SUPPLEMENTARY INFORMATION

Fig. S1. Relative gene expression of 27 genes of interest selected for the phenotypic screen.

Relative gene expression (\log_2 fold change) of 27 significant (FDR *p*-value <0.05) differentially expressed genes (DEGs) selected from top upregulated genes in RPE cells at 2 days post-injury (dpi) compared to 7 days post-fertilization (dpf) from a publicly available bulk RNA sequencing dataset (GSE174538; Lu, F., Leach, L. L. & Gross, J. M. mTOR activity is essential for retinal pigment epithelium regeneration in zebrafish. *PLoS Genet.* **18**, e1009628 (2022)).

Fig. S2. Phenotypic screening results of additional positive regulators of RPE regeneration.

(A-G) RpEGEN output plots showing median pixel intensity distributions (bin size = 5 angular degrees) within RPE regions of interest (ROIs) and statistical comparisons of dorsal-to-ventral median pixel intensity (bin size = 1 angular degree) between: (A) scrambled and *nrg1* groups, (B) scrambled and *fosl1b* groups, (C) scrambled and *ogflr1* groups, (D) scrambled and *ccn111* groups, (E) scrambled and *lipib* groups, (F) scrambled and *cidec* groups, and (G) scrambled and *ill1a* groups. All plots represent comparisons between larval groups at 4dpi. Light blue rectangles indicate the region(s) with significantly higher (lighter) pixel intensity values spanning more than twenty angular degrees. Gray rectangles indicate the distal-most dorsal (0 to 30 angular degrees) and distal-most ventral (150 to 180 angular degrees) peripheral RPE areas omitted from analyses. Dashed black lines indicate a 95% confidence interval (CI). Exact regions with significant differences compared to scrambled controls can be found in Table S2. Abbreviation: dpi, days post-injury.

Fig. S3. Phenotypic screening results of additional negative regulators of RPE regeneration.

(A-F) RpEGEN output plots showing median pixel intensity distributions (bin size = 5 angular degrees) within RPE regions of interest (ROIs) and statistical comparisons of dorsal-to-ventral median pixel intensity (bin size = 1 angular degree) between: (A) scrambled and *zgc:153911* groups, (B) scrambled and *cpa4* groups, (C) scrambled and *adamtsl7* groups, (D) scrambled and *dkk1a* groups, (E) scrambled and *lepb* groups, and (F) scrambled and *serpine1* groups. All plots represent comparisons between larval groups at 4dpi. Light blue rectangles indicate the region(s) with significantly lower (darker) pixel intensity values

spanning more than twenty angular degrees. Gray rectangles indicate the distal-most dorsal (0 to 30 angular degrees) and distal-most ventral (150 to 180 angular degrees) peripheral RPE areas omitted from analyses. Dashed black lines indicate a 95% confidence interval (CI). Exact regions with significant differences compared to scrambled controls can be found in Table S2. Abbreviation: dpi, days post-injury.

Fig. S4. Phenotypic screening results of additional GOIs that did not show an RPE regeneration phenotype.

(A-J) RpEGEN output plots showing median pixel intensity distributions (bin size = 5 angular degrees) within RPE regions of interest (ROIs) and statistical comparisons of dorsal-to-ventral median pixel intensity (bin size = 1 angular degree) between: (A) scrambled and ptx3a groups, (B) scrambled and ccl34a.4 groups, (C) scrambled and clcf1 groups, (D) scrambled and cxcl18a.1 group, (E) scrambled and il11b groups, (F) scrambled and epcam groups, (G) scrambled and ptgs2a groups, (H) scrambled and ptgs2b groups, (I) scrambled and met groups, (F) scrambled and cxcl8a groups, and (J) scrambled and edn2 groups. All plots represent comparisons between larval groups at 4dpi. Gray rectangles indicate the distal-most dorsal (0 to 30 angular degrees) and distal-most ventral (150 to 180 angular degrees) peripheral RPE areas omitted from analyses. Dashed black lines indicate a 95% confidence interval (CI). Abbreviation: dpi, days post-injury.

