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Fig. S1. Integration of CEL-Seq2 and 10X Chromium datasets. (A) Expression pattern of 

Clk856-GAL4;TH-GAL4 > UAS-Stinger-GFP co-stained with anti-GFP (green) and nc82 

(magenta). Scale bar is 50 μm. (B) Flow diagram showing the data processing. zUMIs and 

Cellranger were used to map and count single cell RNA libraries from CEL-Seq2 and 10X 

Chromium separately. The cells were filtered based on the number of detected genes, transcripts 

and gene expression entropy. Scrublet was used to identify possible doublets in 10X Chromium 

data; these doublets were excluded in the downstream analysis. (C) The number of high-quality 

cells from CEL-seq2 and 10X Chromium at each time point after initial filtering.  

 

 

 

 

 

 

 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0938-8


 

Fig. S2. Identification of high confidence clusters. (A) The percentage of cells from CEL-seq2 

and 10X Chromium in each cluster. The clusters are ordered by the percentage of cells from the 

CEL-Seq2 method. (B) Box plot showing the number of detected genes in each cluster. Each 

cluster has relatively similar numbers of genes with some exceptions. Numbers on the x-axis 

represent the 70 original clusters. (C) t-SNE plot showing the cells from CEL-seq2 (red) and 10X 

Chromium (blue) in the final 43 high confidence clusters. (D) Circled bar plot showing that in high 

confidence clusters there are cells from 6 time points in Light: Dark conditions. (E) Heatmap 

showing the glial and neuronal marker gene expression in all clusters.  

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0938-8


 

Fig. S3. Marker gene expression in DAN and clock neuron clusters. (A-B) Dot plot showing 

that ple, Vmat and DAT are enriched in DANs (A), tim, Clk and Pdp1 are exclusively expressed in 

clock neurons (B). Gene expression levels for each cell were normalized by total expression level; 

we report transcripts per 10 thousand transcripts (TP10K). Clusters are ordered by size. 

 



 

Fig. S4. tim expression in all clock neuron clusters. tim expression in single cells are shown in 

gray dots, the green dots represent the average tim expression in each cluster at different time 

points and the error bars represent SEM. Gene expression levels for each cell were normalized by 

total expression level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S5. Number of cycling transcripts in DAN and clock neurons. The following cycling 

cutoffs were used: cycling amplitude (maximum expression divided by minimum expression) of 

at least 1.5-fold, a maximal expression of at least 0.5 TP10K, JTK cycle and LS p-values of less 

than 0.05 (left panel) or JTK cycle and LS Benjamini-Hochberg corrected q-value of less than 0.05 

(right panel).  

 

 

 

 

 

 

 



 

Fig. S6. Comparison of single cell clusters in the current study with previous results. (A) 

Sanky plot showing the contribution of predefined clock neurons clusters (left) to the classification 

(right) in the current study. Each node represents a single cell cluster. For comparison, each clock 

neuron cluster retains its original identifying number in the parentheses as it was reported 

previously. (B) Heatmap showing the gene expression correlation between single cell clusters and 

different DAN subgroups. Only the transcriptomic results from FACS sorted cells were included 

in the analysis. 

 



 

Fig. S7. Neuropeptide expression in clock neuron and DAN clusters. (A-D) t-SNE plots 

showing Dh44 (A), Dh31 (B), Ms (C) and AstC (D) expression in all clusters. Each cell is colored 

by the expression level with red indicating high expression and gray indicating low expression. 

The DAN clusters are highlighted by dashed red circles. 

 

 

 

 

 



 

Fig. S8. Highly variable genes expression in clock and dopaminergic neuron clusters. 

Heatmap showing the expression levels of 338 highly variable genes in all 43 clusters. Red 

indicates high expression and purple indicates low expression. The color bars on the top represent 

clock and dopaminergic neuron clusters. Representative genes from DANs are labeled in green, 

the genes from clock neurons are labeled in brown and gene expressed both in DANs and clock 

neurons are labeled in red. It has been shown that Nos and tup regulate the physiology and sub-

type identity of DANs(41, 44), kek1 and mirr were identified in DANs previously(4, 63). 

 

 

 

 

 

 

 



 

Fig. S9. Transcription factors expression in identified cell type. (A) Heatmaps showing the 

expression levels of transcription factors in clock neurons and DANs. (B) Gene expression 

correlation of transcription factors in clock neurons and DANs. We calculated the Spearman’s 

correlation coefficients between expression patterns of transcription factors across different clock 

neuron and DANs cell types; the result is visualized in a force embedded layout. Each cluster is 

represented by a node with edge width representing the strength of the gene expression. Blue nodes 

represent clock neuron clusters and gray nodes represent DAN clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S10. DIP and dpr gene expression in identified cell types. (A-B) Dot plots showing the 

gene expression of dpr (A) and Dpr interacting protein (DIP) (B) members in identified clusters. 

