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31 
Figure S1. Alpha and Delta variant spike interaction with hamster ACE2. A/B. Mutations observed in 32 
the SARS-CoV-2 Alpha and Delta VOCs are highlighted on the structure of SARS-CoV-2 spike (PDB 33 
6ZGE, [1]. The spike trimer is depicted by surface representation with each protomer colored a different 34 
shade of gray. The residues at the positions of the spike protein mutations observed in the Alpha and 35 
Delta SARS-CoV-2 VOCs are colored purple (Alpha) and teal green (Delta) and annotated. N-linked 36 
glycans are shown as light, orange-colored sticks. C. The structure of the Alpha VOC RBD and human 37 
ACE2 complex (PDB 7EKF [2]) is depicted with cartoon representation. ACE2 is colored dark gray and 38 
the RBD is colored light gray. N-linked glycans are shown as light, orange-colored sticks. A box reveals a 39 
close-up view of the RBD-ACE2 binding interface. Side chains of the residues participating in the 40 
interaction, as identified and described by Lan, et al. [3] are shown as sticks. The residues within the RBD 41 
that are mutated in the Alpha and Delta VOCs are colored purple (Alpha, N501Y) and teal green (Delta, 42 
L452R and T478K). Though they do not participate directly in the ACE2 interface, the sidechains of 43 
residues L452 and T478 are also shown. The residues that differ between human and hamster ACE2 44 
within the interface are colored red. D. BHK cells expressing either human ACE2 or hamster ACE2 were 45 
infected with pseudotyped VSV reporter particles with the spike proteins of Alpha or Delta. Relative entry 46 
to no spike control is depicted. Boxplot depicting median, 95% CI and individuals, N = 8, ordinary two-way 47 
ANOVA, followed by Šídák's multiple comparisons test. Abbreviations: RBD, receptor binding domain; 48 
ACE2, Angiotensin-converting enzyme 2; VOCs, variants of concern. 49 
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50 
Figure S2. Schematic overview of inoculation experiment.  A. Four-to-six-week-old female and male 51 
Syrian hamsters (ENVIGO) were inoculated (N = 10 per virus, N = 5 per sex) with 103 TCID50 intranasally 52 
(IN) with either SARS-CoV-2 Alpha or Delta variants, or no virus (anaesthesia controls). At five days post 53 
inoculation, five hamsters for each group were euthanized, and tissues were collected. The remaining 5 54 
animals for each route were euthanized at 14 DPI for disease course assessment and shedding analysis. 55 
For the control group no day 5 necropsy was performed. Schematic indicates when oropharyngeal swabs 56 
were collected, when whole body plethysmography was performed, when air sampling was conducted and 57 
when exhaled particle profiles were determined. B. Relative weight loss. Graph shows median (thick line) 58 
and individuals, colors indicate sex. C. Viral load as measured by infectious titers in lungs and nasal 59 
turbinates collected at day 5 post inoculation. Bar-chart depicting median, 96% CI and individuals, N = 5, 60 
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ordinary two-way ANOVA, followed by Šídák's multiple comparisons test. D. Binding antibodies against 61 
spike protein of SARS-CoV-2 in serum obtained 14 days post inoculation. Bar-chart depicting median, 96% 62 
CI and individuals, N = 5, Mann-Whitney test. ELISA was performed once. E. Binding antibodies against 63 
spike protein of various variants of concern analyzed by MesoPlex. Bar-chart depicting median, 96% CI 64 
and individuals, N = 5 ordinary two-way ANOVA, followed by Šídák's multiple comparisons test. Assay was 65 
performed once. F. Virus neutralization titers against Alpha and Delta, depicted as reciprocal titers. N = 5, 66 
ordinary two-way ANOVA, followed by Tukey’s multiple comparisons test. Assay was performed once. Grey 67 
= Alpha, teal = Delta, beige = anesthesia control. G.  Antigenic map [4] depicting the cross-reactivity based 68 
on neutralization. p-values are indicated were significant. Abbreviations: ELISA, Enzyme-linked immune-69 
absorbent Assay.  70 
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71 
Figure S3. Window of Alpha and Delta variant shedding profiles. Syrian hamsters were inoculated with 72 
103 TCID50 via the intranasal route with Alpha or Delta.  A. Viral load as measured by gRNA, sgRNA and 73 
infectious titers in oropharyngeal swabs collected at days 1, 2, 3, 4, 5, and 7 post inoculation. Bar-chart 74 
depicting median, 96% CI and individuals, N = 5, ordinary two-way ANOVA, followed by Šídák's multiple 75 
comparisons test. Dotted line = limit of detection. Grey = Alpha, teal = Delta, dark = female, light = males 76 
B. Virus isolated from cage air over 24 h intervals, measured as gRNA, sgRNA and plaque forming units 77 
on day 0, 1, 2, 3, 4, and 5. The column marked 1 corresponds to samples taken from 0-24 hours post 78 
inoculation. Each cage housed 2 or 3 hamsters. Heatmap depicting individual cages across each day, 79 
colours referring to legends on the right. RNA: limit of detection = 4.0, Plaque forming units: limit of detection 80 
= 0. C. sgRNA sampled from air versus infectious virus sampled from air. Point colour indicates variant: 81 
Alpha (grey) or Delta (teal). Sampled sgRNA copies value versus sampled plaques. D. Number of estimated 82 
sgRNA copies per plaque in samples as a function of day sampled and variant. p-values are indicated 83 
