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  Supplementary Figure 1: No EPI ghosting 

This figure addresses the concern that ghosting (e.g. N/2 N/4 ghosting...) may induce 
artificial repetitive patterns and thereby contribute to the patchy activations in cingulate. 
Here, we show that the functional EPI images do not display ghosting artifacts. In the 
figure above, significant voxels overlaid on structural image in panel A, and on functional 
EPI image in panel B. The same EPI slice is shown again on panel C without overlay of 
activation. One can see from panel C that the original EPI image does not display ghosting 
effect in cingulate cortex. Furthermore, N/2 N/4 ghosting exhibits artifacts with much lower 
spatial frequencies that are unlike the patchy profile patterns. Also, the signal intensities 
of ghosting voxels are usually much lower than normal ones, which make them hard to 
detect as significant BOLD activations. 
  



Supplementary Figure 2: Control stimulation site, putamen 
 

 
To support the specificity of the activation pattern following stimulation of basal nucleus 
of the amygdala, we present one example of a control stimulation outside the amygdala. 
In one of the penetrations, we stimulated putamen. Shown are all the slices containing 
activated voxels (P<0.001). Activated sites include: prefrontal 8, 10, possible COa 
(anterior cortical nucleus of amygdala or substantia innominata), caudate, temporal TPO, 
entorhinal El, cingulate 23, and MT. No voxels were observed in the lateral sulcus and 
only one in the cingulate.  
  



Supplementary Analysis 1: Significance of activation in insula & lateral sulcus 
 
It is known that insula and amygdala are functionally similar, both involved in social and 
emotional behaviors. Anatomical tracer studies also showed that there are widespread 
reciprocal connections between them. Consistent with the literatures, our stimulation in 
basal nucleus of amygdala also resulted in activation in insula and lateral sulcus. Here, 
we evaluate the probability to observe this connection by chance. We found that these 
connections are highly unlikely to be random.  
 
In a single scan, there are 36,030 voxels in a single EPI image, and 222,912 voxels in 
the entire monkey brain. When stimulating site 30, we got 70 significant voxels (p-value 
0.001) responding to INS, with a majority of these voxels (50 voxels) located in the 
lateral sulcus (See figure below). This suggests a striking enrichment of significant 
voxels solely in lateral sulcus. Therefore, we performed both Fisher's exact test and a 
simulation test to estimate the probability for a such enrichment.  
 
In the Fisher's exact test, we found that voxel significance and location in the lateral sulcus 
are independent events (p-value < 2.2e-16, odds ratio 764). In other words, there is an 
enrichment of significant voxels in the lateral sulcus (defined here as a combination of 
brain regions CM, RM, R, SII, Ig, Id, Ri, 7op, A1, AL), resulting in 771 voxels within the 
lateral sulcus. 
 

 in lateral sulcus not in lateral 
sulcus 

total 

significant voxels 50 20 70 
non-significant 

voxels 
721 222121 222842 

total 771 222141 222912 
 
In the simulation test, we randomly sampled 70 significant voxels over the whole brain, 
and then counted the number of significant voxels located in lateral sulcus. We repeated 
this for 100,000 simulations (See figure below). We found that in most of the simulations 
(79%), there were no significant 
voxels located in the lateral 
sulcus. In some simulations 
(19%), we found only 1 significant 
voxel in the lateral sulcus. None of 
the random samplings resulted in 
50 voxels in lateral sulcus. We 
therefore conclude that the 
probability for our enrichment of 
71% (50 out of 70) significant 
voxels in lateral sulcus is virtually 0 by chance.  
 
 
  



Appendix A: References for figure 1 
 
General Cortico-amygdala connections 
(D. G. Amaral & Price, 1984) 

(Turner, Mishkin, & Knapp, 1980) 

(Van Hoesen, 1981) 

(Stefanacci & Amaral, 2002) 

 

Striate visual cortex 
(D. G. Amaral, Behniea, & Kelly, 2003) 

(Tigges et al., 1982) 

(Mizuno et al., 1981) 

(Iwai & Yukie, 1987) 

 

Extrastriate visual cortex 
(Webster, Ungerleider, & Bachevalier, 1991) 

(Grimaldi, Saleem, & Tsao, 2016) 

(Saleem, Miller, & Price, 2014) 

(Saleem, Kondo, & Price, 2008) 

(D. G. Amaral et al., 2003) 

 

Perirhinal, entorhinal, temporal pole 
(Insausti, Amaral, & Cowan, 1987) 

(Morán, Mufson, & Mesulam, 1987) 

(Stefanacci, Suzuki, & Amaral, 1996) 

 

Insula 
(Mufson, Mesulam, & Pandya, 1981) 

(Jezzini et al., 2015) 

(Evrard, 2019) 

 

Cingulate and prefrontal cortex 
(Vogt & Pandya, 1987) 

(Morecraft et al., 2007) 



(Morecraft & van Hoesen, 1992) 

(Sharma, Kelly, Pfeifer, & Fudge, 2020) 

(Porrino, Crane, & Goldman-Rakic, 1981) 

(Ghashghaei & Barbas, 2002) 

(D. Amaral, Price, Pitkanen, & Carmichael, 1992) 

(Barbas & De Olmos, 1990) 

(Carmichael & Price, 1995) 

 

Auditory Association cortex 
(Yukie, 2002) 

(Kosmal & Kowalska, 1997) 
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