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S1 Proofs

S1.1 Proof of Theorem 1

Denote the KODE objective in (10) by A(Fj):

A(Fj) ≡
1

n

n∑
i=1

{
yij − θj0 −

∫ ti

0

Fj(x̂(t))dt

}2

+ τnj

(
p∑

k=1

‖PkFj‖H +

p∑
k 6=l,k=1

p∑
l=1

‖PklFj‖H

)
.

Without loss of generality, let τnj = 1. Write H = H(0) ⊕ H(1), where H(0) ≡ {1} and

H(1) ≡
∑p

k=1Hk ⊕
∑p

k 6=l,k=1

∑p
l=1 [Hk ⊗Hl], where for any Fj ∈ H (Wahba et al., 1995),

‖Fj‖2H = ‖Fj‖2H(0) + ‖Fj‖2H(1) , and ‖Fj‖2H(1) =

p∑
k=1

‖PkFj‖2H +

p∑
k 6=l,k=1

p∑
l=1

‖PklFj‖2H.

Note that,

p(p+ 1)

2

(
p∑

k=1

‖PkFj‖2H +

p∑
k 6=l,k=1

p∑
l=1

‖PklFj‖2H

)

≥ J2
2 (Fj) ≥

p∑
k=1

‖PkFj‖2H +

p∑
k 6=l,k=1

p∑
l=1

‖PklFj‖2H.

Henceforth, for any Fj ∈ H(1),

J2(Fj) ≥ ‖Fj‖H. (S1)

We next show the existence of the minimizer in three cases.

First, denote ρj = maxni=1(y
2
ij + |yij|+ 1). Let K(·, ·) be the reproducing kernel of H(1),

and let 〈·, ·〉H(1) be the inner product in H(1). Write a = supt∈T K
1/2(x̂(t), x̂(t)), where x̂ is

obtained from (9). Consider the set

Dj =
{
Fj ∈ H : Fj = bj + F

(1)
j , bj ∈ {1}, F (1)

j ∈ H(1), J2(Fj) ≤ ρj, |bj| ≤ ρ1/2 + (a+ 1)ρj

}
.
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Then Dj is a closed and convex compact set. Note that both J2(Fj) and the functional

n−1
∑n

i=1

{
yij − θj0 −

∫ ti
0
Fj(x̂(u))du

}2

are convex in Fj, and thus A(Fj) is convex. There-

fore, there exists a minimizer of the convex optimization problem (10) in the convex set Dj.
Denote the minimizer by F̂j ∈ Dj. Then A(F̂j) ≤ A(0) ≤ n−1

∑n
i=1 y

2
ij < ρj.

Second, for any Fj ∈ H with J(Fj) > ρj, then Fj 6∈ Dj. However, A(Fj) ≥ J(Fj) > ρj,

which implies that A(Fj) > A(F̂j).

Third, for any Fj ∈ H with J2(Fj) ≤ ρj, Fj = bj + F
(1)
j with bj ∈ {1}, F (1)

j ∈ H(1), and

|bj| > ρ
1/2
j + (a+ 1)ρj. By the reproducing property, for any F

(1)
j ∈ H(1) and t ∈ T ,∣∣∣F (1)

j (x̂(t))
∣∣∣ =

∣∣∣〈F (1)
j (·), K(x̂(t), ·)

〉
H(1)

∣∣∣ ≤ ∥∥∥F (1)
j

∥∥∥
H(1)
〈K(x̂(t), ·), K(x̂(t), ·)〉1/2H(1)

=
∥∥∥F (1)

j

∥∥∥
H(1)

K1/2 (x̂(t), x̂(t)) ≤ aJ2

(
F

(1)
j

)
,

where the last step is by (S1) and the definition of a. Hence, for any i = 1, . . . , n, ti ∈ T ,

min
Cj0

∣∣∣∣Cj0 + bjti +

∫ ti

0

F
(1)
j (x̂(u))du− yij

∣∣∣∣ ≥ ∣∣∣∣bjti +

∫ ti

0

F
(1)
j (x̂(u))du− yij

∣∣∣∣
> [ρ

1/2
j + (a+ 1)ρj]− aρj − ρj = ρ

1/2
j .

Therefore, A(Fj) > ρ, and A(Fj) > A(F̂j). Consequently, for any Fj 6∈ Dj, A(Fj) > A(F̂j),

and F̂j is a minimizer of (10) in H.

Next, we show that the minimizer F̂j is in a finite-dimensional space. Let Kk(·, ·) be the

reproducing kernel ofHk. ThenKkl ≡ KkKl is the reproducing kernel ofHk⊗Hl (Aronszajn,

1950). Write F̂j = b̂j +
∑p

k=1 F̂jk +
∑

k 6=l F̂jkl, where F̂jk ∈ Hk, and F̂jkl ∈ Hk ⊗Hl. Write

Ti(t) = 1{0 ≤ t ≤ ti}, and T̄ (t) = n−1
∑n

i=1 Ti(t). We have
∫
T K(x̂(s), x̂(t))Ti(t)dt ∈ H

(Cucker and Smale, 2002). Besides,〈∫
T
K(x̂(s), x̂(t))Ti(t)dt, Fj(x̂(s))

〉
H

=

∫
T
〈K(x̂(s), x(t)), Fj(x̂(s))〉H Ti(t)dt

=

∫
T
Fj(x̂(t))Ti(t)dt.

Denote the projection of F̂jk onto the finitely spanned space{∫
T
Kk(x̂k(t), ·)Ti(t)dt, i = 1, . . . , n

}
⊂ Hk

as ĝjk, and its orthogonal complement in Hk as ĥjk. Similarly, denote the projection of F̂jkl

onto the finitely spanned space{∫
T
Kk(x̂k(t), ·)Kl(x̂l(t), ·)Ti(t)dt, i = 1, . . . , n

}
⊂ Hk ⊗Hl

2



as ĝkl, and its orthogonal complement in Hk ⊗ Hl as ĥkl. Then F̂jk = ĝjk + ĥjk, and

F̂jkl = ĝjkl + ĥjkl. Besides, ‖F̂jk‖2H = ‖ĝjk‖2H+ ‖ĥjk‖2H, and ‖F̂jkl‖2H = ‖ĝjkl‖2H+ ‖ĥjkl‖2H, for

k, l = 1, . . . , p, k 6= l. Since K = 1 +
∑p

k=1Kk +
∑

k 6=lKkl is the reproducing kernel of H,

by the orthogonal structure,∫
T
F̂j(x̂(t))Ti(t)dt =

〈∫
T

{
1 +

p∑
k=1

Kk(x̂k(t), ·) +
∑
k 6=l

Kk(x̂k(t), ·)Kl(x̂l(t), ·)

}
Ti(t)dt,

bj +

p∑
k=1

{
ĝjk(x̂k(t)) + ĥjk(x̂k(t))

}
+
∑
k 6=l

{
ĝjkl(x̂k(t), x̂l(t)) + ĥjkl(x̂k(t), x̂l(t))

}〉
H

= bj

∫
T
Ti(t)dt+

p∑
k=1

〈∫
T
Kk(x̂k(t), ·)Ti(t)dt, ĝjk(x̂k(t))

〉
H

+
∑
k 6=l

〈∫
T
Kk(x̂k(t), ·)Kl(x̂l(t), ·)Ti(t)dt, ĝjkl(x̂k(t), x̂l(t))

〉
H
.

Recall ȳj = n−1
∑n

i=1 yij. Therefore, (10) can be written as

1

n

n∑
i=1

{
(yij − ȳj)− bj

∫
T

[Ti(t)− T̄ (t)]dt

−
p∑

k=1

〈∫
T
Kk (x̂k(s), x̂k(t)) [Ti(t)− T̄ (t)]dt, ĝjk(x̂k(s))

〉
H

−
∑
k 6=l

〈∫
T
Kk (x̂k(s), x̂k(t))Kl (x̂l(s), x̂l(t)) [Ti(t)− T̄ (t)]dt, ĝjkl (x̂k(s), x̂l(s))

〉
H

}2

+ τnj

{
p∑

k=1

(‖ĝjk(x̂k)‖2H + ‖ĥjk(x̂k)‖2H)1/2 +
∑
k 6=l

(‖ĝjkl(x̂k, x̂l)‖2H + ‖ĥjkl(x̂k, x̂l)‖2H)1/2

}
.

Therefore, the minimizer F̂j of (10) satisfies that ĥjk = ĥjkl = 0, for any k, l = 1, . . . , p and

k 6= l. This completes the proof of Theorem 1. 2

S1.2 Proof of Theorem 2

We first prove that c0(x) does not depend on the true but unknown functional Fj. Consider

F̃j(x) = θj0 + ρ
1/2
j B(x), x = x(t),

Yij = LiF̃j(x) + εij, t ∈ T .

where θj0 ∼ N (0, aI) and εij ∼ N (0, σ2
j ). The parameter ρj = σ2

j/nηnj. The stochas-

tic process B(·) is a zero-mean Gaussian process with covariance Kθ̂Mj
=
∑p

k=1 θ̂jkKk +
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∑
k 6=l θ̂jklKkl. The bounded operator takes the form: LiF̃j(x) ≡

∫
T

{
Ti(t)− T̄ (t)

}
F̃j(x(t))dt,

for any F̃j ∈ H. It is shown that (Wahba, 1990),

lim
a→∞

E
{
F̃j(x)|Yij = yij − ȳj, i = 1, . . . , n

}
= F̂j,θ̂Mj

(x),

and the covariance matrix of
(
L1F̂j, . . . ,LnF̂j

)
is Cov(L1F̂j, . . . ,LnF̂j) = σ2

jAMj
, where AMj

is the smoothing matrix as defined in (14) with the kernel corresponding to θ̂Mj
(Wahba,

1983; Silverman, 1985). Consequently, the collection of all the quantities AMj
(yj − ȳj) are

jointly distributed as N(0, σ2
jAMj

), where AMj
is independent of Fj. Henceforth, the joint

distribution of the collection of ratios |AMj
(yj − ȳj)|/σj is independent of Fj.