where significant. Abbreviations: g, genomic; sg, subgenomic; TCID, Tissue Culture Infectious Dose. 84 
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 85 
Figure S4. Respiratory tract pathology after SARS-CoV-2 infection with Alpha and Delta. Syrian 86 
hamsters were inoculated with 103 TCID50 via the intranasal route with Alpha or Delta and respiratory 87 
pathology was compared on day 5.  A, B. Skull, brain, nasal turbinates and cavities, Alpha and Delta variant, 88 
1x HE. C, D. Nasal cavities contain an exudate and are lined by inflamed, disrupted and necrotic epithelium, 89 
40x HE. E, F. Eroded and ulcerated olfactory epithelium, epithelial micro-abscesses, sloughed epithelial 90 
and inflammatory exudate occupies nasal cavities and recesses, 200x HE. G, H. Examples of 91 
immunoreactivity in the exudate of the nasal cavity. There are also rare immunoreactive olfactory epithelial 92 
cells in the Alpha variant sample and numerous immunoreactive epithelial cells in the Delta variant sample. 93 
200x, anti-SARS-CoV-2 IHC. I, J. Lung, Alpha and Delta variant, 1x HE. K, L. Foci of inflammation across 94 
multiple lobes, 20x HE. M, N. Foci of inflammation contain numerous inflammatory cells as well as 95 
hemorrhage, fibrin and edema.  Bronchioles contain fibrin, sloughed epithelial and inflammatory cells. 96 
Vessels contain sub-intimal leukocytes and vessel walls are occasionally infiltrated by leukocytes, 200x HE. 97 
O, P. Alveolar immunoreactivity, 400x, anti-SARS-CoV-2 IHC. Mainly, severe inflammation and not yet well-98 
developed interstitial pneumonia were observed. Foci were consolidated but only rarely contained 99 
hyperplastic type II pneumocytes and syncytial cells. The large and mid-caliber bronchioles were frequently 100 
lined by hyperplastic respiratory epithelium mixed with rare singular necrotic cells and transmigrating 101 
leukocytes. Lesions were associated with hemorrhage, fibrin and edema. Vessels also contained sub-102 
endothelial clusters of leukocytes within the muscular layers and surrounding adventitia. In the nasal 103 
turbinates SARS-CoV-2 was seen in the exudate of the nasal and rarely in olfactory epithelium, regardless 104 
of variant. No sex-specific increases in pathology were observed.    105 
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106 
Figure S5. Exhaled particle profiles of Syrian hamsters A. Chambers used to house uninfected 107 
hamsters (left) and animals during inoculation experiments (inoculation with Alpha, Delta or control 108 
inoculum) (right). B. Uninfected healthy animals were used to assess particle profiles in relation to behavior 109 
patterns. Five Syrian hamsters were acclimatized to a small tube, in which animal movement was limited 110 
and air flow was directly passing the face. For each animal, 5 x 5-minute readings were taken. Heatmap 111 
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shows the percentage of total particles in each diameter size for 3 male and 2 female animals. * marks 112 
minutes of low to no activity (sleep). Colors refer to scale below. C. Syrian hamsters were inoculated with 113 
103 TCID50 via the intranasal route with Alpha (N = 10) or Delta (N = 10). Aerodynamic diameter profile of 114 
exhaled particles was analyzed on day 0, 1, 3, and 5. For each animal (N = 10 in each variant group, 115 
comprising 5 makes and 5 females), line graph of the total number of particles by variant and sex indicated 116 
by color (red = female; blue = male).  117 
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 118 
Figure S6. Airborne competitiveness of Alpha and Delta SARS-CoV-2 variants A. Cumulative 119 
pathology score of sentinels on day 5 post exposure. Bar-chart depicting median, 96% CI, and 120 
individuals, Mann-Whitney test. B. Lung histologic lesion scores 0, 1, and 2.  Score 0, normal lung devoid 121 
of immunoreactivity. Score 1, a solitary focus of inflammation (circled) surrounded by normal lung. 122 
Bronchiole (*) and alveolar (>) immunoreactivity. Score 2, multiple foci of coalescing inflammation 123 
centered on airways. HE (top row) and anti-SARS-CoV-2 IHC (bottom row). C, D. Viral load measured via 124 
infectious virus titer in swabs and lungs of sentinels on day 5. Bar-chart depicting median, 96% CI, and 125 
individuals, Mann-Whitney test. Grey = Alpha, teal = Delta, p-values indicated where significant. 126 
Abbreviations: TCID, Tissue Culture Infectious Dose.  127 
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 128 
Figure S7. Early virus shedding in donors and sentinels. Donor animals were inoculated with Delta 129 
variant with 103 TCID50 via the intranasal route. Sentinels (1:1 ratio) were exposed subsequently at 16.5 130 
cm distance for 24 h, beginning 24 h after donor exposure. A. Organ titers measured by gRNA and sgRNA 131 
on day 2 post inoculation/exposure. B. Respiratory shedding measured by viral load in oropharyngeal 132 
swabs; measured by gRNA, sgRNA and infectious titers on day 2 post inoculation/exposure. Bar-chart 133 
depicting median, 96% CI and individuals, N = 5, ordinary two-way ANOVA, followed by Šídák's multiple 134 
comparisons test and Wilcoxon test. Orange = donors, purple = sentinels, p-value shown where significant. 135 
Abbreviations: g, genomic; sg, subgenomic; TCID, Tissue Culture Infectious Dose.  136 
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1 Introduction
We modeled the observation process explicitly to extract maximal information from the data