The size of the dot indicates what percentage of cells in a particular cluster that express the 

indicated gene. Color indicates the mean expression within that cluster.  

 

 

 



 

Fig. S11. Number of detected genes and transcripts by modified CEL-seq2 and 10X. The 

number of genes (left) and transcripts (right) in single cells from plate- (red) and droplet-based 

(blue) methods are plotted. The pink points represent average number of genes and transcripts in 

these two methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S12. Identified transcriptomic and anatomical clusters in clock neurons and DANs. (A) 

A summary of identified gene expression clusters (T/t, average number of cells per transcriptomic 

type which are based on gene expression similarity) in the current study. (B) Cell types identified 

by morphology and connectivity (c/t, average number of cells per connectivity type) from the 

hemi-brain EM dataset, m-types are the number of morphology types. The cell number includes 

some neurons on the contralateral side, they represent the number of cells that are included in the 

clustering, but not the number of neurons per brain side (1).   

 

 

 

 

 



 

Fig.S13. DAN and clock neuron clusters identified in previous results. (A) t-SNE plots 

showing the identified clock neuron (blue) and DAN (red) clusters from (5). (B-C) tim (B) and ple 

(C) expression in (4). (D-E) tim (D) and ple (E) expression in Fly Cell Atlas head result (8).  

 

 

 

 

 

 

 

 

 



Table S1. Key resources 

Reagent types  Designation Source or reference Identifiers Additional 

information 

Genetic reagent  

(D. melanogaster) 

UAS-Stinger BDSC RRID:BDSC_84277  

Genetic reagent  

(D. melanogaster) 

Clk856-GAL4 (30) Flybase: 

FBtp0069616 

 

Genetic reagent  

(D. melanogaster) 

UAS-EGFP BDSC RRID:BDSC_5428  

Genetic reagent  

(D. melanogaster) 

DIP-Beta-GAL4 

 

Provided by Zinn lab 

 

  

Genetic reagent  

(D. melanogaster) 

DIP-beta RNAi  

Dmel\P{TRiP.HMS0

1774}attP40 

Provided by Zinn lab 

 

  

Genetic reagent  

(D. melanogaster) 

pdf-GAL4 

 

(64) 

 

  

Genetic reagent  

(D. melanogaster) 

tubulin-GAL80ts 

 

BDSC  BDSC_7018 

 

 

Genetic reagent  

(D. melanogaster) 

UAS-FRT-STOP-

FRT-CsChrimson. 

mVenus and LexAop-

FLP 

(65) RRID:BDSC_84277  

Genetic reagent  

(D. melanogaster) 

VGlut-LexA (66)   

Genetic reagent  

(D. melanogaster) 

TH-GAL4 (31)   

Antibody Anti-TH  

Mouse monoclonal 

IMMUNOSTAR 

 

 1:1000 

Antibody Anti-TIM 

Rat monoclonal 

Laboratory of 

Michael Rosbash 

RRID: AB_2753140 1:200 

Antibody Anti-PDF  

Mouse monoclonal 

Developmental 

Studies Hybridoma 

Bank 

AB_760350 1:500 

Antibody anti-GFP 

Chicken  

Abcam RRID: AB_300798 1:1000 

Antibody Goat anti-mouse 

polyclonal 

ThermoFisher RRID: AB_2536185 1:200 

https://identifiers.org/RRID/RRID:BDSC_84277
https://identifiers.org/RRID/RRID:BDSC_5428
https://identifiers.org/RRID/RRID:BDSC_84277
https://identifiers.org/RRID/RRID:AB_300798
https://identifiers.org/RRID/RRID:AB_2536185


Reagent types  Designation Source or reference Identifiers Additional 

information 

Antibody Goat anti-Chicken 

polyclonal 

ThermoFisher AB_2534096 1:200 

Software, algorithm FIJI https://fiji.sc/   

Software, algorithm RStudio https://rstudio.com RRID: SCR_000432  

Software, algorithm Custom code This paper  GitHub 

 

Table S2. The average gene expression of highly variable genes in each cluster. The gene 

expression levels were normalized by the number of transcripts in each cell as TP10K – transcripts 

per 10 thousand transcripts.  Mean expression of the highly variable genes was then calculated 

separately for each cluster. 

 

 

 

https://fiji.sc/
https://rstudio.com/
https://identifiers.org/RRID/RRID:SCR_000432
https://github.com/rosbashlab/scRNA_seq_Clk_vs_DANs
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