Next, we prove the coverage property. Observe that, for any i = 1, . . . , n,

F̂j,θ̂Mj
(x̂(ti))− E

{
F̂j,θ̂Mj

(x̂(ti))
}

= {AMj
}i·(yj − ȳj).

We then have the following upper bound,∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj ≤ max
Mj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj.
By the choice of c0(x̂) in (16), the coverage property holds.

Lastly, we show that there exists a unique c0(x̂j(ti)) satisfying (16). Consider the

maximum statistic, maxMj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj, with the corresponding distribution

H(t) = P
[
maxMj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj ≤ t
]
. We show that H(t) = 0 for t ≤ 0, is

continuous on R, and is strictly increasing in t ≥ 0.

Note that, for t < 0, the event
{

maxMj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj ≤ t
}

is empty. For

t = 0, this event is an intersection of the sets
{
{ÃMj

}i·(yj − ȳj) = 0
}

for any Mj ⊆ M,

where at least one of these sets has a probability zero, given yj 6= ȳj. Henceforth, H(t) = 0

for t ≤ 0. To prove the continuity of H on (0,∞), we note that, for any Mj ⊆ M and

t ≥ 0, P
[
{ÃMj

}i·(yj − ȳj)/σj = t
]

= 0, since yj is a continuous variable. Finally, we show

the strict monotonicity that H(t1) < H(t2) for any 0 < t1 < t2. Toward that goal, suppose

there exists ỹj ∈ Rn such that maxMj⊆M

∣∣∣{ÃMj
}i·ỹj

∣∣∣ /σj = t1. There exists M ‡
j ⊆ M,

such that {ÃM‡j }i·ỹj/σj = t1, which is obtained without loss of generality by changing the

sign of t1. Let Y be the set of all yj ∈ Rn such that {ÃM‡j }i· [(yj − ȳj)− ỹj] /σj > 0, and∣∣∣{ÃMj
}i· [(yj − ȳj)− ỹj]

∣∣∣ /σj < (t2 − t1)/2 for any Mj ⊆M. Then for any yj ∈ Y ,

max
Mj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj
≤ max

Mj⊆M

∣∣∣{ÃMj
}i· [(yj − ȳj)− ỹj]

∣∣∣ /σj + max
Mj⊆M

∣∣∣{ÃMj
}i·ỹj

∣∣∣ /σj
< (t2 − t1)/2 + t1 < t2.
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Moreover, {ÃM‡j }i·(yj − ȳj)/σj > {ÃM‡j }i·ỹj/σj = t1 > 0. Therefore,

max
Mj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj ≥ ∣∣∣{ÃM‡j }i·(yj − ȳj)∣∣∣ /σj > t1,

which implies that H(t2)−H(t1) ≥ P(Y) > 0. Consequently, there exists a unique c0(x̂j(ti))

satisfying (16), which is the (1−α)th quantile of the distribution of maxMj⊆M
∣∣{ÃMj

}i·(yj−
ȳj)
∣∣/σj. This completes the proof of Theorem 2. 2

S1.3 Proof of Proposition 1

Note that, for any t ≥ 0,

Pn,Fj ,σj
[

max
Mj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /σj > t

]
= Pn,Fj ,σj

[
max
Mj⊆M

∣∣∣{ÃMj
}i·(yj − ȳj)

∣∣∣ /‖yj − ȳj‖l2 > (σj/‖yj − ȳj‖l2) t
]

= Pn,Fj ,σj
(

max
Mj⊆M

|{ÃMj
}i·V | > t/U

)
,

where V is uniformly distributed on the unit sphere in Rn, and U is a nonnegative random

variable such that U2 follows an χ2(n)-distribution. Combining this result with the definition

in (16) completes the proof. 2

S1.4 Proof of Theorem 3

The upper bound of the convergence rate can be established following Cox (1983). The

minimax lower bound of the convergence rate can be established following Tsybakov (2009).

Moreover, the results hold for both fixed and random designs of t ∈ T . 2

S1.5 Proof of Theorem 4

We divide the proof of this theorem to three parts. To establish the minimax rate, we first

prove the upper bound in Section S1.5.1, then prove the lower bound in Section S1.5.2. We

give two auxiliary lemmas that are useful for the proof of this theorem in Section S1.5.3.

S1.5.1 Upper bound

For j = 1, . . . , p, write F̂j(x̂) = b̂j+
∑p

k=1 F̂jk(x̂)+
∑

k 6=l F̂jkl(x̂), where
∑n

i=1 F̂jk(x̂k(ti)) = 0,

and
∑n

i=1 F̂jkl(x̂k(ti), x̂l(ti)) = 0. Write Fj(x) = bj +
∑p

k=1 Fjk(x) +
∑

k 6=l Fjkl(x), where∑n
i=1 Fjk(xk(ti)) = 0, and

∑n
i=1 Fjkl(xk(ti), xl(ti)) = 0. In light of the fact that θ̂j0 that
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minimizes (10) is given by θ̂j0 = ȳj −
∫
T T̄ (t)F̂j(x̂(t))dt, we focus our attention on F̂j(x̂(t))

in the following proof, while the convergence rate of θ̂j0 is the same as that of F̂j(x̂(t)).

Consider that F̂j is obtained from

min
Fj∈H

[
1

n

n∑
i=1

{
yij −

∫ ti

0

Fj(x̂(t))dt

}2

+ τnjJ2(Fj)

]
,

which implies that

1

n

n∑
i=1

{∫ ti

0

Fj(x(t))dt+ εij −
∫ ti

0

F̂j(x̂(t))dt

}2

+ τnjJ2(F̂j)

≤ 1

n

n∑
i=1

{∫ ti

0

Fj(x(t))dt+ εij −
∫ ti

0

Fj(x̂(t))dt

}2

+ τnjJ2(Fj).

With rearrangement of the terms, we have,

1

n

n∑
i=1

[∫ ti

0

{
Fj(x(t))− F̂j(x̂(t))

}
dt

]2
+ τnjJ2(F̂j)

≤ 2

n

n∑
i=1

εij

[∫ ti

0

{
F̂j(x̂(t))− Fj(x̂(t))

}
dt

]

+
1

n

n∑
i=1

[∫ ti

0

{Fj(x(t))− Fj(x̂(t))} dt
]2

+ τnjJ2(Fj).

(S2)

By Assumption 1 and the Taylor expansion,

(F̂j − Fj)(x̂) = (F̂j − Fj)(x) +
∂

∂t
(F̂j − Fj)(x)(x̂− x) + op

(
max
k=1,...,p

‖x̂k − xk‖L2

)
,

where the Fréchet derivative of any g(·) ∈ H is defined as,

∂

∂t
g(x)(x̂− x) =

p∑
k=1

∂g(x)

∂xk
(x̂k − xk).

Then the first term on the right-hand-side of (S2) can be written as,

2

n

n∑
i=1

εij

[∫ ti

0

{
F̂j(x̂(t))− Fj(x̂(t))

}
dt

]
=

2

n

n∑
i=1

εij

{∫ ti

0

(F̂j − Fj)(x(t))dt

}
+

2

n

n∑
i=1

εij

[∫ ti

0

∂

∂t
(F̂j − Fj)(x(t)){x̂(t)− x(t)}dt+ op

(
max
k=1,...,p

‖x̂k − xk‖L2

)]
.
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Meanwhile, by the Taylor expansion, the first term on the left-hand-side of (S2) can be

written as,

1

n

n∑
i=1

[∫ ti

0

{
Fj(x(t))− F̂j(x̂(t))

}
dt

]2
=

1

n

n∑
i=1

[∫ ti

0

{
F̂j(x(t))− Fj(x(t))

}
dt+

∫ t1

0

∂

∂t
F̂j(x(t)){x̂(t)− x(t)}dt

−op
(

max
k=1,...,p

‖x̂k − xk‖L2

)]2
=

1

n

n∑
i=1

[∫ ti

0

{
Fj(x(t))− F̂j(x(t))

}
dt

]2
+

1

n

n∑
i=1

[∫ ti

0

∂

∂t
F̂j(x(t)){x̂(t)− x(t)}dt

]2
− 2

n

n∑
i=1

∫ ti

0

{
Fj(x(t))− F̂j(x(t))

}
dt

∫ ti

0

∂

∂t
F̂j(x(t)){x̂+ (t)− x(t)}dt+R1,

where the remainder term R1 is of the form,

R1 =
1

n

n∑
i=1

(
op

(
max
k=1,...,p

‖x̂k − xk‖2L2

)
−op

(
max
k=1,...,p

‖x̂k − xk‖L2

)∫ ti

0

[
Fj(x(t))− F̂j(x(t))− ∂

∂t
F̂j(x(t)){x̂(t)− x(t)}

]
dt

)
.

Therefore, the inequality (S2) is equivalent to

1

n

n∑
i=1

[∫ ti

0

{
Fj(x(t))− F̂j(x(t))

}
dt

]2
+

1

n

n∑
i=1

[∫ ti

0

∂

∂t
F̂j(x(t)){x̂(t)− x(t)}dt

]2
+

2

n

n∑
i=1

∫ ti

0

{
F̂j(x(t))− Fj(x(t))

}
dt

∫ ti

0

∂

∂t
F̂j(x(t)){x̂(t)− x(t)}dt+R1 + τnjJ2(F̂j)

≤ 2

n

n∑
i=1

εij

{∫ ti

0

(F̂j − Fj)(x(t))dt

}
+

1

n

n∑
i=1

[∫ ti

0

{Fj(x(t))− Fj(x̂(t))} dt
]2

+
2

n

n∑
i=1

εij

[∫ ti

0

∂

∂t
(F̂j − Fj)(x){x̂(t)− x(t)}dt+ op

(
max
k=1,...,p

‖x̂k − xk‖L2

)]
+ τnjJ2(Fj)

(S3)

Write the left-hand side of (S3) as ∆̃1 + ∆̃2 + ∆̃3 +R1 + τnjJ2(F̂j), and the right-hand side

of (S3) as ∆1 + ∆2 + ∆3 + τnjJ2(Fj). Our proof strategy is to derive the upper and lower

bounds for the left and right-hand sides of (S3), respectively, then put them together.