generated.

1.1 Notation
In the text that follows, we use the following mathematical notation.

1.1.1 Logarithms and exponentials

log(x) denotes the logarithm base e of x (sometimes called ln(x)). We explicitly refer to the

logarithm base 10 of x as log
10
(x). exp(x) denotes ex .

1.1.2 Probability distributions

The symbol ∼ denotes that a random variable is distributed according to a given probability

distribution. So for example

X ∼ Normal(0, 1)
indicates that the random variable X is normally distributed with mean 0 and standard de-

viation 1.

We parameterize normal distributions as:

Normal(mean, standard deviation)

We parameterize positive- and negative-constrained normal distributions (i.e. with lower

limit 0 and upper limit zero, respectively) as:

PosNormal(mode, standard deviation)
NegNormal(mode, standard deviation)

We parameterize censored normal distributions, in which values outside the censoring range

are reported at the lower limit of detection (lld) and upper limit of detection (uld), respec-

tively, as:

Censored Normal(mean, standard deviation, lld, uld)

We parameterize Poisson distributions as:

Poisson(mean)

2



1.2 Units
Unless otherwise stated, we express time in units of hours, volume in units of mL, infectious

virus in units of plaque forming units collected on our air filter, and sgRNA in units of copy

numbers.

2 Dynamics model
We modeled the within-host dynamics of the virus within inoculated hamsters as a process of

exponential growth of virus up to a peak, followed by exponential decay of virus down from

that peak. The principal quantity of interest is airborne virus shedding over time Va (t),

expressed in units of infectious virions exhaled per unit volume of exhaled air per unit time.

We express time in units of hours post-infection.

2.1 Growth and decay of air shedding
We denote the exponential growth rate of the virus within the hamster by g and the expo-

nential decay rate after the peak by dav. We denote the time of peak airborne shedding ta > 0

and define t = 0 as the time of inoculation.

Our model is therefore:

Va (t) =
{
Va (0) exp

[
gt
]

t < ta

Va (0) exp
[
gtp − dav (t − ta)

]
t ≥ ta

(1)

2.2 Offset growth and decay of oral shedding
Since we also took measurements of virus shed in oral swabs, we incorporated the dynamics

of oral swab shedding Vo (t) into our model. We modeled Vo (t) as offset in time from the

dynamics of airborne shedding Va (t) by some offset factor ω > 0. That is, the time of peak

oral shedding to is:

to = ωta (2)

Note that ω < 1 implies that swab shedding peaks earlier than airborne shedding, ω > 1

implies that swab shedding peaks later, and ω = 0 implies the peaks coincide in time.

We also allowed for the possibility that oral virus shedding decays at a faster or slower rate dov
than airborne virus shedding, which decays at a rate dav. Specifically, we defined the ratio of

dov to dav as qo > 0, so:

dov = qodav (3)

Then:

Vo (t) =
{
Vo (0) exp

[
gt
]

t < to

Vo (0) exp
[
gto − dov (t − to)

]
t ≥ to

(4)
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2.3 Relationship between sgRNA and infectious virus
We also modeled the possibility that measured sgRNA decays slower or faster than measured

infectious virus. Slower decay, for instance, could result from persistence of undegraded

RNA after all infectious virions have been neutralized or otherwise lost infectivity.

We modeled this possibly different RNA shedding decay rate with an estimated ratio qn > 0

that relates sgRNA shedding decay to infectious virus shedding shedding decay. So the decay

rate of air sgRNA shedding dan is:

dan = qndav (5)

And similarly the decay rate of oral sgRNA shedding don is:

don = qndov = qoqndav (6)

We modeled the ratio between produced virus and produced sgRNA copies with multipliers

on for oral swabs and an for air samples. So before the decay phase begins, V (t) andN (t) are

linearly related.

