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Supplementary Fig. 1. Mean true positive (TPR) rate and 95% empirical confidence interval for 
detecting active mediators in 100 simulated datasets. In the baseline and high-correlation-among-
mediators settings, TPR is for distinguishing mediators which contribute to the global mediation 
effect from those which do not, whereas in the non-sparse setting, where all mediators 
contribute, TPR is for distinguishing mediators whose contributions were sampled from a high-
variance distribution from those whose contributions were sampled from a low-variance 
distribution. False discovery rate was capped below 10% by a proper choice of the p-value 
threshold (one-at-a-time, HIMA, HDMA, MedFix), posterior inclusion probability threshold 
(BSLMM), or method tuning parameter (P-LASSO).  
 
 
  



 
Supplementary Fig. 2. Mean relative mean squared error (rMSE) and 95% empirical confidence 
interval for estimating mediation contributions among active mediators in 100 simulated 
datasets, relative to the one mediator at a time method. Y-axis is on a log10 scale. For baseline 
and high-correlation-between-mediators settings, active mediators which contribute to the global 
mediation effect, whereas in the non-sparse setting, where all mediators have some contribution, 
active mediators are those whose contributions were sampled from a distribution with large 
variance instead of small.   
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Fig. 3. Mean relative mean squared error (rMSE) and 95% empirical confidence 
interval for estimating mediation contributions among inactive mediators in 100 simulated 
datasets, relative to the one mediator at a time method. Y-axis is on a log10 scale. For baseline 
and high-correlation-between-mediators settings, inactive mediators are those which have no 
mediation contribution, whereas in the non-sparse setting, where all mediators have some 
contribution, inactive mediators are those whose contributions were sampled from a distribution 
with small variance instead of large. 
  



Supplementary Fig. 4. Mean percentage relative bias in estimating the global mediation effect 
across 100 simulated data replicates, with intervals representing the inner 95% range.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Fig. 5. Genes containing or near CpG sites selected as active mediators between 
low socioeconomic status and HbA1c by methods for high-dimensional mediation analysis. CpG 
sites were linked to genes using R Bioconductor package 
“IlluminaHumanMethylation450kanno.ilmn12.hg19”. Additional genes detected by Pathway 
LASSO listed in Supplementary File 1. 
 
  



Supplementary Table 1. Memory usage of mediation methods by dataset dimensions 

Method 
RAM Usage (Megabytes) 

n = 100, p = 200 n = 1,000, p = 2,000 
BSLMM 114 484 
HDMA 238 342 
HIMA 233 306 

MEDFIX 192 286 
PCMA 315 638 

PLASSO 72 115 
SPCMA 378 1,222 
HDMM 359 687 
HILMA 106 603 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Section 1. Tuning of variance covariance matrix in simulations 
 As described in the main text, the residuals of the mediator models are sampled from a 
multivariate normal distribution with mean 0p  and variance Σ. To obtain Σ, we begin by 
computing the true residual variance-covariance matrix from the real data analysis with DNAm. 
This matrix is singular due to the fact that there are more CpG sites (2,000) being analyzed than 
observations (963). To make the matrix non-singular, we first standardize it so that each 
mediator has residual variance 1, then add a small penalty, r, to every element of the diagonal. 
Then we standardize a second time. This procedure is necessary because if we do not add such a 
penalty, the variance-covariance matrix remains non-invertible, so the residuals once sampled 
will be linearly dependent regardless of the chosen sample size. Moreover, since the size of r 
determines the degree of correlations between mediators—larger values resulting in weaker 
correlations—we can change the correlations between simulation settings by tweaking r. For the 
baseline correlation level, we set r to be 1, forcing the correlations to range from -0.37 to 0.49, 
and for the high-correlation setting, we set r to be 0.5, letting the correlations range from -0.58 to 
0.75.  
 