Step 1: Bounding the right-hand-side of (S3). We first bound the three terms

∆1,∆2,∆3 on the right-hand-side of (S3).
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For ∆1, by Lemma 1 and the Minkowski inequality, we have,

∆1 ≤ Op

{∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥2
L2

log−2
∥∥∥F̂j(x(t))− Fj(x(t))

∥∥∥
L2

+

(
n

log n

)− 2β2
2β2+1

+
log p

n
+

√
log p

n

∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥
L2

}
.

For ∆2, by the Taylor expansion and Assumption 1, we have,

∆2 ≤
c

n

n∑
i=1

[∫ ti

0

∂

∂t
Fj(x(t)){x(t)− x̂(t)}+ op

(
max
k=1,...,p

‖xk − x̂k‖2L2

)
dt

]2
≤ ‖Fj‖2H max

k=1,...,p
‖xk − x̂k‖2L2

+ op

(
max
k=1,...,p

‖xk − x̂k‖2L2

)
= Op

(
n
−2β1
2β1+1

)
.

(S4)

for some constant c, where the second step is by the Jensen’s inequality, and the last step

is due to Theorem 3.

For ∆3, since β2 > 1, ∂K(x, ·)/∂xk ∈ H, and by the reproducing property, we have,

∂(F̂j − Fj)(x)

∂xk
=

〈
F̂j − Fj,

∂K(x, ·)
∂xk

〉
H
≤ ‖F̂j − Fj‖1/2H

∥∥∥∥∂K(x, ·)
∂xk

∥∥∥∥1/2
H

<∞.

Hence, ∂(F̂j−Fj)(x)/∂xk ∈ H, and for any x, |∂(F̂j−Fj)(x)/∂xk| ≤ ‖∂(F̂j−Fj)(x)/∂xk‖H <
∞, which together with Assumption 2, implies that maxk

{
|∂(F̂j − Fj)(x)/∂xk|

}
≤ C‖F̂j−

Fj‖L2 almost surely. By Assumption 1 and the Cauchy-Schwarz inequality, we have,

∆3 ≤
2c

n

n∑
i=1

|εij|
∫ ti

0

C‖F̂j(x(t))− Fj(x(t))‖L2 max
k=1,...,p

|x̂k(t)− xk(t)|dt

+ op

(
n−1/2 max

k=1,...,p
‖xk − x̂k‖2L2

)
≤ 2c max

k=1,...,p
‖x̂k − xk‖L2

∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥
L2

1

n

n∑
i=1

|εijC|

+ op

(
n−1/2 max

k=1,...,p
‖xk − x̂k‖2L2

)
= Op

(
n
−β1

2β1+1‖F̂j(x(t))− Fj(x(t))‖L2

)
,

for some constant c, where the last step is due to the strong law of large numbers.

Step 2: Bounding the left-hand-side of (S3). We next bound the terms ∆̃1, ∆̃2, ∆̃3

and R1 on the left-hand-side of (S3).
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For ∆̃1, by Lemma 2, with probability at least 1− 2p−c1 , for some constant C > 0,

∆̃1 ≥
∥∥∥Fj(x(t))− F̂j(x(t))

∥∥∥2
L2

− C
{∥∥∥Fj(x(t))− F̂j(x(t))

∥∥∥2
L2

log−2
∥∥∥Fj(x(t))− F̂j(x(t))

∥∥∥
L2

+

(
n

log n

)− 2β2
2β2+1

+ (c1 + 1)
log p

n
+

√
(c1 + 1)

log p

n

∥∥∥Fj(x(t))− F̂j(x(t))
∥∥∥
L2

+ n−1/2e−p
}
.

(S5)

For ∆̃2, we can drop this term, because ∆̃2 ≥ 0.

For ∆̃3, by the Cauchy-Schwarz inequality,

∆̃3 ≥ − 2

(
1

n

n∑
i=1

[∫ ti

0

{
F̂j(x(t))− Fj(x(t))

}
dt

]2)1/2

×

(
1

n

n∑
i=1

[∫ ti

0

∂

∂t
F̂j(x(t)){x̂(t)− x(t)}dt

]2)1/2

≥ − 2
∥∥∥F̂j(x(t))− Fj(x(t))

∥∥∥
L2

‖Fj‖H max
k=1,...,p

‖xk − x̂k‖L2

= Op

(
n
−β1

2β1+1

∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥
L2

)
,

where the second step is due to the Minkowski inequality.

For the remainder term R1 on the left-hand-side of (S3), by Assumption 1 and the

Cauchy-Schwarz inequality, we have,

R1 = op

(
max
k=1,...,p

‖xk − x̂k‖L2

∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥
L2

+ max
k=1,...,p

‖xk − x̂k‖2L2
‖Fj‖H

)
= op

(
n
−β1

2β1+1

∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥
L2

)
+ op

(
n
−2β1
2β1+1

)
,

where the second step is again due to the Minkowski inequality.

Step 3: Putting the two bounds together. Combining the bounds for each term in

(S3), we obtain that, for any c1 > 0 and c2 > 1, with probability at least 1 − 4p−c1 , there

exists a constant C > 0, such that

‖Fj(x(t))− F̂j(x(t))‖2L2

≤ C

[
c
− 4β2

2β2−1

2

∥∥∥Fj(x(t))− F̂j(x(t))
∥∥∥2
L2

log−2
∥∥∥Fj(x(t))− F̂j(x(t))

∥∥∥
L2

+ c
4β2

4β2+1

2

(
n

log n

)− 2β2
2β2+1

+ (c1 + 1)
log p

n
+

√
(c1 + 1)

log p

n

∥∥∥Fj(x(t))− F̂j(x(t))
∥∥∥
L2

+ n−1/2e−p

+n
−β1

2β1+1

∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥
L2

+ n
−2β1
2β1+1 + τnj

{
J2(Fj)− J2(F̂j)

}]
.
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Taking c2 large enough such that Cc
−4β2/(2β2−1)
2 ≤ 1/2, then

∥∥∥Fj(x(t))− F̂j(x(t))
∥∥∥2
L2

log−2
∥∥∥Fj(x(t))− F̂j(x(t))

∥∥∥
L2

≤ 2C

[
c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

+ (c1 + 1)
log p

n
+

√
(c1 + 1)

log p

n

∥∥∥Fj(x(t))− F̂j(x(t))
∥∥∥
L2

+n−1/2e−p + n
−β1

2β1+1

∥∥∥F̂j(x(t))− Fj(x(t))
∥∥∥
L2

+ n
−2β1
2β1+1 + τnj

{
J2(Fj)− J2(F̂j)

}]
.

Therefore,

∥∥∥Fj(x(t))− F̂j(x(t))
∥∥∥2
L2

= Op

{(
n

log n

)− 2β2
2β2+1

+
log p

n
+ n

− 2β1
2β1+1

}
.

This leads to the desired upper bound.

S1.5.2 Lower bound

We first construct a matrix Aj ∈ Rp2×Ñ for each j = 1, . . . , p, whose entry is chosen from

{±1, 0}, and is used to index a set of functions for establishing the lower bound. Here, the

value of Ñ is to be specified later. We choose 1 ≤ sj < ∞ rows of Aj to be nonzero. By

the Vershamov-Gilbert Lemma (Tsybakov, 2009), there exist a set {ζ1, . . . , ζm1} ⊂ {0, 1}p
2

such that, (a) ‖ζk‖l1 = sj, for k = 1, . . . ,m1; (b) ‖ζk1 − ζk2‖l1 ≥ sj/2, for k1 6= k2; and (c)

4 logm1 ≥ sj log(p2/sj). By the same lemma, there exist a set {ζ†1, . . . , ζ†m2
} ∈ {−1, 1}sj×Ñ

such that, (a′) ‖ζ†k1 − ζ
†
k2
‖F ≥ Ñsj/2, for k1 6= k2; and (b′) 8 logm2 ≥ Ñsj. We set the zero

rows of Aj according to ζk, and set the nonzero rows of Aj according to ζ†k. As such, the

matrix Aj is chosen from the set,

A =
{
Aj(ζk1 , ζ

†
k2

) ∈ Rp2×Ñ : k1 = 1, . . . ,m1, k2 = 1, . . . ,m2

}
,

where card(A) = m1m2. By the above constructions (c) and (b′), we have that,

log card(A) ≥ 1

4
sj log(p2/sj) +

1

8
Ñsj.

