fit <- coda.samples(model=model.fit,  

                            variable.names=var.s,  

                            n.iter=5000,  

                            thin=1,  

                            progress.bar="none") 

   

  # summarize results 

  r <- summary(model.fit) 

  var.names <- c(paste(exposure.Names, "beta", sep="."), 

                 "eta.high", 

                 "eta.low", 

                 paste(exposure.Names, "gamma", sep="."), 

                 "psi") 

  ridge.BDL.results <- data.frame(var.names,  

                                  r$statistics[,1:2],  

                                  r$quantiles[,c(1,5)]) 

  wald = abs(ridge.BDL.results[,"Mean"]/ridge.BDL.results[,"SD"]) 

  ridge.BDL.results$p.val = (2*(1-pnorm(wald,0,1))) 

  return(ridge.BDL.results) 

} 

 


