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Method S1. Calibration of the acoustofluidic channel. 
 
The acoustofluidic channel is calibrated using a previously reported method based on single 
particle tracking(27). Briefly, the trajectory of polystyrene microbeads inside the acoustofluidic 
channel was recorded during ultrasound application. The acoustic energy density 𝐸!" is 
determined by fitting the particle position over time, 𝑥#(𝑡), to the equation: 
 

𝑥#(𝑡) =
1
𝑘
𝑡𝑎𝑛$% ,tan(𝑥(0)𝑘) 	exp 5
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where 𝜙 is the particle acoustic contrast factor, 𝑘 the wave number, 𝜂 the solution viscosity, and 
𝑎 the particle radius. 
 
The peak applied acoustic pressure 𝑝#'!( is determined using the relationship: 
 

𝑝#'!( = 2A𝜌)𝑐)𝐸!" [𝑆1] 

 
where 𝜌) is the solution density, and 𝑐) the speed of  sound. 
  



Supplementary Figures 
 

Fig. S1. Control particles do not experience substantial ARF. Fluorescence images of 
intact GVs (A) pressure-collapsed GVs (B), and polystyrene nanoparticles (C) inside the 
microfluidic channel before ultrasound (OFF) and 100 seconds after ultrasound has been turned 
on (ON). Device and acoustic conditions are as described in Fig. 2. 
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Fig. S2. Calibration of the acoustic energy inside the acoustofluidic channel. (A) 
Representative TEM image of a polystyrene particle (top) and quantification of the particle radius 
(bottom, 2.457±0.003 µm, mean±S.E.M., n=7). (B) Fluorescence image and overlaid 
acoustophoretic trajectory of polystyrene particles inside the acoustofluidic channel. The white 
lines demarcate the edges of the channel. Arrows indicated direction of particle movement. (C) 
Representative single-particle trajectory in the x-direction during ultrasound stimulation (top), and 
quantification of the peak particle velocity (bottom, 2.0±0.1 µm/s, mean±S.E.M., n=7). The 
acoustic energy is determined using the radius, the acoustic contrast factor and the position over 
time of polystyrene particles (Supplementary Method). 
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Fig. S3. Cell patterns can be reconfigured on the timescale of seconds. Kymograph 
of projected fluorescence signal from bARG1-expressing E.coli during the application of 
ultrasound at different ultrasound frequencies. Conditions are as described in Fig. 4, A-B. 
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Fig. S4. Bacteria cluster formation requires intact intracellular GVs. Fluorescence 
images of bARG1-expressing E.coli with intact (+) and collapsed (-) intracellular GVs before and 40 
seconds after ultrasound application.  
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Fig. S5. Hologram phase mask. Thickness map of the 3D printed phase mask designed to 
produce an ‘R’-shaped pressure profile.  
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Table S1. Estimated acoustic contrast factor of GV-expressing cells 
 

Volume Fraction of GVs Acoustic Contrast Factor 
Bacteria Mammalian Cell 

0% 0.08 0.07 
1% -0.04 -0.05 
3% -0.3 -0.3 
10% -1.1 -1.1 

This calculation assumes a cell volume-averaged density and compressibility according to 𝜌"'** =
(1 − 𝑓) ∗ 𝜌+,*-./#'	"'** + 𝑓 ∗ 𝜌12  and 𝛽"'** = (1 − 𝑓) ∗ 𝛽+,*-./#'	"'** + 𝑓 ∗ 𝛽12 , where 𝑓  is the 
volume fraction of GVs. Values of 𝜌+,*-./#'	"'** , 𝛽+,*-./#'	"'** , 𝜌12and 𝛽12 were obtained from 
literature. (18, 19, 36, 65-67)   
  



Movie S1. Acoustic manipulation of engineered bacteria. bARG1-expressing bacteria 
are moved to pressure antinodes of a standing wave positioned at the walls of a microfluidic 
channel. Conditions are as described in Fig. 3C. 
 
Movie S2. Dynamic acoustic patterning of engineered bacteria. bARG1-expressing 
bacteria are patterned dynamically in solution by different frequencies of an acoustic standing 
wave, followed by the disappearance of the pattern after ultrasound is turned off. Device and 
acoustic conditions are as described in Fig. 4, A-B.  
 
Movie S3. Focal acoustic trapping of engineered bacteria. bARG1-expressing bacteria 
coalesce at the focal region of a focused-transducer. Device and acoustic conditions as described 
in Fig. 4, C-D. 
 
Movie S4. Translation of acoustically trapped engineered bacteria. A cluster of 
acoustically trapped bARG1-expressing bacteria translated to different locations to form a 
spatiotemporal pattern writing out “CIT”. Conditions are as described in Fig. 4, E-F. 
 
Movie S5. ARF-silencing of GVs. Fluorescently labeled GVs experiencing an acoustic 
standing wave inside a microfluidic channel under continuous flow conditions. GVs in the center 
of the channel experience ARF towards the high-pressure regions at the channel walls; GVs in 
regions where the acoustic pressure is higher than the GVs’ collapse pressure experience collapse 
and shut off their response to ARF. This results in a sharp material separation at the location of 
GV collapse. Acoustic conditions are as described in Fig. 8. 
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