Next, we define functions of the form gAj with Aj ∈ A. Note that, by the spectral

theorem, the reproducing kernel Kj of the RKHS Hj admits the eigenvalue decomposition

Kj(x̂j, x̂
′
j) =

∑
ν≥1

γjνφjν(x̂j)φjν(x̂
′
j)

10



where γ1 ≥ γ2 ≥ · · · ≥ 0 are its eigenvalues, and {φν : ν ≥ 1} are the corresponding

eigenfunctions that are orthonormal in L2. Since Hj is embedded to a β2th-order Sobolev

space, the eigenvalues decays as γjν � ν−2β2 (Wahba, 1990). We define the function,

gAj(x̂1, . . . , x̂p) = Ñ−1/2
p∑
j=1

Ñ∑
ν=1

aj2,νγ
1/2

j,Ñ+ν
φj,Ñ+ν(x̂j)

+ Ñ−1/2
∑

j,k=1,...,p;j 6=k

Ñ∑
ν=1

aj·k,νγ
1/2

j,Ñ+ν
γ
1/2

k,Ñ+ν
φj,Ñ+ν(x̂j)φk,Ñ+ν(x̂k), Aj ∈ A,

Let ‖ · ‖0H denote the `0-norm. Then, we have,

‖gAj‖0H ≤
p∑
j=1

∥∥∥∥∥∥
Ñ∑
ν=1

aj2,νγ
1/2

j,Ñ+ν
φj,Ñ+ν(x̂j)

∥∥∥∥∥∥
0

H

+
∑

j,k=1,...,p;j 6=k

∥∥∥∥∥
N∑
ν=1

aj·k,νγ
1/2

j,Ñ+ν
γ
1/2

k,Ñ+ν
φj,Ñ+ν(x̂j)φk,Ñ+ν(x̂k)

∥∥∥∥∥
0

H

≤ sj.

For any two matrices Aj, Bj ∈ A, we have,

‖gAj − gBj‖2L2
≥ C1Ñ

−1
p∑
j=1

Ñ∑
ν=1

γj,Ñ+ν (aj2,ν − bj2,ν)2

+ C1Ñ
−1

∑
j,k=1,...,p;j 6=k

Ñ∑
ν=1

γj,Ñ+νγk,Ñ+ν (aj·k,ν − bj·k,ν)2

≥ C2Ñ
−1(2Ñ)−4β2

∑
j,k=1,...,p;j 6=k

Ñ∑
ν=1

(aj·k,ν − bj·k,ν)2 ≥ C3sÑ
−4β2 ,

for some constants C1, C2, C3 > 0, where the second and third steps are by the construction

(a′). On the other hand, for any Aj ∈ A, and by the Minkowski inequality,

‖gAj‖2L2
≤ C4Ñ

−1
p∑
j=1

∥∥∥∥∥
N∑
ν=1

aj2,νγ
1/2

j,Ñ+ν
φj,Ñ+ν

∥∥∥∥∥
2

L2

+ C4Ñ
−1

∑
j,k=1,...,p;j 6=k

∥∥∥∥∥
N∑
ν=1

aj·k,νγ
1/2

j,Ñ+ν
γ
1/2

k,Ñ+ν
φj,Ñ+νφk,Ñ+ν

∥∥∥∥∥
2

L2

≤ C4Ñ
−1

p∑
j=1

Ñ∑
ν=1

γj,Ñ+νa
2
j2,ν ≤ C5Ñ

−1Ñ−2β2Ñsj = C5sjÑ
−2β2 ,
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for some constants C4, C5 > 0, where the second and third steps are by (a).

We are now ready to derive the lower bound. Let Z denote a random variable uniformly

distributed on {1, 2, . . . , card(A)}. Then for any j = 1, . . . , p,

inf
F̃j

sup
Fj∈H

P
{
‖F̃j(x̂)− Fj(x̂)‖2L2

≥ 1

4
min

Aj 6=Bj∈A
‖gAj − gBj‖2L2

}
≥ inf
Ẑ

P
{
Ẑ 6= Z

}
,

where the infimum on the right-hand-side is taken over all decision rules that are measurable

functions of the data (Tsybakov, 2009). By the Fano’s Lemma, we have,

P
{
Ẑ 6= Z|t1, . . . , tn

}
≥ 1− 1

log{card(A)}

[
It1,...,tn(y1j, . . . , ynj;Z) + log 2

]
,

where It1,...,tn(y1j, . . . , ynj;Z) is the mutual information between Z and (y1j, . . . , ynj) condi-

tioning on (t1, . . . , tn). Note that

Et1,...,tn [It1,...,tn(y1j, . . . , ynj;Z)] ≤ n

card(A){card(A)− 1}
∑

Aj 6=Bj∈A

Et1,...,tn‖gAj − gBj‖2L2

≤ n

2
max

Aj 6=Bj∈A
‖gAj − gBj‖2L2

≤ 2nmax
Aj∈A
‖gAj‖2L2

≤ 2C5nsjÑ
−2β2 .

Henceforth,

inf
F̃j

sup
Fj∈H

P
{
‖F̃j(x̂)− Fj(x̂)‖2L2

≥ C3sjÑ
−4β2

}
≥ inf
Ẑ

P{Ẑ 6= Z} ≥ 1− 2C5nsjÑ
−2β2 + log 2

1
4
sj log(p2/sj) + 1

8
Ñsj

.

Taking Ñ = 1 and sj = C6n
−1 log p for a sufficiently small constant C6 yields that

inf
F̃j

sup
Fj∈H

P
{
‖F̃j(x̂)− Fj(x̂)|2L2

≥ C7
log p

n

}
≥ 1

2
,

for some constant C7 > 0. Meanwhile, taking sj = 1 and Ñ = C8(n log n−1)
1

4β2+2 for a

sufficiently small C8 > 0 yields that

inf
F̃j

sup
Fj∈H

P
{
‖F̃j(x̂)− Fj(x̂)‖2L2

≥ C9(n log−1 n)
− 2β2

2β2+1

}
≥ 1

2
,

for some C9 > 0. Therefore, we have

inf
F̃j

sup
Fj∈H

P
[
‖F̃j(x̂)− Fj(x̂)‖2L2

≥ C10

{
log p

n
+ (n log−1 n)

− 2β2
2β2+1

}]
≥ 1

2
,

for some C10 > 0. Finally, note that, x̂j is an estimator of xj satisfying that ‖x̂j − xj‖2L2
=

Op

(
n
− 2β1

2β1+1

)
. Then for any Fj, F̃j ∈ H,

P
[
min

{
‖Fj(x)− Fj(x̂)‖2L2

, ‖F̃j(x)− F̃j(x̂)‖2L2

}
≥ C11n

− 2β1
2β1+1

]
≥ 1

2
,
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Therefore,

inf
F̃j

sup
Fj∈H

P
[
‖F̃j(x)− Fj(x)‖2L2

≥ C12

{
log p

n
+ (n log−1 n)

− 2β2
2β2+1 + n

− 2β1
2β1+1

}]
≥ 1

2
,

for some constant C12 > 0, which completes the proof of Theorem 4. 2

S1.5.3 Auxiliary lemmas for Theorem 4

For any g ∈ H, define the norm, ‖g(x(t))‖n =
√

(1/n)
∑n

i=1 g
2(x(ti)).

Lemma 1. Suppose that Fj ∈ H, and the errors {εij}ni=1 are i.i.d. Gaussian. Then there

exists some constant C > 0 such that, for any c1 > 0 and c2 > 1, with probability at least

1− 2p−c1,

1

n

n∑
i=1

εijFj(x(ti))

≤ C

{
c
− 4β2

2β2−1

2 ‖Fj(x(t))‖2L2
log−2 ‖Fj(x(t))‖L2 +

(
c
− 4β2

2β2−1

2 + c
4β2

4β2+1

2

)(
n

log n

)− 2β2
2β2+1

+

(
c
− 4β2

2β2−1

2 + c1 + 1

)
log p

n
+

√
(c1 + 1)

log p

n
‖Fj(x(t))‖L2 + n−1/2e−p

}
.

Proof of Lemma 1: Recall the RKHS H defined in (8). For notational simplicity, we

denote Fjk ≡ Fjkk for k = 1, . . . , p. It has been shown that the νth eigenvalue of the

reproducing kernel of RKHS H is of order (ν log−1 ν)−2β2 , for ν ≥ 1; see, e.g., Bach (2017).

Since {εij}ni=1 are i.i.d. Gaussian, by Lemma 2.2 of Yuan and Zhou (2016) and Corollary 8.3

of van de Geer (2000), we have that, for any c1 > 0, with probability at least 1− p−c1 ,

1

n

n∑
i=1

εijFj(x(ti))

≤ 2C1n
−1/2

p∑
k,l=1

(
‖Fjkl(x(t))‖n log−1 ‖Fjkl(x(t))‖n

)1− 1
2β2

(
‖Fjkl‖H log−1 ‖Fjkl‖H

) 1
2β2

+ 2C1n
−1/2

√
(c1 + 1) log p

p∑
k,l=1

‖Fjkl(x(t))‖n + 2C1n
−1/2e−p

p∑
k,l=1

‖Fjkl‖H

≡ 2C1(∆4 + ∆5 + ∆6),

(S6)

for some constant C1. Next, we bound the three terms ∆4,∆5,∆6 on the right-hand-side of

(S6), respectively.
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For ∆4, by the Young’s inequality, for any c2 > 1, we have,

∆4 ≤ c
− 4β2

2β2−1

2

p∑
k,l=1

(
‖Fjkl(x(t))‖n log−1 ‖Fjkl(x(t))‖n

)2
+ c

4β2
4β2+1

2 n−
2β2

2β2+1

p∑
k,l=1

(
‖Fjkl‖H log−1 ‖Fjkl‖H

) 2
2β2+1 .

Note that
d∑

k,l=1

(
‖Fjk‖H log−1 ‖Fjk‖H

) 2
2β2+1 ≤ C ′2

d∑
k,l=1

(
‖Fjk‖H log−1 ‖Fjk‖H

)0 ≤ C2,

for some constants C ′2, C2, where the last step is due to Assumption 1 that the number of

nonzero functional components of Fj is bounded. Henceforth,

n−1/2
d∑

k,l=1

(
‖Fjkl(x(t))‖n log−1 ‖Fjkl(x(t))‖n

)1− 1
2β2

(
‖Fjkl‖H log−1 ‖Fjkl‖H

) 1
2β2

≤ c
− 4β2

2β2−1

2

p∑
k,l=1

(
‖Fjkl(x(t))‖n log−1 ‖Fjkl(x(t))‖n

)2
+ c

4β2
4β2+1

2 n−
2β2

2β2+1C2.

