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Supplementary Note 1 - PhylEx probabilistic model15

Marginalization over the copy number profiles for bulk data likelihood calculation16

We expand on the description of the marginalization process given the major and minor copy numbers. Note17

that we do not know whether the variant allele is located on the major or the minor copy and that the18

number of variant copies is also unknown. Let A denote the reference allele and B denote the variant allele.19

For illustration, consider (Mn,mn) = (1, 1), i.e., copy number neutral. Then, the possible genotypes are20

A/B or B/A but the two are the indistinguishable and hence, G(1, 1) = {A/B}. If (Mn,mn) = (2, 1), then21

G(Mn,mn) = {AA/B,BA/A,BB/A}. To see this, note that if the variant allele is on the major copy, then22

we have two possibilities, 1) both copies harbour the variant (BB/A) or 2) only one copy harbours the variant23

(BA/A). If the variant is on the minor copy and since the minor copy number is 1, the only possible case is24

AA/B. We use uniform prior over the possible elements of the genotype.25

Estimating hyperparameters of scRNA-seq data26

Our primary interest is in estimating αn, βn as a part of the preprocessing step. We describe a simple
approach that we used in the data analysis. Our approach is to predict δc,n first, then estimate αn, βn using
Beta-Binomial conjugacy. To predict δc,n, we compute:

P (δc,n = 1|bc,n, α0
n, β

0
n, α0, β0, δ0) ∝ P (bc,n|δc,n = 1, α0

n, β
0
n, α0, β0, )P (δc,n = 1|δ0), (1)

where α0
n, β

0
n quantify initial belief over the parameters for bi-allelic Beta distribution. We set α0

n = β0
n = 1,

which defines the Uniform distribution on [0, 1], δ0 = 0.5, and α0 = β0 = 0.05. Given δc,n, the hyper
parameter update is,

αn = α0
n +

∑
n:δc,n=1

bc,n (2)

βn = β0
n +

∑
n:δc,n=1

(dc,n − bc,n), (3)

which is the standard update formula for Beta-Binomial hyperparameters.27
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Supplementary Note 2 - Simulated data generation28

Simulating clone tree29

We generate a binary tree with the root node representing the non-malignant ancestor. The root node has30

exactly one child, representing progenitor cancer clone with cellular prevalence of 0.5. We grow the tree31

starting from the progenitor clone such that each node has exactly two children; each child breaks half of the32

parent’s remaining clone fraction: φu = 0.5ηρ(u) where ρ(u) denotes the parent of u. We terminate expansion33

of a lineage when the depth reaches the maximum specified or the cellular prevalence of the terminal node of34

the lineage falls below minimum threshold. In the simulated experiments, we set the maximum depth to 335

(depth of the root node is 0) and minimum cellular prevalence to 0.05. This results in a binary tree with36

eight nodes as shown in Supplementary Figure 8 g. We have an implementation that allows the cellular37

prevalence to be randomly sampled but generating the cellular prevalence in a determined manner creates38

for an interesting and challenging scenario. In particular, there are two pairs of clones that have the same39

cellular prevalence of 0.125 and 0.0625. Having clones with the same cellular fraction makes it difficult for40

reconstruction based on variant allele frequencies alone. To simulate the multifurcating tree, we again set the41

root node to be the healthy clone and it has exactly one child that represents the progenitor cancer clone.42

Starting from the progenitor cancer clone, we grow the tree by randomly selecting number of children from43

{1, 2, 3, 4}. The clone fraction of the children nodes are determined in the same way as for the binary tree.44

We stop the lineage expansion when the maximum depth of 3 or the minimum cellular prevalence of 0.05 is45

reached. Examples of trees generated for simulation studies is shown in Supplementary Figure 8 h-i.46

Bulk data generation47

To model cancer’s complex structural variation and to study the effect of copy number misspecification, we48

use birth-death process to simulate copy number profiles. Birth-death process is parameterized by the birth49

rate and the death rate, with maximum copy number of 10 and the absorbing copy number of 0, i.e., once50

the copy number reaches 0, it does not evolve. We first construct two rate matrices, Q0 with minimum copy51

number state of 0 and Q1 with the minimum copy number state of 1 [3]. The transition matrices are obtained52

via matrix exponentiation, P0 = exp(Q0) and P1 = exp(Q1).53

Let SNV n be assigned to node u of the tree. We initialize the copy number at the root node with the54

value of 2. We then separate copy number evolution into three parts. The first part is along the branches from55

the root node to u. We evolve the copy number using P1, this ensures that there is at least one copy by the56