  



Section 2. Method application details  
One-at-a-time 
 We assess the mediators “one at a time” using the standard mediation models proposed 
by Baron and Kenny (1986)1. These are analogous to the models established in the main text 
(i.e., models 1 and 2) except that they treat each mediator separately. We assess the significance 
of each mediator using the max-P test (or joint significance test), in which the maximum of the 
exposure-mediator and mediator-outcome association p-values is tested against the significance 
level2. In the simulated data analysis, we identify active mediators by thresholding these max p-
values so that at most 10% of the “significant” mediators are not true mediators, ensuring that the 
false discovery proportion (FDP) on that dataset is below 0.10 and the false discovery rate 
(FDR) across all datasets is also below 0.10. In the real data analysis, we use a linear mixed 
model instead of linear regression so that we can include the appropriate confounding variables 
as random effects; in particular, age, sex, race, and the estimated proportions of residual non-
monocytes are adjusted for as fixed effects and methylation chip and position as random effects 
(to address potential batch effects). We fit this model with the “lmerTest” package in R3. (The 
mediation model from this set up is the same model used to screen the CpG sites from 402,339 
down to 2,000.) To identify CpG sites involved in mediation, we take the max-P values from 
these models and adjust them using the “qvalue” function from the “qvalue” package4, then 
compare them to a signficance level of 10% to control the FDR.   
 
HIMA 
 We apply HIMA directly using the “hima” function from the “HIMA” package in R. On 
the simulated datasets, we apply sure independence screening5 as recommended by the HIMA 
authors6 to reduce the set of mediators to the 𝑛𝑛/log (𝑛𝑛) mediators mostly strong associated with 
Y, adjusting for A (screening based on the outcome model). The number 𝑛𝑛/log (𝑛𝑛) is chosen to 
encourage dimension reduction while maintaining the accuracy of the screening procedure5. For 
FDR correction, we choose a p-value threshold for each dataset to ensure that the false discovery 
proportion for that dataset is below 0.10.  

On the DNAm data from MESA, so that the sure indepdent screening matches the 
original screening used to arrive at 2,000 CpG sites, we screen on the association of each CpG 
site with the exposure, low education, using the same linear mixed model used in the mediator 
model of the one-at-a-time approach. (The HIMA and HDMA authors suggest that screening 
based on either the outcome model or the mediator model is acceptable6,7). We identify CpGs as 
noteworthy based on whether their estimated mediation contribution is not zero. Although HIMA 
does produce p-values (which we use for thresholding in the simulated data analysis), the p-
values are based on the subsequent fitting of an ordinary linear regression after the penalized 
model has performed feature selection; hence, they can be expected to be overconfident. It is for 
this reason that throughout our DNAm analysis, we avoid commenting on the “statistical 
significance” of the mediation contributions and focus only on identifying which ones are 
“noteworthy”. 
 
HDMA 
 We apply HDMA using the “hdma” function provided by Gao et al. at their repository 
https://github.com/YuzhaoGao/High-dimensional-mediation-analysis-R/blob/master/HDMA.R. 
Application of the “hdma” function is similar to application of the “hima” function from the 
“HIMA” package, and we apply HDMA identically to how we apply HIMA as described above.  

https://github.com/YuzhaoGao/High-dimensional-mediation-analysis-R/blob/master/HDMA.R


 
MedFix 
 Although code for MedFix is provided in the GitHub repository located at 
https://github.com/QiZhangStat/highMed, it is designed for the setting where both A and M are 
high-dimensional (the primary setting for which MedFix is intended). We provide code for 
implementing MedFix for a single exposure in our package “MultiMed.” Although MedFix does 
not explicitly involve sure independence screening like HIMA or HDMA, we elect to use 
screening for MedFix as well so that the penalized regression methods (which are very similar) 
are all applied in the same systematic fashion. Other details on how MedFix was implemented 
are comparable to HIMA as described above. 
 
PCMA 
 We apply PCMA using the “mcma_PCA” function in the “SPCMA” R package. For both 
the simulated data analysis and DNAm data analysis, we set the number of principal components 
to be 100. Although it may be preferable in some cases to choose this number to be larger, 
capturing more of the variance of M, it is better for the sake of our comparison to use the same 
number of principal components in both PCMA and SPCMA, and applying SPCMA with more 
than 100 principal components would be extremely computationally costly. Further, in the 
simulated data analysis where SPCMA was not used at all, choosing the maximal number of 
principal components (the minimum of n and p) resulted in extreme variability in the estimated 
total indirect effect and did not cause the method to perform better than it did with 100.  
 