(S7)

By Theorem 4 of Koltchinskii and Yuan (2010), there exists some constant C3 > 0 such

that, with probability at least 1− p−c1 ,
p∑

k,l=1

(
‖Fjkl(x(t))‖n log−1 ‖Fjkl(x(t))‖n

)2 ≤ 2C2
3

p∑
k,l=1

(
‖Fjkl(x(t))‖L2 log−1 ‖Fjkl(x(t))‖L2

)2
+

+ 2C2
3

{(
n

log n

)− 2β2
2β2+1

+
(c1 + 1) log d

n

}
p∑

k,l=1

(
‖Fjkl‖H log−1 ‖Fjkl‖H

)2
.

Note that there exists some constant c3 > 1, such that

p∑
k,l=1

(
‖Fjkl‖L2 log−1 ‖Fjkl‖L2

)2 ≤ c3
(
‖Fj‖L2 log−1 ‖Fj‖L2

)2
,

and
p∑

k,l=1

(
‖Fjkl‖H log−1 ‖Fjkl‖H

)2 ≤ p∑
k,l=1

(‖Fjkl‖H log−1 ‖Fjkl‖H)0 ≤ C2.

Then, we have

p∑
k,l=1

(
‖Fjkl(x(t))‖n log−1 ‖Fjkl(x(t))‖n

)2 ≤ 2C2
3c3
(
‖Fj(x(t))‖L2 log−1 ‖Fj(x(t))‖L2

)2
+ 2C2C

2
3

{(
n

log n

)− 2β2
2β2+1

+
(c1 + 1) log p

n

}
.
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Inserting into (S7) yields that

∆4 ≤ 2C2
3c3c

− 4β2
2β2−1

2 (‖Fj(x(t))‖L2 log−1 ‖Fj(x(t))‖L2)
2

+ 2C2C
2
3c
− 4β2

2β2−1

2

{(
n

log n

)− 2β2
2β2+1

+
(c1 + 1) log p

n

}
+ C2c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

.
(S8)

For ∆5, by Theorem 4 of Koltchinskii and Yuan (2010) again, there exists a constant

C4 > 0, such that

p∑
k,l=1

‖Fjkl(x(t))‖n

≤ C4

p∑
k,l=1

‖Fjkl(x(t))‖L2 + C4

{(
n

log n

)− β2
2β2+1

+

√
(c1 + 1) log p

n

}
p∑

k,l=1

‖Fjkl‖H

≤ C4

p∑
k,l=1

‖Fjkl(x(t))‖L2 + C2C4

{(
n

log n

)− β2
2β2+1

+

√
(c1 + 1) log p

n

}
.

Define the setQ1 ≡
{
k, l = 1, . . . , p : ‖Fjkl(x(t))‖L2 >

√
n−1 log p

}
. By the Cauchy-Schwartz

inequality, we have,

∑
k,l∈Q1

‖Fjkl(x(t))‖L2 ≤ card1/2(Q1) ·

( ∑
k,l∈Q1

‖Fjkl(x(t))‖2L2

)1/2

≤
p∑

k,l=1

‖Fjkl‖0H ·

(
p∑

k,l=1

‖Fjkl(x(t))‖2L2

)1/2

≤ C2c4‖Fj(x(t))‖L2 ,

where c4 > 1 satisfies that
∑p

k,l=1 ‖Fjkl(x(t))‖2L2
≤ c24‖Fj(x(t))‖2L2

. Next, define the set

Q2 ≡ {k, l = 1, . . . , p : ‖Fjkl(x(t))‖L2 ≤
√
n−1 log p}. By definition,∑

k,l∈Q2

‖Fjkl(x(t))‖L2 ≤
∑
k,l∈Q2

‖Fjkl(x(t))‖0L2

√
log p

n

√
log p

n

p∑
k,l=1

‖Fjkl(x(t))‖0L2
≤ C2

√
log p

n
.

Combining Q1 and Q2 gives,

p∑
k,l=1

‖Fjkl(x(t))‖L2 ≤
∑
k,l∈Q1

‖Fjkl(x(t))‖L2 +
∑
k,l∈Q2

‖Fjkl(x(t))‖L2

≤ C2c4‖Fj(x(t))‖L2 + C2

√
log p

n
.

Henceforth, we can bound ∆5 as,

∆5 ≤ C2C4c4

√
log p

n
‖Fj(x(t))‖L2 + C2C4

(
n

log n

)− β2
2β2+1

√
log p

n
+ 2C2C4

√
(c1 + 1)

log p

n
.
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For ∆6, it can be bounded as,

∆6 ≤ n−1/2e−p
p∑

k,l=1

‖Fjk‖0H ≤ C2n
−1/2e−p.

Combining the bounds for ∆4,∆5,∆6, and applying the Cauchy-Schwarz inequality com-

pletes the proof of Lemma 1. 2

Lemma 2. Suppose that Fj ∈ H. Then there exists some constant C > 0 such that, for

any c1 > 0 and c2 > 1, with probability at least 1− 2p−c1,

‖Fj(x(t))‖2L2
≤ ‖Fj(x(t))‖2n + C

{
c
− 4β2

2β2−1

2 ‖Fj(x(t))‖2L2
log−2 ‖Fj‖L2 + c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

+(c1 + 1)
log p

n
+

√
(c1 + 1)

log p

n
‖Fj(x(t))‖L2 + n−1/2e−p

}
.

Proof of Lemma 2: Note that

‖Fj(x(t))‖2L2
− ‖Fj(x(t))‖2n ≤ sup

g∈H,‖g‖0H≤‖Fj‖
0
H

‖g‖L2
≤‖Fj‖L2

(
‖g‖2L2

− ‖g‖2n
)
.

By the Talagrand’s concentration inequality (Talagrand, 1996), with probability at least

1− e−c1 ,

sup
g∈H,‖g‖0H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

(
‖g‖2L2

− ‖g‖2n
)
≤ 2

E sup
g∈H,‖g‖0H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

(
‖g‖2L2

− ‖g‖2n
)

+ 4‖Fj(x(t))‖L2

√
c1
n

+
16c1
n

 .

(S9)

By the symmetrization inequality for the Rademacher process (van der Vaart and Wellner,

1996), there exists a constant C1 > 0, such that

E sup
g∈H,‖g‖0H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

(
‖g‖2L2

− ‖g‖2n
)
≤ E sup

g∈H,‖g‖0H≤‖Fj‖
0
H

‖g‖L2
≤‖Fj‖L2

{
1

n

n∑
i=1

ωig
2(x(ti))

}

≤ C1E sup
g∈H,‖g‖0H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

{
1

n

n∑
i=1

ωig(x(ti))

}
,

(S10)

where ω, . . . , ωn are independent random variables drawn from the Rademacher distribution;

i.e., P(ωi = 1) = P(ωi = −1) = 1/2, for i = 1, . . . , n. The last inequality in (S10) is due
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to the contraction inequality, and the fact that g2 is a Lipschitz function. Henceforth, with

the Talagrand’s concentration inequality, there exists a constant C2 > 0, such that, with

probability at least 1− e−c1 ,

E sup
g∈H,‖g‖0H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

{
1

n

n∑
i=1

ωig(x(ti))

}

≤ C2

 sup
g=

∑p
k,l=1 gkl∈H,‖g‖

0
H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

p∑
k,l=1

{
1

n

n∑
i=1

ωigkl(x(ti))

}
+ ‖Fj‖L2

√
c1
n

+
c1
n

 .
(S11)

By Lemma 2.2 of Yuan and Zhou (2016), and the result that the νth eigenvalue of RKHS

H is of order (ν log−1 ν)−2β2 , for ν ≥ 1 (Bach, 2017), there exists a constant C3 > 0, such

that, with probability at least 1− d−c1 ,
p∑

k,l=1

{
1

n

n∑
i=1

ωigkl(x(ti))

}

≤ C3n
−1/2

p∑
k,l=1

{(
‖gkl‖H log−1 ‖gkl‖H

) 1
2β2

(
‖gkl‖L2 log−1 ‖gkl‖L2

)1− 1
2β2

+‖gkl‖L2

√
(c1 + 1) log p+ e−p‖gkl‖H

}
,

Following the arguments for bounding ∆4 in (S6), there exists a constant C4 > 0 and for

any c2 > 1, such that

n−1/2 sup
g=

∑p
k,l=1 gkl∈H,‖g‖

0
H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

p∑
k,l=1

(
‖gjkl‖H log−1 ‖gjkl‖H

) 1
2β2

(
‖gkl‖L2 log−1 ‖gkl‖L2

)1− 1
2β2

≤ C4c
− 4β2

2β2−1

2 sup
g=

∑p
k,l=1 gkl∈H,‖g‖

0
H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

p∑
k,l=1

(
‖gkl‖L2 log−1 ‖gkl‖L2

)2
+ C4c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

≤ C4c
− 4β2

2β2−1

2 C5‖Fj(x(t))‖2L2
log−2 ‖Fj(x(t))‖L2 + C4c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

,

where the last step is due to
∑p

k,l=1

(
‖Fjkl‖L2 log−1 ‖Fjkl‖L2

)2 ≤ C5

(
‖Fj‖L2 log−1 ‖Fj‖L2

)2
for some constant C5 > 1. Following the arguments for bounding ∆5 in (S6), there exists a

constant C6 > 0, such that

p∑
k,l=1

‖gkl‖L2 ≤ C6

{√
log p

n
+ ‖Fj(x(t))‖L2

}
.
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Henceforth, for some constant C7 > 0,

sup
g=

∑p
k,l=1 gkl∈H,‖g‖

0
H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

p∑
k,l=1

{
1

n

n∑
i=1

ωigkl(x(ti))

}

≤ C7

{
c
− 4β2

2β2−1

2 ‖Fj(x(t))‖2L2
log−2 ‖Fj(x(t))‖L2 + c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

}

+ C7

√
(c1 + 1) log p

n

{√
log p

n
+ ‖Fj(x(t))‖L2

}
+ C7n

−1/2e−p.

