Supplementary Material: Iron Based Coupling Media (IBCM) for MRI-Guided

Ultrasound Surgery

Authors

Steven P Allen¹, Austin Fergusson², Connor Edsall³, Sheng Chen⁴, David Moore⁵, Eli Vlaisavljevich^{2,3}, Richey M Davis⁶, Craig H Meyer^{4,7}

- 1. Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
- 2. Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
- 3. Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- 4. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- 5. The Focused Ultrasound Foundation, Charlottesville, VA, USA
- 6. Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
- 7. Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA4.

Supplemental Figure S-1. Mean and standard deviation of the temperature uncertainty values within the bounding box shown in Figure 3 computed for each echo time. Temperature uncertainty increases when the water coupling medium is in the continuous motion state.

Supplemental Figure S-2. Mean and standard deviation of the temperature uncertainty values within the bounding box shown in Figure 3 computed for each echo time. Temperature uncertainty increases when the water coupling medium is in the continuous motion state.

Supplemental Figure S-3. Bland-Altman plots comparing temperature estimates using water and the IBCM at 12 co-registered pixels at the treatment focus. Temperatures are computed for each echo time.

Supplemental Figure S-4. Mean and standard deviation of the temperature uncertainty values within the bounding box shown in Figure 3 computed for each echo time. Temperature uncertainty increases when water is used as the coupling medium and the field of view is reduced to 18 cm.

	Odeen et al. 21	Grissom and Allen 20	Ma et al. 19	Allen et al. 15	Current Study
Thermometry Method	3D, Single Echo, GRE	2D, Single Echo, GRE, Undersampled	Not Reported	2D, Multi-Echo, GRE	2D, Multi-Echo, GRE
Medium Motion State	Continuous	Pulsatile	Not Reported	Continuous	Pulsatile
Medium Suppression Method	Saturation Pulses	2D RF Excitation	Heavy Water	Commercial IBCM	Custom IBCM
Medium Suppression Efficacy (%)	Not Reported	Not Reported	Not Quantified	75% TSE Scans	>400 for TSE scans
Thermometry Uncertainty Improvement (°C)	1.11	6	Not Reported	Not Reported	0.51
Thermometry Accuracy (°C)	Not Reported	±1	Not Reported	±3	0.5

Supplemental Table S-2. Comparison in methods and results between this study and previously published methods to reduce coupling-media-induced guidance imaging errors. Differences in methodologies make direct comparison difficult.