SPCMA 

We apply SPCMA using the “spcma” function from the “spcma” package. Analogously 
to PCMA, we set the number of sparse principal components to be 100. To create sparsity in the 
principal component loading vectors, SPCMA uses the fused LASSO penalty8, which in addition 
to the L1 penalty used by the regular LASSO, penalizes the difference in coefficient effects 
between adjacent variables, inducing smoothness. The parameter γ represents the ratio of the L1 
penalty to the fusion penalty, and can be chosen in advance. We set γ to be 2 so that the L1 
penalty is emphasized, as “adjacent” CpG sites could still be far apart in the genome and should 
not be expected to have similar effects, making the fusion penalty unimportant. However, 
different choices of γ did not appear to dramatically change our results. We test for the 
significance of the 100 transformed mediators using the bootstrapping method proposed by the 
SPCMA authors, with 100 bootstrap samples and bias-corrected confidence intervals9. 
 
Pathway LASSO 
 Code for implementing pathway LASSO is provided by the authors in the GitHub 
repository located at https://github.com/zhaoyi1026/PathwayLasso. Like MedFix, pathway 
LASSO does not explicitly involve pre-screening the mediators, but we still conduct the pre-
screening procedure from HIMA and HDMA so that the penalized regression methods HIMA, 
HDMA, MedFix, and pathway LASSO are more comparable. This is also beneficial 
computationally, as it is slow to apply pathway LASSO directly to data with 2,000 mediators and 
2,500 or 1,000 observations. Another aspect of pathway LASSO implementation is selecting the 
tuning parameters. These include ω, which controls a LASSO-like penalty on each (αa)j and 
(βm)j, φ, a convexity parameter, and λ, which controls a complex penalty function including the 
product terms (αa)j(βm)j. For our analysis, φ is fixed at 2, as it is in fMRI study presented by 

https://github.com/QiZhangStat/highMed
https://github.com/zhaoyi1026/PathwayLasso


Zhao and Luo (2022), who show that pathway LASSO is not sensitive to the choice of this 
parameter10. For the other parameters, we fix the ratio of ω to λ to be 1 (i.e., forcing the 
parameters to be equal), as this ratio performed best in the Zhao and Luo’s simulation study. We 
then attempt pathway LASSO using 45 different values of λ. In the simulated data analysis, we 
choose the optimal value of λ based on the observed false discovery proportion, selecting the 
smallest λ for which fewer than 10% of the selected mediators are true mediators in that 
simulated dataset. This is necessary because pathway LASSO does not provide a method to test 
the statistical significance of the effects using p-values, like in HDMA, HIMA, and MedFix, 
preventing us from using p-values for thresholding. In the DNAm analysis, we use the variable 
selection stability criterion suggested by the authors11 with the code provided in the GitHub 
package. Like in the other penalized regression methods, CpG sites are considered noteworthy if 
their estimated mediation contribution is not zero.   
 
 
BSLMM 
 We apply BSLMM using the “bama” function from the “bama” package in R12. 
Application of BSLMM depends on several parameters: lm0, lm1, lma1, l, and k. These are, 
respectively, the scale parameter for the inverse-gamma prior for the small-variance (αa)j and 
(βm)j, the scale parameter for the inverse-gamma prior for the large-variance (βm)j, the scale 
parameter for the inverse-gamma prior for the large-variance (αa)j, the scale parameter for the 
inverse-gamma prior on the other coefficient variances, and the shape parameter for the inverse-
gamma priors. In applying BSLMM, we fix k at 1 (the default setting) so that the prior mean of 
each variance is equal to the scale parameter. We also fix l at 1 (the default setting). In both the 
DNAm data analysis and simulated data analysis, we choose lm1 by taking the variance of the 
absolute largest 10% of the marginal (βm)j coefficients (i.e., the coefficient from the one-at-a-
time method), and choose lma1 similarly except with the marginal (αa)j coefficients. (When 
working on simulated data, we know the true variance of the coefficients exactly, but choosing 
these parameters based on the known truth is not possible in practice and therefore should be 
avoided in simulations to keep them fair. Part of the difficulty in applying BSLMM on real data 
is choosing these parameters appropriately, and the results of BSLMM tend to be sensitive to this 
choice).   
 