Together with (S9), (S10), and (S11), we have, with probability at least 1− 2e−c1 ,

sup
g∈H,‖g‖0H≤‖Fj‖

0
H

‖g‖L2
≤‖Fj‖L2

(
‖g‖2L2

− ‖g‖2n
)

≤ C8

{
c
− 4β2

2β2−1

2 ‖Fj(x(t))‖2L2
log−2 ‖Fj(x(t))‖L2 + c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

}

+ C8

√
(c1 + 1) log p

n

{√
log p

n
+ ‖Fj(x(t))‖L2

}
+ C8n

−1/2e−p

+ C8

(
‖Fj(x(t))‖L2

√
c1
n

+
c1
n

)
,

for some constant C8 > 0. Using the change of variable, the following result also holds.

That is, with probability at least 1− 2p−c1 , it holds that,

‖Fj(x(t))‖2L2
− ‖Fj(x(t))‖2n ≤ sup

g∈H,‖g‖0H≤‖Fj‖
0
H

‖g‖L2
≤‖Fj‖L2

(
‖g‖2L2

− ‖g‖2n
)

≤ C9

{
c
− 4β2

2β2−1

2 ‖Fj(x(t))‖2L2
log−2 ‖Fj(x(t))‖L2 + c

4β2
4β2+1

2

(
n

log n

)− 2β2
2β2+1

}

+ C9

√
(c1 + 1) log p

n

{√
log p

n
+ ‖Fj(x(t))‖L2

}
+ C8n

−1/2e−p

+ C9

{
‖Fj(x(t))‖L2

√
(c1 + 1) log p

n
+

(c1 + 1) log p

n

}
,

for some constant C9 > 0. This completes the proof of Lemma 2. 2

S1.6 Proof of Theorem 5

We divide the proof of this theorem to three parts. We first present the main proof in

Section S1.6.1. We then summarize some additional technical assumptions used during the
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proof in Section S1.6.2. We give an auxiliary lemma in Section S1.6.3.

S1.6.1 Main proof

We use the primal-dual witness method to prove that KODE selects all significant variables

but includes no insignificant ones. The analysis here extends the techniques in Ravikumar

et al. (2010) for the Ising model, where the pairwise interactions have a simple product

form. Meanwhile, we also deal with measurement errors in variables.

Consider the optimization problem (11) that is equivalent to (10). Recall that, by the

representer theorem (Wahba, 1990), the selection problem becomes (15); i.e.,

min
θj

{
(zj −Gθj)>(zj −Gθj) + nκnj

(
p∑

k=1

θjk +

p∑
k 6=l,k=1

p∑
l=1

θjkl

)}
, (S12)

subject to θk ≥ 0, θkl ≥ 0, k, l = 1, . . . , p, k 6= l, where the “response” is zj = (yj − ȳj) −
(1/2)nηnjcj−Bbj, and the “predictor” is G ∈ Rn×p2 . The vector θ solves (S12) if it satisfies

the Karush-Kuhn-Tucker (KKT) condition:

2

n
G>(Gθj − zj) + κnjgj = 0, j = 1, . . . , p, (S13)

where G contains errors in variable due to the estimated x̂(t), and

gj = sign(θj) if θj 6= 0, and |gj| ≤ 1 otherwise. (S14)

To apply the primal-dual witness method, we next construct an oracle primal-dual pair

(θ̂j, ĝj) satisfying the KKT conditions (S13) and (S14). Specifically,

(a) We set θ̂jkl = 0 for (k, l) 6∈ Sj, where Sj is defined as,

Sj ≡
{

1 ≤ k ≤ l ≤ p : if Fjk 6= 0, let l = k; or if Fjkl 6= 0 with l 6= k ≤ p}.

The definition of Sj is similar to Mj defined in Section 3.2. However, Sj explicitly

includes {(k, l) : k = l}. Let sj = card(Sj).

(b) Let θ̂Sj be the minimizer of the partial penalized likelihood,

(zj −GSjθSj)
>(zj −GSjθSj) + nκnj

(
p∑

k=1

θjk +

p∑
k 6=l,k=1

p∑
l=1

θjkl

)
. (S15)

(c) Let Scj be the complement of Sj in {(k, l) : 1 ≤ k ≤ l ≤ p}. We obtain ĝScj from (S13)

by substituting in the values of θ̂j and ĝSj .
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Next, we verify the support recovery consistency; i.e.,

max
(k,l)∈Sj

‖θ̂jkl − θjkl‖`2 ≤
2

3
θmin,

which in turn implies that the oracle estimator θ̂j recovers the support of θj exactly.

Note that the subgradient condition for the partial penalized likelihood (S15) is

2G>Sj(GSj θ̂Sj − zj) + nκnj ĝSj = 0,

which implies that

2G>Sj(GSj θ̂Sj −GSjθSj) + 2G>Sj(GSjθSj − zj) + nκnj ĝSj = 0.

Define RSj ≡ 2G>SjGSjθSj − 2G>Sjzj. Then,

θ̂Sj − θSj = −
(

2G>SjGSj

)−1
(RSj + nκnj ĝSj). (S16)

For each (k, l), denote the corresponding column of G by Gkl. Then for (k, l) ∈ Sj,

Rkl = 2G>klGSjθSj − 2G>klzj. (S17)

By Lemma 3, we have ‖Rkl‖`2 ≤ ηR for any (k, l) ∈ Sj. Then,

‖RSj‖`2 ≤ ηR
√
sj. (S18)

By Assumption 3 given in Section S1.6.2, we have Λmin

(
G>SjGSj

)
≥ Cmin/2, for some

constant Cmin > 0. Henceforth,

Λmax

{(
2G>SjGSj

)−1}
≤ 1

Cmin

.

Note that for any (k, l) ∈ Sj, ‖ĝjkl‖`2 ≤ 1, which implies that,

‖ĝSj‖`2 ≤
√
sj. (S19)

Therefore,

max
(k,l)∈Sj

‖θ̂jkl − θjkl‖`2 ≤ ‖θ̂Sj − θSj‖`2 ≤
ηR
√
sj

Cmin

+ nκnj

√
sj

Cmin

≤ 2

3
θmin.

where the last inequality is due to Assumption 5 in Section S1.6.2.

Next, we verify the strict dual feasibility; i.e.,

max
(k,l)6∈Sj

|ĝjkl| < 1,
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which in turn implies that the oracle estimator θ̂j satisfies the KKT condition of the KODE

optimization problem.

For any (k, l) 6∈ Sj, by (S13), we have,

2G>kl(GSj θ̂Sj − zj) + nκnj ĝjkl = 0,

which implies that

2G>kl(GSj θ̂Sj −GSjθSj) + 2G>kl(GSjθSj − zj) + nκnj ĝjkl = 0.

By (S16) and (S17), we have,

nκnj ĝjkl = G>klGSj(G
>
Sj
GSj)

−1(RSj + nκnj ĝSj)−Rkl.

By Assumption 4 in Section S1.6.2, we have that,

max
(k,l) 6∈Sj

∥∥∥G>klGSj(G
>
Sj
GSj)

−1
∥∥∥
`2
≤ ξG.

Then by (S18) and (S19), we have that

|ĝjkl| ≤
(ξG + 1)

√
sj

nκnj
ηR + ξG

√
sj, (k, l) 6∈ Sj.

By Assumption 5 in Section S1.6.2 that

(ξG + 1)
√
sj

nκnj
ηR + ξG

√
sj < 1,

we obtain that,

|ĝjkl| < 1, for any (k, l) 6∈ Sj.

Finally, the selection consistency for Sj implies the selection consistency for S0
j . This

completes the proof of Theorem 5. 2

S1.6.2 Additional technical assumptions

We summarize the additional assumptions used during the proof of Theorem 5.

Assumption 3. Suppose there exists a constant Cmin > 0 such that the minimal eigenvalue

of matrix G>SjGSj satisfies,

Λmin

(
G>SjGSj

)
≥ 1

2
Cmin.
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Assumption 4. Suppose there exists a constant 0 ≤ ξG < 1 such that,

max
(k,l)6∈Sj

∥∥∥G>klGSj(G
>
Sj
GSj)

−1
∥∥∥
`2
≤ ξG.

Assumption 5. Suppose the following inequalities hold:

ηR
√
sj

Cmin

+ nκnj

√
sj

Cmin

≤ 2

3
θmin, and

(ξG + 1)
√
sj

nκnj
ηR + ξG

√
sj < 1.

where θmin = min(k,l)∈Sj ‖θjkl‖`2.

Assumption 3 ensures the identifiability among the sj elements in the column set of GSj .

The same condition has been used in Zhao and Yu (2006); Ravikumar et al. (2010); Chen

et al. (2017). Assumption 4 reflects the intuition that the large number of irrelevant variables

cannot exert an overly strong effect on the subset of relevant variables. This condition is

standard in the literature of Lasso regressions (Meinshausen et al., 2006; Zhao and Yu, 2006;

Ravikumar et al., 2010). Assumption 5 imposes some regularity on the minimum regulatory

effect. The second inequality characterizes the relationship between the quantities ξG, the

sparse tuning parameter κnj, and the sparsity level sj. Similar assumptions have been used

in Lasso regressions (Meinshausen et al., 2006; Zhao and Yu, 2006; Ravikumar et al., 2010).

Next, we detail Assumptions 4 and 5 in three specific examples, which help provide a

better interpretation of these hypotheses. In particular, Meinshausen et al. (2006); Zhao

and Yu (2006) provided some examples and results for the setting of classical regressions.