Na (t) = anVa (t) if t < ta

No (t) = onVo (t) if t < to
(7)

The dynamics of airborne sgRNA shedding Na (t) and oral sgRNA shedding No (t) are

therefore equivalent to those for infectious virus in equations 1 and 4, respectively, but with

dan instead of d, don instead of dov, and initial values Na (0) = anVa (0), No (0) = onVo (0):

Na (t) =
{
Na (0) exp

[
gt
]

t < ta

Na (0) exp
[
gta − dan (t − ta)

]
t ≥ ta

(8a)

No (t) =
{
No (0) exp

[
gt
]

t < to

No (0) exp
[
gto − don (t − to)

]
t ≥ to

(8b)

2.4 Initial shedding value
For inference purposes, rather than set a prior distribution on the initial airborne shedding

viral load V0 = Va (0), we instead set a prior on the peak airborne viral load Vmax = Va (ta)
and back-calculated Va (0) (and thus Vo (0), Na (0), and No (0) via:

log(V0) = log(Vmax) − gta (9)
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2.5 Variant effects
We allowed the two variants of interest, Alpha and Delta, to take on different typical values

for all of the virological parameters: g, dav, ta, ω, qo, qn, an, on, and mean peak viral shedding

Vmax. We denote the variant-specific values for variant i by gi , davi , and so on.

2.6 Respiration rates
We also measured animal respiration ratesm(t) and included these in our model. The amount

of infectious virus an animal deposits into the air per unit time ism(t)Va (t) and the amount

of sgRNA the animal deposits per unit time is m(t)Na (t).

2.7 Sex effects
Since male hamsters are physically larger and appeared to have different shedding profiles,

we wanted to be able to estimate the effect of host sex on key parameters of interest. To do

this, we modeled males as possibly offset from females in their typical values of respiration

ratem(t), airborne shedding exponential growth rate g, airborne shedding exponential decay

rate dav, peak airborne shedding time ta, and peak airborne shedding rateVmax (this then has

downstream consequences for other parameters such as dan or to that depend on those core

virological parameters).

We modeled sex differences in the virological parameters via offsets to the mean log values for

male hamsters. Δx denotes the offset for variable x. So for example if females have a mean log

respiration rate of log[m], males have one of log[m] + Δm. We also estimated male offsets

Δg for growth rate g, Δd, for decay rate dav, andΔV for peak sheddingVmax. We did not treat

effects as variant-specific, but rather sought to estimate the average sex differences in infection

dynamics across the two variants tested.

2.8 Individual heterogeneity in disease course
To account for the fact that individuals have heterogeneous disease courses, we made our

model hierarchical, with core virological parameter values for specific individuals distributed

about the typical population values. If infected with a variant i, animal j has individual values

for the virus growth rate gij , the virus decay rate davij , the peak load time ta, and the peak load

Vmaxij .

These values are log-normally distributed about the population values for the given variant

and animal sex, with estimated variant-specific standard deviations σgi , σdi , σti and σVi . We

use sj as an indicator for the sex of hamster j (0 if female, 1 if male). Then:

log[gij] ∼ Normal(log[gi] + sjΔg , σgi)
log[davij] ∼ Normal(log[davi] + sjΔd, σdi)
log[taij] ∼ Normal(log[tai], σti)

log[Vmaxij ] ∼ Normal(log[Vmaxi ] + sjΔV , σVi)

(10)
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We also allowed for individual heterogeneity in respiration rates: animal j has an individ-

ual time-averaged respiration ratemj log-normally distributed about the population valuem
with an estimated standard deviation σm:

log[mj] ∼ Normal(log[m] + sjΔm, σm) (11)

3 Predicting observable quantities
We measured the following quantities:

• Virus subgenomic RNA (sgRNA) in oral swabs, measured via quantitative PCR (qPCR)

in units of estimated copy numbers.

• Infectious virus in oral swabs, measured via endpoint titration in units of log
10
TCID50

per mL.

• Respiration rates, measured via plethysmography in units of mL air exhaled per unit

time.

• Virus sgRNA collected on cage air filters over 24h sampling periods, measured via

qPCR in units of estimated copy numbers.

• Infectious virus collected on cage air filters over 24h sampling periods, measured via

plaque assay as total plaques formed.

• Infection statuses for each variant for each sentinel hamster.

3.1 Units of virus dynamics
We expressed Va (t) and Vo (t) in units of total filter-collectible plaque forming units (PFU)

shed per mLh
−1

(i.e. units that directly predicting the cage air infectious virus measure-

ments).