time we get to node u. Let X ′
n,u be the copy number at node u, we then sample Y ′

n,u ∼ Binomial(X ′
n,u− 1, ξ),57

where ξ ∈ (0, 1). Then, we set the variant copy number at u as Yn,u = Y ′
n,u + 1 and set the reference copy58

number as Xn,u = X ′
n,u − Y ′

n,u. The second part is copy number evolution starting at node u, which is59

initialized with copy number profile of (Xn,u, Yn,u). We evolve (Xn,u, Yn,u) independently using P0 to the60

leaf nodes. The third part is copy number evolution over all of the other branches, that is, the branches not61

in the path from root node to u and not in the subtree rooted at u. The copy numbers are evolved using P062

for these branches.63

Once we have the full copy number profile at each clone, then we take the weighted averages,

X̄n =
∑
v∈T

ηvXn,v (4)

Ȳn =
∑
v∈T

ηvYn,v (5)

D̄n =
∑
v∈T

ηv(Xn,v + Yn,v) (6)

We round X̄n, Ȳn, then sort (X̄n, Ȳn) to convert it to integer-valued major and minor copy numbers for
PhylEx and other software used in the study. Note that these copy numbers provided as input to PhylEx
does not fully capture the true copy number state of the cancer, which is as we desired to study the effect of
scRNA-seq in mitigating the inaccuracies from the copy number detection step. The bulk data read counts
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are generated as follows:

dn ∼ Poisson(d0 · D̄n/2) (7)
bn ∼ Binomial(dn, ξn), (8)

where d0 is the desired mean depth, set to 1, 000 in the simulation studies and ξn = Ȳn/D̄n, denoting the64

probability of observing a variant read. The division by factor of 2 arises when we consider D̄n = 2, e.g.,65

when there is no copy number variation. In that case, to ensure the realized depth has mean d0, we need to66

divide by 2. The birth rate of 1 and death rate of 0.2 was used in simulated data generation.67

Simulating scRNA-seq data68

Given the tree and the SNV-to-clone assignment, we first sample a cell-to-clone assignment for each of the69

cells. Assigning cell to a clone determines its genotype, call it Gc. We randomly select a subset of SNVs to70

be expressed, denoted Ec. For n ∈ Gc
⋂
Ec, we first sample the depth, dc,n from Poisson distribution with71

mean expression level e0. Then, we sample from Bernoulli distribution to set δc,n; the parameter of Bernoulli72

corresponds to bi-allelic expression probability – we used 0.2 in the simulation. If δc,n = 1, we sample bc,n73

from Beta-Binomial(dc,n, αn, βn). The hyperparameters αn, βn are sampled from uniform distribution with74

over (0,max) with max = 10. If δc,n = 0, we sample bc,n from Beta-Binomial(dc,n, α0, β0) with parameters75

α0 = β0 = 0.01. For n ∈ Ec \ Gc, we sample bc,n from Beta-Binomial(dc,n, ε, 1− ε), where ε = 0.01 denotes76

the sequencing error (Supplementary Figure 7 c). As the loci n is expressed but the cell does not harbor the77

SNV, we expect to observe a variant read only in error. For n /∈ Ec, we set dc,n = bc,n = 0.78

Supplementary Note 3 - Software settings79

In this section, we describe the software settings for running PhylEx, TSSB/PhyloWGS, Canopy, B-SCITE,80

ddClone, and InferCNV. Each of the above methods except InferCNV either adopts a full Bayesian approach81

or offer a version that uses Bayesian sampling; we used 4 MCMC chains in parallel where applicable. PhylEx,82

TSSB/PhyloWGS, Canopy, B-SCITE, ddClone, and InferCNV were applied to simulated and HGSOC data.83

PhylEx, TSSB, and InferCNV were applied to HER2+ data as well as simulated and HGSOC data.84

PhylEx and TSSB/PhyloWGS85

PhylEx and PhyloWGS use TSSB prior, which is parameterized by λ0, λ, γ. The support set for each of86

these parameters are bounded: λ0 ∈ [λmin0 , λmax0 ], λ ∈ [λmin, λmax], and γ ∈ [γmin, γmax]. Therefore, the87

hyperparameters to be specified are: 0 ≤ λmin0 ≤ λmax0 <∞; 0 ≤ λmin ≤ λmax < 1; 0 ≤ γmin ≤ γmax <∞.88