We show that similar results hold for KODE for the dynamic system. Recall the definition of

the “predictor” G ∈ Rn×p2 in (15), where the first p columns of G are Σkcj with k = 1, . . . , p,

and the last p(p−1) columns of G are Σklcj with k, l = 1, . . . , p, k 6= l. All diagonal elements

of G>G are assumed to be 1, which is equivalent to normalizing Σklcj to the same scale for

any k, l = 1, . . . , p, since Assumption 4 is invariant under a common scaling of G>G.

The first example considers bounded correlations of functional component estimates

Σklcj for all k, l = 1, . . . , p. It implies Assumption 4 holds even when p grows with n, as long

as sj remains fixed, which in turn ensures that KODE selects the true model asymptotically.

Example 1. Suppose that the correlation of Σklcj and Σk′l′cj is bounded by ξG/(2sj − 1),

j, k, l, k′, l′ = 1, . . . , p. Then Assumption 4 holds.

Proof : Recall that Cmin/2 is a lower bound of the minimum eigenvalue of G>SjGSj defined

in Assumption 3. We can bound Cmin as follows. Let u = (u1, . . . , usj)
> ∈ Rsj . Since

the correlation of Σklcj and Σk′l′cj is bounded by ξG
2sj−1 for any k, l, k′, l′ = 1, . . . , p, any

off-diagonal element of G>G is bounded by ξG/(2sj − 1). Then
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u>(G>SjGSj)u = 1 +
∑

1≤i1 6=i2≤sj

ui1(G
>
Sj
GSj)(i1,i2)ui2 ≥ 1− ξG

2sj − 1

∑
1≤i1 6=i2≤sj

|ui1 ||ui2|

≥ 1− 1

2sj − 1

∑
1≤i1 6=i2≤sj

|ui1||ui2 | ≥
sj

2sj − 1
.

Therefore, Cmin ≥ 2sj/(2sj − 1), and∥∥∥G>klGSj(G
>
Sj
GSj)

−1
∥∥∥
`2
≤ ‖G>klGSj‖`2

2

Cmin

√
sj ≤

ξG
√
sj

2sj − 1
· 2sj − 1

sj
· √sj = ξG.

This verifies Example 1. 2

The second example gives two instances of Example 1, where Assumption 4 holds under

some simplified structures.

Example 2. Assumption 4 holds if (i) sj = 1, or (ii) G>G is orthogonal.

Proof : (i) If sj = 1, then ξG = max(k,l)6=(k′,l′)(Σ
klcj)

>Σk′l′cj < 1. Then the condition in

Example 1 holds. (ii) If the matrix G>G is orthogonal, the correlation of Σklcj and Σk′l′cj

is zero for any (k, l) 6= (k′, l′), and thus the condition in Example 1 holds for any sj and ξG.

Therefore, in both cases, Assumption 4 holds. This verifies Example 2. 2

The third example illustrates Assumption 5 with a natural condition that the minimal

signal term θmin does not decay too fast. In particular, it is necessary to have a gap between

the decay rate of the minimal signal and n−1/2. Since the noise aggregates at a rate of n−1/2,

this condition prevents the estimation and selection from being dominated by the noise.

Example 3. Suppose that ξG < s
−1/2
j , and

θmin = O

[
(log p)εp

{(
n

log n

)− β2
2β2+1

+

(
log p

n

) 1
2

+ n
− β1

2β1+1

}]
,

with εp > 0. Here, θmin decays at the rate slower than n−1/2 as n and p grow. Then there

exists κnj > 0, such that Assumption 5 holds.

Proof : Recall that

ηR = Op

{(
n

log n

)− 2β2
2β2+1

+
log p

n
+ n

− 2β1
2β1+1

}
.

Then P(θmin ≥ 3cθηR/2) → 1 for any constant cθ > 0 as n and p grow. Letting κnj =

cκn
−1ηR, with

0 < cκ ≤
cθCmin√

sj
− 1, (S20)
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then the first inequality of Assumption 5 holds. Moreover, letting κnj = cκn
−1ηR > 0, with

cκ >
(ξG + 1)

√
sj

1− ξG
√
sj

, (S21)

then the second inequality of Assumption 5 also holds.

By setting

cθ >
(1 +

√
sj)
√
sj

(1− ξG
√
sj)Cmin

,

there exists ck satisfying both (S20) and (S21), as long as ξG < 1/
√
sj. Therefore, there

exists κnj given by cκn
−1ηR, such that Assumption 5 holds. This verifies Example 3. 2

S1.6.3 Auxiliary lemma for Theorem 5

We present a lemma that is useful for the proof of Theorem 5. It gives a bound similar to

the deviation condition proposed by Loh and Wainwright (2012). The difference is that, the

noise in variable x̂(t) in our setting involves a nonlinear transformation through the kernel

K(x̂(t), x̂(s)).

Lemma 3. For j = 1, . . . , p, we have,

‖G>klGSjθSj −Gklzj‖`2 ≤ ηR, where ηR = Op

((
n

log n

)− β2
2β2+1

+

(
log p

n

)1/2

+ n
− β1

2β1+1

)
.

Proof of Lemma 3: Similar to the “predictor” G defined in (15) in Section 3.1, we first

construct a noiseless version of the predictor G̃ ∈ Rn×p2 , whose first p columns are Σ̃kcj,

and the last p(p−1) columns are Σ̃klcj, and Σ̃k = (Σ̃k
ii′), Σ̃

kl = (Σ̃kl
ii′) are both n×n matrices

whose (i, i′)th entries are,

Σ̃k
ii′ =

∫
T

∫
T
{Ti(s)− T̄ (s)}Kk(x(t), x(s)){Ti′(t)− T̄ (t)}dsdt, 1 ≤ k ≤ p, 1 ≤ i, i′ ≤ n,

Σ̃kl
ii′ =

∫
T

∫
T
{Ti(s)− T̄ (s)}Kkl(x(t), x(s)){Ti′(t)− T̄ (t)}dsdt, 1 ≤ k < l ≤ p, 1 ≤ i, i′ ≤ n.

Next, we consider the term
∥∥G>klzj −G>klGSjθSj

∥∥
`2

, which can be bounded as,

∥∥G>klzj −G>klGSjθSj
∥∥
`2
≤
∥∥∥G>klE[zj]−G>klG̃SjθSj

∥∥∥
`2

+
∥∥∥G>kl(G̃Sj −GSj)θSj

∥∥∥
`2

+
∥∥G>kl(zj − E[zj])

∥∥
`2
≡ ∆7 + ∆8 + ∆9.

(S22)

We next bound the three terms ∆7,∆8,∆9 on the right-hand-side of S22, respectively.
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For ∆7, by the Cauchy-Schwarz inequality, we have,

∆2
7 ≤

∥∥G>kl∥∥2`2 ∥∥∥E[zj]− G̃SjθSj

∥∥∥2
`2
≤ C1

∥∥∥E[zj]− G̃SjθSj

∥∥∥2
`2

= Op

((
n

log n

)− 2β2
2β2+1

+
log p

n

)
,

for some constant C1 > 0, where the last step is by (S5).

For ∆8, again by the Cauchy-Schwarz inequality, we have,

∆2
8 ≤

∥∥G>kl∥∥2`2 ∥∥∥(G̃Sj −GSj

)
θSj

∥∥∥2
`2
≤ C2

∥∥∥(G̃Sj −GSj

)∥∥∥2
∞

∥∥θSj∥∥2`1 = Op

(
n
− 2β1

2β1+1

)
,

for some constants C2 > 0, where the last step is by (S4) and the fact that ‖θSj‖`1 is

bounded.

For ∆9, by Lemma 2, we have,

∆2
9 = Op

((
n

log n

)− 2β2
2β2+1

+
log p

n

)
.

Combining the above three bounds, we obtain that,

∥∥G>klzj −G>klGSjθSj
∥∥
`2

= Op

((
n

log n

)− β2
2β2+1

+

(
log p

n

)1/2

+ n
− β1

2β1+1

)
,

which completes the proof of Lemma 3. 2

S2 Additional numerical results

We report some additional numerical results. We begin with a comparison with a family

of ODE solutions assuming a known functional F . We then carry out a sensitivity analysis

to study the robustness of the choice of kernel function and initial parameters. Finally, we

report the sparse recovery of the enzymatic regulatory network example studied in Section

5.2, and the gene regulatory network example studied in Section 6 of the paper.

S2.1 Comparison with alternative methods

We compare the proposed KODE method with a family of alternative ODE solutions, includ-

ing González et al. (2014); Zhang et al. (2015b); Mikkelsen and Hansen (2017). Particularly,

González et al. (2014) proposed a penalized log-likelihood approach in RKHS, where the

ODE system is used as a penalty. Zhang et al. (2015b) studied a full predator-prey ODE

model that takes a special form of two-dimensional rational ODE. Mikkelsen and Hansen
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Figure S1: The prediction and selection performance of KODE, LSA and AIM with varying noise
level. The results are averaged over 500 data replications. (a) Prediction error; (b) False discovery
proportion; (c) Empirical power.

(2017) learned a class of polynomial or rational ODE systems. However, the main difference

is that, all those solutions assumed the forms of the functional F are completely known,

while KODE does not require so, but instead estimates the functional adaptively given the

data. In addition, both González et al. (2014) and Zhang et al. (2015b) focused on the low-

dimensional ODE, while our method works for both low-dimensional and high-dimensional

ODE. Moreover, none of those solutions tackled post-selection inference, while we do. These

differences clearly distinguish our proposal from those existing ones.

Next, we numerically compare KODE with the least squares approximation (LSA)

method of Zhang et al. (2015b), and the adaptive integral matching (AIM) method of

Mikkelsen and Hansen (2017). We did not include González et al. (2014) in our numer-

ical comparison, since their code is not available. Moreover, they also assumed a known

F similarly as the other two works. We implement LSA using the code provided by the

Wiley Online Library, and AIM using the R package episode with the Lasso penalty and

automatic adaptation of parameter scales.