As discussed in section 2, our model explicitly relates infectious virus dynamics Va (t) and

Vo (t) to sgRNA copy number dynamics Na (t) and No (t). The distinct conversion fac-

tors an and on and decay rates dan and don for airborne versus oral shedding account for

two types of possible differences between airborne and oral samples: biological differences

(distinct underlying relationships between infectious virus concentration and sgRNA con-

centration) and measurement differences (distinct quantities of absolute sgRNA quantity

recovered given the same underlying sgRNA concentration).

3.2 Converting predicted swab virus to units of TCID
To fit our model, we needed to convert our internal representation of predicted oral shedding

of virusVo (t), which has the same “predicted air plaques” units as airborne shed virusVa (t),

into the units in which we measured oral shedding: infectious virus vo (t) in units of log
10

TCID50/mL). We modeled this conversion via a multiplier ov:

vo (t) = ovVo (t) (12)
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The multiplier ov subsumes both unit conversion and any actual multiplicative difference in

virion numbers between airborne shedding and swabs (which could come from lower peak

virion concentrations, sampling volume, et cetera.).

3.3 Predicting air sample plaques
We measured shedding into the air at the cage level; multiple hamsters were housed within

a single cage. Moreover, samples were cumulative 24h accumulation on the air filter, rather

than a point-sample.

So to fit our model, we needed to compute the cumulative airborne shedding A over some

time period (t0, t1):

A(t0, t1) =
∫ t1

t0

m(t)Va (t) dt (13)

where m(t) is the animal’s respiration rate. Integrating yields:

A(t0, t1) =



m
g (Va (t1) − Va (t0)) t1 ≤ ta

m
dav

(Va (t0) − Va (t1)) t0 > ta

m
g

(
Va (ta) − Va (t0)

)
+ m

dav
(Va (ta) − Va (t1)) o.w.

(14)

where m is an appropriately-chosen constant to represent the time-varying effect of m(t)
on the value of the integral. Note that while ideally we would know how m(t) and Va (t)
change together and compute the integral explicitly, in practice we could only measure m(t)
coarsely, and so it was simpler to infer the appropriate value, understanding that it would not

necessarily equal a naive temporal average.

Furthermore, since the air shedding measured accumulation on the air filter over a 24 hour

period, we had to account for decay of infectious virus between exhalation and quantifica-

tion. To do this, we assumed that the virus decays exponential in aerosols (as we have previ-

ously measured empirically
1
) but that minimal virus is lost once the filter is removed for virus

quantification.

Suppose the the sampling period begins at a time t0 post-infection and ends at a time t1 when

the filter is removed. Each hamster j sheds infectious virus at a rate mVaj (t) per unit time.

But if the virus loses infectivity according to an exponential decay process with rate λ, then

only a fraction e−λ(ts−t) of the virions shed at time t > t0 and collected on the filter will remain

infectious when the filter is collected at t1.

So the cumulative number of virions shed from t0 to t1 that remain infectious at t1 is given

by:

7



Av (t0, t1) = m

∫ t1

t0

Va (t)e−λ(t1−t) dt (15)

This can be computed using the following antiderivative:

F (t, a, b) =
∫

exp[at − λ(b − t)] dt = 1

a + λ
exp[at − λ(b − t)] (16)

For convenience, define Δt = t1 − t0. If t1 < ta (entire sample happens before peak airborne

shedding), then:

Av (t0, t1) = mVa (t0)
[
F (Δt, g,Δt) − F (0, g,Δt)

]
(17)

Similarly, if t0 > ta (entire sample taken after the peak), then:

Av (t0, t1) = mVa (t0) [F (Δt,−dav,Δt) − F (0,−dav,Δt)] (18)

If the peak occurs during sampling (t0 ≤ ta ≤ t1), the problem can be solved piecewise:

Av (t0, t1) =mVa (t0)
[
F (ta − t0, g,Δt) − F (0, g,Δt)

]
+

mVa (ta) [F (t1 − ta,−dav, t1 − ta) − F (0,−dav, t1 − ta)]
(19)

3.4 Predicting air sample sgRNA
For air sample sgRNA, we again predicted cumulative accumulation. We did not model en-

vironmental degradation of detectable sgRNA, but rather chose to treat it implicitly via the

decay rate ratio qn relating airborne infectious virus shedding to airborne sgRNA shedding.

We chose not to model sgRNA environmental degregation more explicitly because environ-

mental half-lives for sgRNA are less well-characterized, but likely longer, than environmental

half-lives for infectious virus.