The TSSB prior allows exploration of various tree topologies to best fit the data given these boundaries. In89

other words, it does not require apriori specification of the number of clones or whether the evolution is90

linear, bifurcating, or multifurcating. Our recommendation is to set the lower bounds to 0 and start with91

relatively large value for the max parameters: λmax0 = 10, λmax = 0.8, γmax = 0.5. All three methods also92

require copy number information. PhyloWGS requires subclonal copy number information but we were not93

able to generate sensible copy number input even after following the software documentation. Therefore, we94

implemented a method underlying PhyloWGS based on our implementation of TSSB prior that takes in the95

same clonal copy number input as PhylEx – we simply refer to our implementation of PhyloWGS as TSSB.96

The copy number information is generated using TitanCNA for both PhylEx and TSSB.97

All three methods share sequencing error probability, 0 < ε� 1. With advances in sequencing technologies,98

we recommend setting ε to a small value: ε ∈ {0.001, 0.005, 0.01}. In addition, PhylEx requires hyper99

parameters α0, β0 for Beta-Binomial distribution for modelling mono-allelic expression for scRNA-seq data.100

From exploratory analysis of the real scRNA-seq data, we found that setting α0 = β0 = 0.01 fit the data well.101

Simulated data102

For PhylEx and TSSB, we used λ0 = 10, λ = 0.8, γ = 0.5, ε = 0.001, α0 = β0 = 0.01. We ran the slice sampler103

for 2,000 iterations, each iteration performed 2,000 Metropolis-Hastings iterations to sample the cellular104
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prevalences. For PhyloWGS, we used the default settings: λ0 = 25.0, λ = 0.25, γ = 1.0, ε = 0.001. The slice105

sampler was ran for 3,500 iterations with first 1,000 iterations as burn-in. Each iteration performed 5,000106

Metropolis-Hastings iterations to sample the cellular prevalences.107

HGSOC108

We ran PhylEx and TSSB using λ0 = 2, λ = 0.5, γ = 0.5, ε = 0.001, α0 = β0 = 0.01. We ran the slice sampler109

for 10,000 iterations, each iteration performed 2,000 Metropolis-Hastings iterations to sample the cellular110

prevalences. We ran PhylEx and TSSB with 20 chains to generate the standard error estimates on the111

performance measures, i.e., to ensure good performance is not achieved by chance.112

HER2+113

We ran PhylEx and TSSB using λ0 = 2, λ = 0.5, γ = 0.5, ε = 0.01, α0 = β0 = 0.01. We ran the slice sampler114

for 30,000 iterations with 2,000 MH iterations to sample the cellular prevalences.115

Canopy116

Canopy requires specification of the number of clones, copy number information, and the minimum and117

maximum number of MCMC iterations to use. As the number of clones is typically unknown in practice,118

Canopy recommends to try a range of values and to select the number of clone yielding the highest likelihood.119

We specified values from 3 to 12 in all experiments where Canopy was applied. Canopy requires copy number120

information to be generated from Falcon copy number analysis software [4]. We used default settings to run121

Falcon. Finally, we used 4 chains and specified 10, 000 as the minimum MCMC iterations to use and 100, 000122

as the maximum MCMC iterations.123

B-SCITE124

B-SCITE requires false positive and false negative parameters. The scRNA-seq data typically will have high125

false negative rate due to bursty expression whereas false positive rate may be low. In all experiments, we126

used the false positive rate of 0.01 and false negative rate of 0.2. We ran 4 replicates each with 20,000 MCMC127

iterations in all experiments.128

ddClone129

ddClone requires tumor content and copy number information to be specified. We use 1.0 as the tumor130

content in all of the experiments. Note that the tumor content is used by ddClone to parameterize the bulk131

data likelihood. Specifying the value of 1.0 as the tumor content simplifies the ddClone bulk data likelihood to132

rely on cellular prevalences of each clone in computing the bulk data likelihood, which is essentially the same133

approach as the one used by PhylEx. Hence, using the value of 1.0 allows to compare PhylEx to ddClone in134

the respective method’s handling of the single cell data likelihood. Note also that HGSOC is a cancer cell-line135

data, which justifies specification of 1.0 as the tumor content. The copy number information is generated136

using TitanCNA as for PhylEx and TSSB. We ran 4 chains each with 20,000 MCMC iterations for both the137

simulated and HGSOC data.138

Single cell genotyping for B-SCITE and ddClone139

To run B-SCITE and ddClone on the HGSOC data, we needed to perform genotyping for each cell. We used140

BCF-tools version 1.10.2 ‘mpileup’ followed by ‘call’ with option ‘-P 0.1 -mv’.141

