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MD, bending MD, tilt X-ray
fluctuations (this work) fluctuations [1] diffraction [2]
POPC
k. (kcal/mol) 17.0  [13.5, 22.1] 19.1 [17.9, 20.3] 11.9 [9.3, 14.5]
k; (kcal/mol/A?) || 0.102 [0.084, 0.127] | 0.079 0.099 [0.051, 0.147]
POPC/CHOL

kc (kcal/mol) | 444  [23.7, 99.8] | **P =0.002
k; (kcal/mol/A?) | 0.085 [0.072, 0.101] | P=0.16

DOPC
k. (kcal/mol) 18.0 [13.0, 26.2] | 17.1 [159, 183]| 11.6 [10.8, 12.4]
k; (kcal/mol/A2) || 0.103 [0.080, 0.138] | 0.092 0.128 [0.116, 0.140]
DOPC/CHOL

k. (kcal/mol) || 28.5 [16.0, 60.3] | P=0.24
k; (kcal/mol/A?) || 0.081 [0.064, 0.106] | P =0.20

Table S1: Bending moduli k. and tilt moduli £; estimated from membrane bending fluctuations. The estimated mean
of each parameter, obtained by fitting Eq. 5 against the data, is reported along with the corresponding 95% confidence
interval (CI) in brackets. Bending fluctuation results are from this work (Fig. 7), with uncertainty estimated by
parametric bootstrapping [3]. The same distributions were used to perform statistical tests against the hypothesis
that cholesterol has no effect, with the resulting P-values reported in the table. Also reported are previous results
for the pure lipids using tilt fluctuations [1] and X-ray diffraction [2], with 95% Cls calculated from the reported
standard errors, if available.
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Figure S1: Change in lipid orientation as a function of curvature. The longitudinal component of the mean lipid
orientation vector n)| was regressed onto the longitudinal component of the membrane normal vector, N. Based on
this regression, the value of n corresponding to the largest value of N in each bilayer is plotted for each umbrella-
sampling simulation window. Grey dashed lines indicate the Helfrich-Canham theoretical prediction (n = N));
dotted lines indicate no changes in lipid orientation (; = 0). Results are shown for POPC and POPC/CHOL bilayers

(A-C) and DOPC and DOPC/CHOL bilayers (D-F). The values of the regression slopes are plotted in Fig. 3D,E and
Fig. S2.
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Figure S2: Analysis of the balance between bending and tilt energies for mixed bilayers. The expression in Eq. 3
is fitted against the values of nj /N for POPC/CHOL (A) and DOPC/CHOL bilayers (B), using k. /k; as the single
fitting parameter. Dashed lines indicate best-fit curves, and striped bands the 95% CI around each curve.
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Figure S3: Changes in number of water molecules p,, embedded in the hydrophobic section of each bilayer quanti-
fied for POPC and POPC/CHOL (A), and DOPC and DOPC/CHOL (B). Dashed lines indicate the results of linear
fits of Apy, vs. the curvature ¢, performed on aggregated data from POPC and DOPC (slope = 0.081 + 0.005 A~?)
or from POPC/CHOL and DOPC/CHOL (slope = -0.011 4 0.009 A=2). No significant differences were detected
between POPC and DOPC or between POPC/CHOL and POPC/CHOL.
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Figure S4: Atomic order parameters Scy between acyl chain carbons and their bound hydrogens, computed as a
function of the carbon atom’s position along each chain. Results are shown for the sn-1 (A) and sn-2 chain (B) of
POPC molecules, and for the sn-1 and sn-2 chains of DOPC molecules (C-D). The chemical structure of each chain
is shown alongside the order parameters’ values with the same scale.
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Figure S5: Entropy of lipid acyl chains, extracted from histograms of the torsional angles of carbon atoms with
a spacing of 5°. The chemical structure of each acyl chain is shown alongside the reported entropy values as a
function of the position along the chain of the second carbon atom of the torsional angle. Entropy values are shown
as free-energy contributions, —7'S, in kcal/mol units. Results are shown for the sn-1 (A) and sn-2 chain (B) of POPC
molecules, for the sn-1 and sn-2 chains of DOPC molecules (C-D). For each chain, the aggregated change (—TAS)
upon adding cholesterol is also reported in the panel (in kcal/mol units).
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Figure S6: (A-H) Auto-correlation functions (ACFs) of the bending Fourier coefficients hq for multiple bilayers,
colored according to the value of ¢ as in the scale shown. (1,J) Decay rates @(g), obtained by fitting ACFs to single
exponentials, for POPC (blue), POPC/CHOL (orange), DOPC (green) and DOPC/CHOL (red). Decay rates from
800-lipid and 1800-lipid bilayers are shown as circles and squares, respectively; values for ¢ > 0.08 A~! are shown
in transparent colors. Dashed lines indicate a linear fit for DOPC and POPC of ®(q) vs. ¢° as predicted by dynamic
theories [4, 5, 6, 7] based on the Helfrich-Canham model [8, 9]. The intervals of g where NSE experiments were
carried out [10, 11] are highlighted in purple.
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Figure S7: Lipid splay modulus ¥ computed from fluctuations of the mutual angles n; - n; between orientation
vectors of lipid molecules [12]. (A) Values of ) for POPC (blue) and POPC/CHOL (orange) bilayers shown as
circles; dashed bands areas indicate the 95% ClIs of literature values [12]; because no values for POPC/CHOL were
reported, data for the similar mixture POPC/POPS/CHOL 34:30:36 [12] are shown in brown. (B) Values of y for
DOPC and DOPC/CHOL, compared to published 95% CIs [11].
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