The cumulative predicted number of sgRNA copies collected is:

An (t0, t1) = m

∫ t1

t0

Na (t) dt (20)

An can be computed using the following antiderivative:

G(t, a) =
∫

exp(at) dt = 1

a
exp(at) (21)

Note that G(t, a) = F (t, a, b) when λ = 0 (i.e. no environmental decay) or b(t) = t (i.e.

continuous and instantaneous collection leaving no time for environmental decay).
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Again define Δt = t1 − t0. Then, similarly to 16:

An (t0, t1) =



mNa (t0)
[
G(Δt, g) − G(0, g)

]
t1 < ta

mNa (t0) [G(Δt,−d) − G(0,−d)] t0 > ta

mNa (t0)
[
G(ta − t0, g) − G(0, g)

]
+ t0 ≤ ta ≤ t1

mNa (ta) [G(t1 − ta,−d) − G(0,−d)]

(22)

3.5 Predicting sentinel exposures
Using our kinetics model, we were able to estimate probability each donor in our dual donor

experiment had of infecting each sentinel, taking into account donor sex, infecting variant,

and timing of exposure. This also enabled us to assess whether the absence of observed co-

infections in sequential donor experiments was more suggestive of competitive interference

or non-interference among the virus variants (see section 6 for methods and results).

To do this, we assumed that each sentinel’s dose from each donor was proportional to the

cumulative airborne shedding by the donor over the period of sentinel exposure. Given the

short exposure period, we ignored the effect of environmental loss, so the computation was

Av (t0, t1) as in equation 15, but with the environmental loss rate set toλ = 0. We assumed that

the total dose received by each sentinel was equal to the cumulative shedding multiplied by an

estimated variant-specific constant ci that subsumes uncertainty about, sentinel respiration

rate, cage airflow, and per-virion infectivity when inhaled by a hamster (since Av has units of

predicted cell culture plaques, and hamster airways may be more or less susceptible.

So in our model, each sentinel j receives a dose hij of variant i that depends on the virus

shedding Avij (t0i , t1i) from the donor animal associated to variant i and sentinel j, where t0i
and t1i are the start and end times of the exposure:

hij = ciAvij (t0i , t1i) (23)

We again applied a Poisson single-hit model of infection, so the probability pinf (i, j) that

sentinel j is infected with variant i depends on the cumulative dose hij as:

pinf (i, j) = 1 − e−hij (24)

4 Relating predicted quantities to observed quantities
4.1 Oral swabs
4.1.1 Infectious virus titers

Denote the kth measured oral swab titer by yvok. Suppose it was sampled from individual

animal j at time t. Then its predicted value is vok = ovVoj (t).
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We modeled the distribution of observed swab titers given log
10
TCID50 values vok via a Pois-

son single-hit process, as we have described previously
2,3

(in particular, see section 2.2 of SI

of
2
). Briefly, in a Poisson single-hit model of virus titration, a Poisson-distributed number of

virions successfully infect cells in each. The mean µ of this Poisson depends on the under-

lying sample virus concentration v (in log
10
TCID50) and degree of dilution D (in log

10
fold

dilutions):

µ = log(2)10v−D (25)

The factor of log(2) converts from units of TCID50 to units of successful virions.

A well will be positive for infection if at least one virion infects a cell, which occurs with

probability:

1 − exp

(
− log(2)10v−D

)
(26)

A complication to the typical single-hit model in this case is that we only had total counts

of positive wells rather than exact well identities, dilutions, and positive/negative status. To

handle this, we used an approximate method that integrates the likelihood function over the

most probable configurations of positive and negative wells that could generate an observed

total count. We describe this method in section 8.1.

4.1.2 Subgenomic RNA

If ynok is the kth measurement of oral swab sgRNA, sampled from animal j at time t, its pre-

dicted value is nok = No (t). To account for different sampling procedures and qPCR runs

for the donor animals used the dual donor experiments compared to the animals used in the

kinetics experiments, for the donor animals we added an estimated offset term f to the log

copy number: log[nok] = log[No (t)] + f

We modeled the observed log
10

oral swab sgRNA copy numbers ynok as distributed about

their predicted values nok, with an estimated variant-specific standard deviation σnoi (where

i is the variant infecting animal j) and censoring at the minimum and maximum observable

values (which are given by the particular sgRNA standard curve):

log
10
(ynoj) ∼ Censored Normal(log

10
(noj), σnoi , nmin, nmax) (27)

4.2 Air samples
4.2.1 Plaques

We used equations 17, 18, and 19 to predict the number of plaques vak observed on each filter.

Note that this implies Va (t) has units of filter plaques produced per mL exhaled air per unit

time (in the absence of environmental decay).

If an observed plaque count yavk comes from an air sample taken between time t0 and time

t1 from a cage with nh hamsters infected with variant j, the corresponding predicted plaque

count vak is:

vak =

nh∑︁
u=1

Avu (t0, t1) (28)
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where Avu (t0, t1) is Av (t0, t1) for the uth hamster.

Since in vitro cell infection is well-described by a Poisson single-hit process
4

(possibly with bi-

nomial thinning), we modeled the observed plaque counts yavk as Poisson-distributed about

their predicted values vak:

yvak ∼ Poisson(vak) (29)

4.2.2 Subgenomic RNA

Similarly, we used equation 20 to predict the number of sgRNA copies nak that would be

observed when sampling cage k from t0 until t1:

nak =

nh∑︁
u=1

Anu (t0, t1) (30)

where Anu is the cumulative sgRNA shedding function An for hamster u.