InferCNV142

We have also used InferCNV to compare SNV clones to CNV clones. We used the denoising function and143

HMM with 6 states using ‘subcluster’ analysis mode. We used the default setting for all other parameters.144

InferCNV was applied to HGSOC and HER2+ data using the same settings.145
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Supplementary Table 1: Full list of down regulated pathways in EF compared to ABCD clone (FDR < 0.01).
The pathways related to the immune system are found to be down regulated. The first column is the name of
the gene ontology. The second column is the p-value. The third column is the false discovery rate.
GeneOntology P.Value FDR
MHC protein complex 4.85e-15 1.32e-11
Antigen processing and presentation of endogenous antigen 6.40e-15 1.32e-11
MHC class I protein complex 6.57e-14 8.08e-11
Response to type I interferon 2.86e-11 1.60e-08
Antigen processing and presentation of endogenous peptide antigen 2.61e-10 1.14e-07
Positive regulation of T cell mediated cytotoxicity 7.96e-09 2.51e-06
Interferon gamma mediated signaling pathway 2.08e-08 5.72e-06
Regulation of T cell mediated cytotoxicity 2.37e-08 6.07e-06
Positive regulation of antigen processing and presentation 4.99e-07 9.59e-05
Detection of other organism 6.87e-07 0.00012799
Lumenal side of membrane 1.11e-06 0.00019995
Positive regulation of interleukin 1 beta production 1.28e-06 0.000224036
Positive regulation of interleukin 1 production 3.82e-06 0.000572277
Response to interferon gamma 6.86e-06 0.000937457
Peptide antigen binding 7.05e-06 0.000942833
Negative regulation of natural killer cell mediated immunity 1.08e-05 0.001205857
Negative regulation of natural killer cell mediated cytotoxicity 1.08e-05 0.001205857
Phagocytic vesicle 1.14e-05 0.001242962
Regulation of alpha beta T cell proliferation 1.15e-05 0.001242962
Regulation of T cell mediated immunity 1.53e-05 0.001563431
Positive regulation of type 2 immune response 1.59e-05 0.001597496
Negative regulation of cell killing 1.93e-05 0.001857438
Negative T cell selection 2.23e-05 0.002108729
Positive regulation of T cell mediated immunity 2.57e-05 0.002359283
Positive regulation of leukocyte mediated immunity 2.78e-05 0.00247885
Phagocytic vesicle membrane 5.80e-05 0.004752687
Positive regulation of production of molecular mediator of immune response 6.43e-05 0.005199606
Positive regulation of alpha beta T cell proliferation 6.85e-05 0.00526053
Positive regulation of lymphocyte mediated immunity 7.89e-05 0.005915636
Cellular response to interferon gamma 9.11e-05 0.006670378
Positive regulation of interleukin 12 production 9.48e-05 0.006857689
MHC class II protein complex 0.000131493 0.009186575
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Supplementary Table 2: Summary statistics on genes used in the analysis of HER2+ breast cancer data. The
first column lists the gene names. The second column indicates the number of cells with coverage on the
gene. The third column is the mean number of reads over the cells at the gene. Source data are provided as a
Source Data file.

Gene Cell Count Mean Reads
PIK3R3 310 66.74
FN1 106 19.36
WNT10A 0 0
CACNA2D2 166 3.92
DKK2 0 0
PITX2 0 0
MDC1 108 4.50
EZH2 241 18.25
COL4A5 156 7.81
PRKDC 307 34.13
PRKACG 0 0
IL2RA 0 0
MAP3K8 306 122.36
DDX50 111 4.73
ACVR1B 219 9.59
FGF14 4 0.22
POLE2 47 1.43
FOS 377 3003.54
VPS33B 102 4.50
TP53 271 15.35
NF1 331 123.16
CDC6 70 5.37
CACNG4 241 19.44
ETS2 223 27.08
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Supplementary Table 3: Performance metric of PhylEx on HGSOC when hyperparameter supports are varied.
The first column lists the hyperparameters. The second, third, and fourth columns are clustering metrics used
for comparison, where higher value is preferred. The last column is the ancestral reconstruction error metric,
where lower value is preferred. The standard error estimates were obtained by repeating the experiments 20
times. Source data are provided as a Source Data file.