Fig. S5. The RPE layer appears phenotypically normal in unablated scrambled and *cldn7b* F0 knockout larvae.

Representative immunofluorescence images of unablated (MTZ-) 9dpf (A-B'''; n=6) scrambled and (C-D'''; n=6) *cldn7b* F0 knockout larvae. Nuclei (white), eGFP (green), ZPR2 (magenta). (B,D) Digital zooms highlight (B',D'; red asterisk) photoreceptor lamination, (B',D'; cyan arrow) basal nuclei in the RPE, and distinct apical microvilli in RPE co-labeled with (B'',D''; white arrowhead) eGFP and (B''',D'''; white arrowhead) ZPR2. Scale bars = 50µm. Abbreviations as follows: MTZ, metronidazole; dpf, days post-fertilization.

Fig. S6. cldn7b F0 knockout does not impact cell proliferation in the RPE layer from 3dpi to 4dpi.

(A-D) Representative immunofluorescence images showing the BrdU-labeled proliferative cells in the unablated (MTZ-) and ablated (MTZ+) scrambled and *cldn7b* F0 knockout larval eyes. Nuclei (white), BrdU (red). (E) Box plots showing significant increases in the number of BrdU-labeled cells in the RPE layer of ablated scrambled and *cldn7b* F0 knockout larvae when compared to the corresponding unablated larvae, and no significant differences of unablated or ablated *cldn7b* F0 knockout larvae when compared to scrambled controls. Scale bars = 50μ m; *****P*-value ≤ 0.0001 , ns = not significant. Exact *p*-values, numbers of independent experiments (N), and numbers of biological replicates (n) can be found in Table S3. Abbreviations as follows: BrdU, bromodeoxyuridine; MTZ, metronidazole; dpi, days post-injury.

Fig. S7. *cldn7b* F0 knockout does not affect localization of macrophages/microglia in unablated larvae.

(A-F) Representative immunofluorescence images of mCherry signals in the unablated (MTZ-) *cldn7b* F0 knockout larval eyes at (A-B') 7dpf, (C-D') 8dpf, and (E-F') 9dpf. (A'-F') Single-channel images of mCherry signal with RPE regions of interest (ROIs). Nuclei (white), eGFP (green), mCherry (magenta). (G-I) Box plots showing no significant differences in mCherry signal between scrambled and *cldn7b* knockout groups at (G) 7dpf, (H) 8dpf, and (I) 9dpf. Scale bars = 50μ m; ns = not significant. Exact *p*-values, numbers of independent experiments (N), and numbers of biological replicates (n) can be found in Table S3. Abbreviations as follows: MTZ, metronidazole; dpf, days post-fertilization.

Fig. S8. cldn7b F0 knockout does not influence cell death in the RPE layer at 3dpi and 4dpi.

(A-D) Representative immunofluorescence images of TUNEL+ puncta in (A,B) 8dpf unablated (MTZ-) and (C,D) 3dpi ablated (MTZ+) scrambled and *cldn7b* F0 knockout larval eyes. (F-I) Representative immunofluorescence images of TUNEL+ puncta in (F,G) 9dpf unablated (MTZ-) and (H,I) 4dpi ablated (MTZ+) scrambled and *cldn7b* F0 knockout larval eyes. Nuclei (white), TUNEL (red). (E,J) Box plots showing no significant differences in TUNEL signal between scrambled and *cldn7b* knockout groups at (E) 8dpf/3dpi and (J) 9dpf/4dpi. Scale bars = 50μ m; ns = not significant. Exact *p*-values, numbers of independent experiments (N), and numbers of biological replicates (n) can be found in Table S3. Abbreviations as follows: MTZ, metronidazole; dpf, days post-fertilization; dpi, days post-injury.

Fig. S9. Original images of cropped electrophoresis gels presented in Figure 1.