We model the observed log
10

air sample sgRNA copy numbers log
10
(ynak) as normally dis-

tributed about their predicted values log
10
(nak) with an estimated variant-specific standard

deviation σnai and censoring at the minimum and maximum possible log
10

estimated copy

numbers (which depend on the standard curve):

log
10
(ynak) ∼ Censored Normal(log

10
[nak], σnai , nmin, nmax) (31)

4.3 Respiration rates
We modeled the observed log respiration rates for animal j log

(
ymij

)
as distributed about the

animal’s typical log value log

(
mj

)
with a estimated standard deviation σr :

log

(
ymij

)
∼ Normal(log

(
mj

)
, σr) (32)

4.4 Sentinel infection status
Our dynamical model generates predicted infection probabilities pinf (i, j) for sentinel i with

variant j (see section 3.5).

The observed infection status for sentinel j with variant i, ypij ∈ {0, 1} is therefore Bernoulli

distributed with probability pinf [i, j]:

ypij ∼ Bernoulli(pinf [i, j]) (33)

5 Prior distributions
In general, we sought to set prior distributions for our parameters that were “weakly infor-

mative”
5
; that is, that rule out biologically implausible or impossible values while remaining

fairly agnostic about possible values of interest. We assessed the robustness of our prior dis-

tribution choices via prior predictive checks.
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5.1 Respiration rates
We placed a normal prior on the population-wide mean log respiration rate log(m), with m
in units of mLh

−1
:

log(m) ∼ Normal(log[4800], 0.25) (34)

We place a positive-constrained normal prior on the individual respiration rate standard de-

viation σmi (see equation 10).

σmi ∼ PosNormal(0, 0.25) (35)

5.2 Virological parameters
We placed log-normal priors on the variant-specific time to peak tai and peak shedding rate

Vmaxi ; i indexes the variant. To encode prior information about the variant-specific growth

and decay rates gi and davi in an interpretable manner, we placed normal priors on the dou-

bling and halving times (in hours) t2i = log(2)/gi and t 1
2
i = log(2)/davi and then back-

calculated gi and davi .

log[tai] ∼ Normal(log[24], 0.5)
log[Vmaxi ] ∼ Normal(log[1] − log[24] − log[4800], 3)

log[t2i] ∼ Normal(log[5], 0.5)
log[t 1

2
i] ∼ Normal(log[15], 0.75)

log[t 1
2
i] ∼ Normal(log[15], 0.75)

(36)

The prior mean for log[Vmaxi ] can be interpreted as corresponding to the amount of shed-

ding that would lead to 1 plaque(s) on the air filter from a 24h sample at the prior mean

respiration rate of log[4800mLh
−1].

We placed normal priors on the male sex effects Δm, Δg , Δd, and ΔV that modify the virolog-

ical parameters:

Δm ∼ Normal(0, 0.25)
Δg ∼ Normal(0, 0.25)
Δd ∼ Normal(0, 0.25)
ΔV ∼ Normal(0, 0.25)

(37)

We placed lognormal priors priors on the swab to air peak timing ratio ω, the swab to air

decay rate ratio qo, the sgRNA to infectious virus decay rate ratio qn, the air infectious virus

to oral TCID conversion factor ov, the air and swab copy number to infectious virus ratios
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an and on. We placed a normal prior on the donor log copy number offset f :

log(ω) ∼ Normal(0, 0.25)
log

(
qo
)
∼ Normal(0, 1)

log

(
qn
)
∼ Normal(log[1], 1)

log(ov) ∼ Normal(0, 10)
log(an) ∼ Normal(0, 10)
log(on) ∼ Normal(0, 10)

f ∼ Normal(0, 1.5)

(38)

We placed positive-constrained normal priors on the hierarchical standard deviations that

specify degree of individual variation about these population-wide virological parameters:

σgi ∼ Normal(0, 0.2)
σdi ∼ Normal(0, 0.2)
σti ∼ Normal(0, 0.15)
σVi ∼ Normal(0, 2)

(39)

5.3 Sentinel infection process constant
We placed a lognormal prior on the variant-specific sentinel infection process constant ci:

log[ci] ∼ Normal(0, 3) (40)

5.4 Observation error standard deviations
We placed positive-constrained normal priors on the observation process standard deviations

for respiration rate σr (equation 32), oral swab sgRNA copies σnoi (equation 27), air sample

sgRNA copies σnai:

σr ∼ PosNormal(0, 0.2)
σnoi ∼ PosNormal(0, 0.5)
σnai ∼ PosNormal(0, 0.5)

(41)

6 Assessing coinfection probabilities
To assess the probability of coinfection, we visualized the infection probabilities for each

variant in each cage. Given no interaction between two variants’ infection processes, the

probability of being coinfected for each hamster j is the product of the hamster’s probabilities

for each variant:

Pcoinf (j) = Pinf (1, j)Pinf (2, j) (42)

The distribution of the number of coinfections in a given cage or experiment is then the

convolution of these individual Bernoulli-distributed outcomes for individuals.
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Figure S1: Posterior estimates for the infection probabilities for each variant in each cage.

