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Figure S1. In situ liquid STEM experimental apparatus. A thin layer of aqueous silver precursor 

(~800 nm) is sandwiched between two silicon nitride coated silicon chips.   

 

 

 

 

Figure S2. Sample Results of Image Segmentation and Particle Tracking. (a) Nanoparticle 

outlines at t = 105 s (cf. Figure 2a), extracted by the image segmentation method. The red 

outlines are the nanoparticle boundaries overlaid on the bright field STEM image. The scale bar 

is 200 nm. (b) Tracked trajectories of two nanoparticles, the first frame is at t = 40 s, with 2 



second intervals in between frames. The nanoparticles experience multiple 

aggregation/disaggregation events during the series. 

 

Figure S3.  Brownian motion of nanoparticles during growth. (a) Probability distribution of 

displacements of a nanoparticle in the x-direction for various time steps indicated in the plot.  

Solid lines are non-linear least-squares Gaussian fits of the displacements.  Inset is the trajectory 

of the nanoparticle over 80 seconds in a 10 by 10 nm area. (b) The mean squared displacement 

(MSD), σ
2
, as a function of time for three representative nanoparticles, indicated by different 

colors in the plot.  The solid lines are for motion in the x-direction, and the dashed lines are in 

the y-direction.  σ
2 

is the square of the variance of the Gaussian probability distribution fits.  The 

Gaussians and trajectory in (a) are for particle 1.  For Brownian motion in 2-dimensions, σ
2 

= 

2Dt, yielding diffusion coefficients of 0.12 nm
2
/s, 0.14 nm

2
/s, and 0.10 nm

2
/s for particle 1, 2, 

and 3 respectively.
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Figure S4. Variation of the Smoluchowski PSD, experimental PSD, and fitting parameter as a 

function of time.  (a) Plot of the predicted LSW PSD for Ostwald ripening and the PSD derived 

from Smoluchowksi kinetics fit to the experimental PSD’s at t = 50 s (red) and 105 s (blue).  The 

Smoluchowski PSD’s were obtained using non-linear least squares fitting.  The PSD’s are 

normalized to the mean radius and their total integral.  The sum of the squared error (SSE) is 6.6 

(50 s) and 5.1 (105 s) for the LSW model and 0.68 (50 s) and 0.91 (105 s) for Smoluchowski 

kinetics, indicating a much better quantitative fit for the Smoluchowski model.  (b) The 

Smoluchowski as a function of time for each Smoluchowski PSD fit. <βPSD> = 0.29 (red dashed 

line) and <β> = 0.31 (blue dashed line) are plotted for comparison. 

 

Movie S1:  Full data set of silver nanoparticle ensemble growth depicted in Figure 1.  The 

magnification is M = 100,000, beam current is 20 pA, and the dwell time is 5 µs.  The pixel size 

is 3.13 nm/pix.  The movie was recorded with a frame rate of 1 fps, and is displayed at 5 fps.  

Only nanoparticles in focus were tracked for their sizes. 

 

 



Supplemental note: Theoretical framework for LSW model and Smoluchowski aggregation 

kinetics 

 

Lifshitz-Slyozov-Wagner (LSW) model 

 The LSW model takes a mean field approach to Ostwald ripening, where all parameters 

in the model are the averaged across the entire ensemble.  The LSW model predicts power law 

growth of the following form in the diffusion limited regime:
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     (Supp. Eq. 1) 

 Here <r> is the average particle radius, <r0> is the average particle radius at t = 0, σ is the 

interfacial energy of the particles, D is the diffusion coefficient of the precursor ion, Vm is the 

molar volume of the particle material,    is the equilibrium solubility of the particles, R is the 

universal gas constant, T is the temperature, and t is time.  An analytical particle size distribution 

(PSD) can be obtained in the long-time asymptote: 
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   (Supp. Eq. 2) 

 Here D(φ) is the LSW PSD, φ = r/<r>, r is the individual particle radius, and K is the 

term leading t in Supp. Eq. 1.  Normalizing D(φ) by the integral of the distribution yields the 

well-known LSW probability distribution function (cf. dashed blue line Figure 3).  To facilitate 

direct comparison to the LSW model PSD, all experimental radii are normalized to the respective 

mean nanoparticle radius for that time, and then normalized by their total integral (cf. red dots 

Figure 3). 

 

 



Smoluchowski aggregation kinetics  

The classical Smoluchowski equation is a result of the solution of the time-dependent 

diffusion equation for the particle concentration in an ensemble of particles coarsening by 

aggregation:
3
 

  ' ' '

' '

1
( ) ', ' ( ) ( ) ( ) ( , ') ( )

2
s s s s s s

s s

d
n t K s s s n t n t n t K s s n t

dt
   

.

      (Supp. Eq. 3) 

Here ns is the time dependent concentration of aggregates with mass s, and K is the 

collision frequency for the given aggregate sizes.  The first summation on the right represents the 

increase in ns due to aggregation of clusters of mass s’ and s - s’, while the second summation 

represents the decrease in ns due to aggregation of clusters of mass s and s’.  An analytical 

solution for the PSD and mean particle size time scaling in the long-time asymptote can be 

derived from Supp. Eq. 3 assuming the collision frequency is time invariant and spatially 

uncorrelated, i.e. the collisions are due to random Brownian motion.
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Here, F(φ) is the analytical PSD scaled to the average particle radius, a is the scaling 

exponent for cluster diffusion, i.e. D~N
-a

, where N is the number of atoms in the cluster.  Similar 

to the LSW model, the mean particle radius experiences power law growth of the following 

form: 
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  .      (Supp. Eq. 5) 

 Unlike Ostwald ripening the growth exponent, βPSD, depends on the mechanism for 

particle diffusion, and is related to the cluster diffusion scaling exponent by βPSD = 1/2(a+1).  For 

Brownian motion of a particle, the Stokes-Einstein relation describes the size dependent 

diffusion coefficient of the particle: 



~ Bk T
D

r
.        (Supp. Eq. 6) 

Here kB is Boltzmann’s constant.  Assuming that the particles are 2-dimensional clusters, 

the Stokes Einstein equation in terms of N scales as follows: 

1/2
~ Bk T

D
N

.       (Supp. Eq. 7) 

This shows that the scaling exponent for cluster diffusion by Brownian motion is a = 1/2 

(i.e. D ~ N
-1/2

), yielding a predicted growth exponent of βPSD = 1/3.  Experimentally we obtain 

time averaged values of <a> = 0.78 ± 0.33 and < βPSD> = 0.29  0.05 (Figure S3b), well within 

the range of the exponents predicted for diffusion by Brownian motion.  The time dependent βPSD 

in our experiments may be due to the fact that Supp. Eq. 7 is a simple estimate of the diffusion 

coefficient that doesn’t take into account the nanoparticle’s proximity to the window. 
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