HDMM 
 We apply HDMM using the “PDM_1” function from the “PDM” R package13. The 
“PDM_1” function computes weights for the first principal direction of mediation (PDM), which 
are then used to linearly combine the set of mediators into a single, transformed latent mediator. 
We analyze the transformed mediator using the “mediation” R package14, with 2,000 Monte 
Carlo draws used for the quasi-Bayesian confidence intervals. HDMM cannot directly 
incorporate settings where p is greater than n when computing its PDMs, so we repeat our sure 
independence screening procedure from HIMA, HDMA, MedFix, and pathway LASSO prior to 
the analysis. (Note that HDMM can be applied when p is greater than n, but it requires using 
population value decomposition15. However, population value decomposition is designed for 
longitudinal settings where each observation contains multiple measurements representing 
different time points. Our attempts to apply population value decomposition to our data were 
unsuccessful for this reason.) 



 
HILMA 
 We apply HILMA using the “hilma” function from the “freebird” R package16. We set 
the tuning method to “uniform” rather than “AIC” as recommended by the HILMA authors, and 
we standardize the data prior to analysis. (For the simulated data analysis, we multiply the 
resulting total indirect effect by the standard error of Y to project the estimate back to the 
original scale).   



Section 3. MESA Study and Data Processing 
Our data come from the Multi-Ethnic Study of Atherosclerosis (MESA), a United States 
population-based longitudinal study on the risk factors and progression of subclinical 
cardiovascular disease17. MESA recruitment began in July 2000 and lasted until August 2002, 
during which period 6,814 participants were recruited from study sites in Forsyth County, North 
Carolina; New York, New York; Baltimore County, Maryland; St. Paul, Minnesota; and 
Chicago, Illinois. Ages at recruitment ranged from 45 to 84 years. Multiple examinations since 
the beginning of the study captured data on clinical information, socio-demographic traits, 
lifestyle and behavioral characteristics, and other factors. A random subsample of 1,264 MESA 
participants were selected between April 2010 and February 2012 to have their DNAm measured  
using the Illumina Infinium HumanMethylation450 Beadchip on purified monocytes. Quality 
control filters reduced the number of CpG sites from 484,882 to 402,339; in particular, sites were 
removed if they had “detected” methylation levels in less than 90% of MESA samples at a p-
value cutoff of 0.05, were within 10 base pairs of a single nucleotide polymorphism (SNP) based 
on Illumina annotation, had unreliable probes (i.e., had SNPs with minor allele frequency greater 
than 0.05 within 2 base pairs or cross reactive probes, recommended by DMRcate18), or 
overlapped with a repetitive element or region; while probes on sex chromosomes, SNPs, and 
other non-CpG targeting probes were not considered. The raw methylation measurements were 
transformed into M-values by taking the log-2 ratio of the methylated to unmethylated probe 
intensities. Further details are provided by Liu et al. (2013)19.  

Our outcome variable was HbA1c measured at Exam 5, which was standardized prior to 
the analysis. This provides a measure of the average three-month blood sugar level. For our 
exposure variable, low adult socioeconomic status, we use a binary indicator variable 
representing the lack of a 4-year college degree (1: less than a 4-year college degree, 0: 
otherwise). Since 402,339 CpG sites is too many to include in an analysis with only 963 samples, 
we screened CpG sites in advance to reduce that number further, including only, at most, the 
2,000 CpG sites most strongly associated with the exposure. This association was measured for 
each site by the p-value of the education coefficient from a linear mixed model in which 
methylation was regressed onto education level (the binary indicator), age, sex, race, and the 
estimated proportions of residual non-monocytes as fixed effects, and methylation chip and 
position as random effects. This model is equivalent to the one-at-a-time mediation mediator 
model described above. For the methods which require or recommend additional screening, we 
do so with the same model, described in the main text and in supplementary section 2 above.  
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