Half-violin plots show posterior densities for Alpha infection probability (gray) compared

to Delta infection probability (green). There were very high Alpha infection probabilities in

cages A and F.

6.1 Results
Figure S1 shows the estimated infection probabilities by variant and cage. Cage F was the

only cage in which we observed coinfections, and our model shows that it is indeed the only

cage in which both Alpha and Delta clearly had a high probability of causing infections in

the sentinels.

We then calculated the posterior estimated probability of coinfection occuring for each ham-

ster in each cage, according to equation 42. Figure S2 shows the resulting estimates.

The model estimates that coinfection probabilities were highest in Cage F simply because

both Alpha and Delta infection probabilities were high. In other cages, coinfection probabil-

ities are substantially lower, since at least one variant has a low individual infection probabil-

ity S1. Cage C (Delta, then Alpha) is the only sequential exposure cage in which the absence

of coinfections is perhaps surprising; even there, the data are consistent with a coinfection

probability of under 25% or even under 10%, so given that only 5 sentinels were exposed, the

absence of a coinfection is consistent with random variation.

Finally, to assess whether the absence of any coinfections in the sequential experiments while

several were observed in the simultaneous experiments could be explained by chance, we cal-

culated the posterior distribution for the expected number of coinfections by experiment

type (this is the sum of the probability for each cage times the number of sentinels in that

cage). The results are shown in Figure S3

The model suggests that the absence of coinfections in the sequential exposures could simply

result from low probabilities in all cages except C; the data are consistent with an expectation

of between zero and two coinfections, though more than that would also have been plausible.
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Figure S2: Posterior estimates for coinfection probabilities by cage. Sequential exposures

shown in blue, simultaneous exposures shown in pink. Cage F, where coinfections were ac-

tually observed, has a substantially higher coinfection probability estimate than other cages.
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Figure S3: Expected coinfection counts for sequential and simultaneous experiments.
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Taken together, our results suggest that differences in donor virus dynamics and shedding

could readily explain the differences between sequential and simultaneous exposures in our

small-N dataset. Identifying or ruling out competitive (or facilitating) interaction among

virus variants during sequential versus simultaneous transmission would likely require larger

samples.
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7 Computational methods
We implemented and conducted inference from our model in Python using the Numpyro

probabilistic programming framework
6

. We drew posterior samples using Numpyro’s itera-

tive implementation
6

of the No-U-Turn Sampler (NUTS)
7
, a form of Hamiltonian Monte

Carlo (HMC).

For inference purposes, we set a minimum rate of 10
−20

for all Poisson distributions of “hit-

ting” virions (for filter plaques and virus titration. True 0 rates can cause numerical issue

when conducting NUTS sampling with Numpyro. This minimum rate of 10
−20

can be

thought of as representing a very small probability of a false positive plaque or well.

We prepared data for modeling and analyzed and visualized output in Python
8
; the packages

Numpy
9
, Scipy

10
, Matplotlib

11
, and Polars

12
were particularly critical.

All code and data to reproduce Bayesian inference results, including model fits and model

output figures, is available on the project Github repository (https://example.com) and

archived on Zenodo (https://example.com).

8 Additional mathematical details
8.1 Well observation process
But since Spearman-Karber estimates for a 0.1 mL inoculum give an exact value for the total

number of positive wells in a 4 well by 8 dilution series, we were able to back calculate the total

number of positive wells. By further assuming that all dilutions with any positive wells were

all positive except for the last two rows (these are by far the most probable way to produce

a given number, we were then able to calculate the approximate likelihood of observing a

given number of positive wells n given a true underlying titer v. We first calculate the implied

dilution for the penultimate row, d, and the implied number k of total positives at dilutions

d and d + 1:

k = min{n, n 4 +mod 4}

d =
n − k

4

(43)

where mod denotes the modulo operation (remainder when n is divided by 4).

Then the approximate log likelihood for observing n positive wells given an underlying virus

concentration v is the sum over the possible ways to generate k positives at dilutions d and

d + 1. Define the random variables Kd and Kd+1 as the number of wells positive at dilutions

d and d + 1, respectively. The the probability of observing a certain value of Kd given the

underlying virus concentration v is given by a binomial distribution with success probability

equal to the single hit probability at dilution d, i.e.:

P (Kd = k | v) =
(
4

k

)
pk (1 − p)4−k (44)
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with p = 1 − exp

(
− log(2)10v−d

)
. And so:

L (n | v) ≈
4∑︁

c=k−4
log[P (Kd = c | v)] + log[P (Kd+1 = k − c | v)] (45)
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