(λmax0 , λmax, γmax) V-Measure Adj. Rand Index Adj. Mut Info Anc. Recon Err
(1, 0.2, 0.5) 0.859± 0.0590 0.851± 0.1043 0.827± 0.07184 0.0498± 0.0348

(5, 1, 0.2) 0.868± 0.0188 0.884± 0.0227 0.836± 0.0252 0.0394± 0.0099
(5, 1, 1) 0.870± 0.0132 0.888± 0.0164 0.839± 0.0175 0.0379± 0.0077

(10, 1, 1) 0.863± 0.0217 0.882± 0.0180 0.830± 0.0276 0.0378± 0.0046
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Supplementary Table 4: Table of notation used for random variables, their descriptions, and whether they
are inferred, marginalized, pre-estimated, or taken as user input.

T Clonal tree Inferred
z SNV assignment Inferred
φ Cellular prevalence Inferred

λ0, λ, γ TSSB hyperparameters Inferred
ζc Cell assignment to clone Inferred/Marginalized
δc,n Indicator of bi-allelic expression for cell at loci Marginalized
δ0n Prior probability of bi-allelic expression User input
ε Sequencing error probability User input

α0, β0 Mono-allelic expression hyperparameters User input
αn, βn Bi-allelic expression hyperparameters for loci Pre-estimated
bn, dn Variant read counts and total read counts for loci Observed
bc,n, dc,n Variant read counts and total read counts for cell at loci Observed
Mn,mn Major and minor copy number profiles for loci Pre-estimated
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Supplementary Figure 1: Supplementary simulation analysis results. Data generated with 100 SNVs with
20 replicates to derive the error bars. a-b. Binary tree with copy number evolution on mean absolute
reconstruction error and V-measure clustering metric. c-d. Comparison of bulk based deconvolution methods
on binary tree. e-f. Comparison of bulk based deconvolution methods on multifurcating tree using multi-region
bulk data. The box plot shows the median and inter-quantile range (IQR) at the 1st and the 3rd quantiles;
the top (bottom) whisker indicates the maximal (minimal) point no further than 1.5× IQR from the third
(first) quantile. Source data are provided as a Source Data file.
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Supplementary Figure 2: Comparison of mapping of scRNA-seq to clones using two stage approach (Canopy-
Cardelino) to clones inferred using PhylEx (PhylExCardelino and PhylEx) on expected loss. Data simulated
from binary trees a. without copy number variants and b. with copy number evolution. Data generated
with 100 SNVs and simulation repeated over 20 replicates to derive the error bars. The box plot shows the
median and inter-quantile range (IQR) at the 1st and the 3rd quantiles; the top (bottom) whisker indicates
the maximal (minimal) point no further than 1.5 × IQR from the third (first) quantile. Source data are
provided as a Source Data file.
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Supplementary Figure 3: Additional HGSOC cell line biological analysis results. Plot of variant read counts
as absence/presence heatmap after co-clustering by cells and SNVs. a. using Cardelino on Canopy tree. The
mutations exclusive to clones 6 is annotated by red and similarly for clone 8 in blue. Cells assigned to other
clones are seen to carry evidence of mutation on these loci, demonstrating the problem of two-step approach.
b. using PhylEx. c. Plot of gene expressions of cells after performing ZINB-WaVE dimension reduction
– plotted without ancestral cells. d. Plot of gene expressions of cells after performing t-SNE dimensions
reduction. Source data are provided as a Source Data file.
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Supplementary Figure 5: a-f. Volcano plots comparing all parent-child clone pairs. g. Schematic depiction of
the locations of multi-regional sampling for HER2+. The proximity of the regions A, B, and C explains the
homogeneity in their clone fractions. The region D is remote from region A and the region E does not have
any overlap with regions A and C, which explains the differences in the clone fractions in regions D, E to
regions A, B, and C. Source data for a-f are provided as a Source Data file.
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Supplementary Figure 6: Additional HER2+ breast cancer analysis results. a. tree inferred from TSSB, b.
tree inferred from PhylEx before pruning. The number inside the node indicates the # of SNVs and the # of
cells assigned to each clone. c. CNV clones (leaf nodes) and the tree inferred by InferCNV. The number
below the leaf node indicates the # of cells assigned to each clone. d. Plot of binarized variant read counts to
indicate absence/presence of variant read for each loci for cells on clone 5 and clone 6 from TSSB tree shown
in a. e. mutation and cells ordered by PhylEx clones supporting linear expansion. f. cells ordered by CNV
clones inferred from InferCNV tree shown in c. Source data are provided as a Source Data file.
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Supplementary Figure 7: a. Beta-Binomial mixture distribution with α0 = β0 = 0.05, b. α0 = β0 = 0.01;
the values for the biallelic hyper parameters supplied are αn = 5, βn = 7. As α0, β0 decreases, the mass in
the mono-allelic distribution concentrates near 0 and 1. c. The ratio of variant reads to depth for the error
distribution for ε ∈ {0.05, 0.01, 0.005}. Plot of scRNA-seq reads for HGSOC and HER2+ data. d,e. Plot of
the ratio of variant reads to depth for scRNA-seq across all loci. f-g. Plot of the ratio of variant reads to
depth for scRNA-seq for subset of the data without the extremes at 0 and 1. h. Gene expression profile of a
cell taken from Clone 3: Gene A is not expressed; both alleles of Gene B are expressed; Genes C and D are
mono-allelic expression of variant and reference alleles; Gene E is not mutated and hence, only the reference
allele can be expressed. We use b and d to denote variant read counts and read depth. Source data for a-g
are provided as a Source Data file.
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Supplementary Figure 8: a-b. Histogram of total depth and variant depth across all loci over all cells
sequenced from HGSOC cell-line using 10X and Smart-Seq3. c. The boxplot showing the number of mutations
co-occurring in cells. d-e. V-measure metric and ancestral reconstruction error to demonstrate the effect of
coverage on the performance of PhylEx. f. Number of mutations covered by cells in the simulated dataset
at different coverage rates (columns) and cells (rows). The boxplot is generated with 20 replicates for each
experimental condition and shows the median and inter-quantile range (IQR) at the 1st and the 3rd quantiles.
The top (bottom) whisker indicates the maximal (minimal) point no further than 1.5× IQR from the third
(first) quantile. g. Binary tree used in the simulation. h. An example of a multifurcating tree used in the
simulation. i. A linear tree used in the simulation. Source data for a-f are provided as a Source Data file.
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⇣c