Figure S1 reports the performance of KODE, LSA and AIM for the enzymatic regulatory

network example in Section 5.2. The results are average over 500 data replications. It is

seen that KODE clearly outperforms both LSA and AIM in terms of both prediction and

selection accuracy. This suggests that the polynomial or rational forms of F imposed by

LSA and AIM may not hold in this example. Table S1 reports the performance of the three

methods for the gene regulatory network example in Section 6. The results are averaged

over 100 data realizations for all ten combinations of network structures. Again, it is seen

that KODE clearly outperforms LSA and AIM in all cases.
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Table S1: The area under the ROC curve and the 95% confidence interval of KODE, LSA and
AIM, for 10 combinations of network structures from GNW. The results are averaged over 100
data replications.

p = 10 p = 100
KODE AIM LSA KODE AIM LSA

E.coli1 0.582 0.558 0.437 0.711 0.698 0.614
(0.577, 0.587) (0.554, 0.562) (0.428, 0.446) (0.708, 0.714) (0.694, 0.702) (0.606, 0.622)

E.coli2 0.662 0.646 0.541 0.685 0.678 0.501
(0.658, 0.666) (0.641, 0.651) (0.533, 0.549) (0.681, 0.689) (0.673, 0.683) (0.488, 0.514)

Yeast1 0.603 0.539 0.413 0.619 0.599 0.527
(0.599, 0.607) (0.534, 0.544) (0.401, 0.425) (0.616, 0.622) (0.594, 0.604) (0.511, 0.543)

Yeast2 0.599 0.559 0.497 0.606 0.577 0.518
(0.595, 0.603) (0.554, 0.564) (0.488, 0.506) (0.603, 0.609) (0.573, 0.581) (0.505, 0.531)

Yeast3 0.612 0.563 0.451 0.621 0.609 0.577
(0.608, 0.616) (0.558, 0.567) (0.440, 0.462) (0.617, 0.625) (0.604, 0.614) (0.562, 0.592)

Together with the numerical results that compare KODE with linear ODE (Zhang et al.,

2015a) and additive ODE (Chen et al., 2017) reported in the paper, it demonstrates that the

proposed KODE is a competitive and useful tool for modeling complex dynamic systems.

S2.2 Sensitivity analysis

We carry out a sensitivity analysis to investigate the robustness of the choice of kernel

function and initial parameters in KODE.

First, we consider three commonly used kernels and study their performances using the

enzymatic regulatory network example in Section 5.2. Recall the first-order Matérn kernel

used in our analysis in Section 5.2,

K
(1)
F (x, x′) = (1 +

√
3‖x− x′‖/ν) exp(−

√
3‖x− x′‖/ν).

In addition, we also consider the second-order Matérn kernel,

K
(2)
F (x, x′) = (1 +

√
5‖x− x′‖/ν + 5‖x− x′‖2/3ν2) exp(−

√
5‖x− x′‖/ν),

and the Gaussian kernel,

K
(3)
F (x, x′) = exp(−‖x− x′‖2/2ν2).

It is known that the RKHS generated by K
(1)
F and K

(2)
F contains once differentiable and twice

differentiable functions, respectively (Gneiting et al., 2010), while the RKHS generated by

K
(3)
F contains infinitely differentiable functions (Lin and Brown, 2004). We couple the
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Figure S2: The prediction and selection performance with varying noise level for KODE with
three different kernels, plus linear ODE and additive ODE. The results are averaged over 500 data
replications. (a) Prediction error; (b) False discovery proportion; (c) Empirical power.

proposed KODE method with these three kernels: KODE-1 with the first-order Matérn

kernel, KODE-2 with the second-order Matérn kernel, and KODE-3 with the Gaussian

kernel. We continue to choose the bandwidth ν using tenfold cross-validation.

Figure S2 reports the prediction and selection performance of the KODE method with

the three kernels, plus the linear and additive ODE methods. It is seen that the performances

of the three KODE methods are fairly close. The relative prediction errors differ at most

14.9%, the false discovery proportions differ at most 4.0%, and the empirical powers differ at

most 2.2%, across different noise levels. Besides, they all outperform the linear and additive

ODE considerably. These results demonstrate that the proposed KODE is relatively robust

to the choice of the kernel function.

We also make remarks about some general principles of choosing kernel functions. In

practice, if there is prior knowledge about the smoothness of the trajectory x and the ODE

system F , we may choose kernels such that the corresponding RKHS has the same order

of smoothness as x and F , respectively. In this case, Theorems 3 and 4 ensure that KODE

is minimax optimal for the estimation of x and F . On the other hand, if there is no

such prior knowledge, we may then choose kernels with a higher-order smoothness. This

recommendation is supported by the observation that the performance of KODE-3 based

on the Gaussian kernel is slightly better than those of KODE-1 and KODE-2 based on

the Matérn kernels when the noise level is large. This recommendation also agrees with

the usual recommendation in classical kernel learning, e.g., density estimation (Hall and

Marron, 1988), and nonparametric function estimation (Lin and Brown, 2004). Lastly, we

comment that one can use cross-validation to choose the best performing kernel function as
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Figure S3: The prediction and selection performance of KODE with different initialization
schemes. The boxes range from the lower to the upper quartile, and the whiskers extend to
the most extreme data point that is no more than 1.5 times the interquartile range from the box.
The solid horizontal lines denote the reference initialization scheme. The results are averaged over
500 data replications. (a) Prediction error; (b) False discovery proportion; (c) Empirical power.

well (Duan et al., 2003; Meyer et al., 2003).

Next, we study the sensitivity of KODE with respect to the choice of initial param-

eters. Toward that end, we divide the parameters in Algorithm 1 that require initial-

ization into four subsets: (i) the parameters: {θjk, j, k = 1, . . . , p}; (ii) the parameters:

{θjkl, j, k, l = 1, . . . , p, k 6= l}; (iii) the tuning parameters: {ηnj, j = 1, . . . , p}; and (iv)

the tuning parameters: {κnj, j = 1, . . . , p}. We then consider the following initialization

schemes: First, we uniformly draw 200 i.i.d. vectors from [0.5, 1.5]p
2

as the initial values

for {θjk, j, k = 1, . . . , p} in (i), and fix the initial values of the parameters in (ii) to (iv) to

1. Second, we uniformly draw 200 i.i.d. vectors from [0.5, 1.5]p
2(p−1) as the initial values for

{θjkl, j, k, l = 1, . . . , p, k 6= l} in (ii), and fix the initial values of the rest of the parameters

in (i), (iii) and (iv) to 1. Third, we uniformly draw 200 i.i.d. values from [10−5, 1] as the

initial for {ηnj, j = 1, . . . , p} in (iii), and fix the initial values of the rest of parameters to 1.

Fourth, we uniformly draw 200 i.i.d. values from [10−5, 1] as the initial for {κnj, j = 1, . . . , p}
in (iv), and fix the initial values of the rest of parameters to 1. Finally, we initialize all the

parameters in (i) to (iv) to 1, and take this as a reference. For each setting of parameter

initialization, we apply Algorithm 1 to the enzymatic regulatory network example in Section

5.2 with the noise level σj = 0.05, j = 1, 2, 3.

Figure S3 reports the prediction and selection performance of KODE with different

schemes of parameter initialization, and the results are averaged over 500 data replications.

It is seen that the performances under different initialization schemes are close. For the

29



Figure S4: The selection performance of KODE for the enzymatic regulatory network, based on
500 data replications. (a) Number of false discoveries in the estimated model. (b) Number of true
discoveries in the estimated model. (c) Network recovery thresholded at the 90% frequency.

majority of cases, the relative prediction errors to the reference differ at most 1.9%, the

false discovery proportions differ at most 0.2% compared to the reference, and the empirical

powers differ at most 0.8% compared to the reference. This example shows that the proposed

KODE is fairly robust to the choice of the initial values. In the paper, we simply employ

the reference initialization scheme, i.e., setting all the initial values to 1.

S2.3 Enzymatic regulatory network recovery by KODE

Figure 3(b)-(c) in Section 5.2 of the paper reported the selection performance of KODE

in terms of false discovery proportion and power when recovering the enzymatic regulatory

network under different noise levels. Here we present additional results about the recovery

of this network at a given noise level. Figure S4 reports the results based on 500 data

replications, where the noise level is set at σj = 0.01, j = 1, 2, 3. Figure S4(a) shows that,

in more than 80% of the cases, KODE is able to recover the network without making any

false discovery, whereas Figure S4(b) shows that, in more than 99% of the cases, KODE

recovers all the true edges. Figure S4(c) reports a sparse recovery of the network, where an

arrowed edge is drawn if it appears in more than 90% of the estimated networks out of 500

data replications. It is seen that KODE successfully recovers the true regulatory network.

S2.4 Gene regulatory network recovery by KODE

Table 1 in Section 6 of the paper reported the selection performance of KODE in terms of

the area under the ROC curve for all 10 combinations of gene regulatory network structures

30



Figure S5: (a) Median ROC for recovering the 10-node gene regulatory network of E.coli1, based
on 100 data replications. (b)-(d) The network recovery by KODE, additive ODE, and linear ODE.
The solid and dashed arrowed lines denote the true and false discoveries, respectively.

from GeneNetWeaver. Here we present some additional results about the recovery of one

such structure, the 10-node E.coli1 network. Figure S5 reports the results based on 100 data

replications. Figure S5(a) shows the median ROCs for KODE, additive ODE, and linear

ODE. It is seen that KODE achieves the fastest recovery rate, as well as the largest AUC

of 0.582, compared to 0.541 for additive ODE, and 0.460 for linear ODE. Figure S5(b)-(d)

report the sparse recovery of the network, based on KODE, additive ODE, and linear ODE,

respectively, under the 90% level of true positive rate. It is seen that KODE achieves a

better selection accuracy compared to linear ODE and additive ODE.
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