<latexit sha1_base64="iuRt16MNBjA6JoCC6LEFDKNeETI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2k3bpZhN2N0IN/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHssHM0nQj+hQ8pAzaqzU7j2hoX3WL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m587JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZ/U4GXCEzYmIJZYrbWwkbUUWZsQmVbAje8surpHVR9WrVy/tapX6Tx1GEEziFc/DgCupwBw1oAoMxPMMrvDmJ8+K8Ox+L1oKTzxzDHzifP1+Vj5o=</latexit>

�0, �, �

<latexit sha1_base64="2Lvcbo4fCTwrKXBUuyb1gBjgByc=">AAACA3icbZDLSsNAFIYnXmu9Rd3pZrAILqQkUtFl0Y3LCvYCbQgnk0k7dCYJMxOhhIIbX8WNC0Xc+hLufBunbRba+sPAx3/O4cz5g5QzpR3n21paXlldWy9tlDe3tnd27b39lkoySWiTJDyRnQAU5SymTc00p51UUhABp+1geDOptx+oVCyJ7/UopZ6AfswiRkAby7cPe9w0h+A7Z7hAA30QAny74lSdqfAiuAVUUKGGb3/1woRkgsaacFCq6zqp9nKQmhFOx+VepmgKZAh92jUYg6DKy6c3jPGJcUIcJdK8WOOp+3siB6HUSASmU4AeqPnaxPyv1s10dOXlLE4zTWMyWxRlHOsETwLBIZOUaD4yAEQy81dMBiCBaBNb2YTgzp+8CK3zqlurXtzVKvXrIo4SOkLH6BS56BLV0S1qoCYi6BE9o1f0Zj1ZL9a79TFrXbKKmQP0R9bnD15Glrc=</latexit>

�0
n

<latexit sha1_base64="tLunUU+VCsqWRt8V5wxf0LYIeZo=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPbWDabSbt0swm7G6GU/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqB1Sj4BIbhhuB7VQhjQOBrWB4M/VbT6g0T+S9GaXox7QvecQZNVZ66IYoDO3JR7dXrrhVdwayTLycVCBHvVf+6oYJy2KUhgmqdcdzU+OPqTKcCZyUupnGlLIh7WPHUklj1P54dvGEnFglJFGibElDZurviTGNtR7Fge2MqRnoRW8q/ud1MhNd+WMu08ygZPNFUSaIScj0fRJyhcyIkSWUKW5vJWxAFWXGhlSyIXiLLy+T5lnVO69e3J1Xatd5HEU4gmM4BQ8uoQa3UIcGMJDwDK/w5mjnxXl3PuatBSefOYQ/cD5/AEHwkKc=</latexit>

Supplementary Figure 9: PhylEx probabilistic model depicted as graphical model.
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