Original gel electrophoresis results for (A; red dotted box) *zgc:153911* headloop PCR and standard PCR shown in Fig. 1C (top gel), (B; teal dotted box) *nrg1* headloop PCR and standard PCR shown in Fig. 1C (bottom gel), and (C; blue dotted box) *cldn7b* genotyping shown in Fig. 1F.

Table S1. crRNAs and primers used in this study.

Table S2. RPE regions (>20 continuous angular degrees) with significant differences.

Table. S3. Statistics.

For box plots, the line and plus within the box represent the median and mean, respectively; the top and bottom whiskers represent the maximum and minimum values, respectively; and each dot represents a biological replicate (one eye from one larva). For statistical tests, D'Agostino-Pearson omnibus normality test was first performed to determine whether data obeyed normal (Gaussian) distributions. For comparisons between two groups, unpaired Student's t-tests with Welch's correction were performed on datasets with normal distribution and non-parametric Mann–Whitney tests were performed on datasets that were not normally distributed. For multiple comparisons, Kruskal–Wallis ANOVA followed by Dunn's multiple comparisons tests were used to determine the significance between groups. Exact *p*-values, numbers of independent experiments (N), and numbers of biological replicates (n) for each dataset can be found in Table S3.

FIGURE S3

FIGURE S4 (continued on next page)

FIGURE S4 (continued from previous page)

Gene Names	crRNA loci	custom crRNA design/names given by IDT predesigned crRNA database	crRNA Sequences	PAMs	Forward(F) Primers for headloop PCR	Reverse(R) Primers for headloop PCR	Amplicon siz ¹	Tagged P	rimers (F/R) for headloop PCR	Mutagenic Rates(= H+ /S+ number of embryos)	F Primers for genotyping	R Primers for genotyping	Amplicor	siz Unvailbilit
	exon2		GGTTAGATACCACAAGATCC	TGG	GIGIGITITGTATGIGTATCTGCAGGG	GGAGGAACATTCCATTGCAATTAGCC	288 F	F	GGATCTTGTGGTATCTAACCGTGTGTGTGTGTGTGTGTGT	7/10				
adamts/7	exon3	custom	GGAGAATCCATCACTGCACC	TGG	GETETEAGCATGGEAACTGGTG	CGGCTGGCCATACACACAGACC	491 F	F	GGTGCAGTGATGGATTCTCCGCTCTCAGCATGGCAACTGGTG	10/10	N/A			29.2%
	exop7		GGCAAATCACCTGACGATAC	TGG	GEAAGEAGTAGTGEATGEET	CACTGCAGATCTTGAGCTGGC	363 8	R	GTATEGTCAGGTGATTTGCCCACTGCAGATCTTGAGCTGGC	7/10				
	exon2	44	GARATCACOTTGCCTATAAC	066	GETGEFATTGETGTEATTATGTE	CCAGTGAATGCATTGTTCACCCTC	353 8	F	GUATAGGCAACGIGATHCGCIGCCATIGCIGICATTAIGIC	10/10				
cc124a 4		40	CTIATACCCAACCTCATTIC	100	CTCCATCCCTCAAACCACTCATC	CACCCCTCTACAAACACTCCTC	333			10/10	GCTGCCATIGCTGTCATTATGTC	CAAGCEGACTEATTECAGCAGAACCC	696	18 7%
	exons	AB	GENERALGECARGATIER	100	GGGAGAAGATCCAGGAGCTCATAATC	CAGCIGACITATITCAGCAGAACCC	227 8		CAGAAGTGTAGACAGAGTGCGGGGAGAAGATCCAGGAGCTCATAATC	10/10	derdebarriderdrickfrahare	CARCELARENATION CONTRACTOR	0.50	10.7 /0
	0.000	46		666		CHAGETONETTATTTCCAGETONACCE	400 1			5/10				
	exonz	AC	AAGGALIGUGUIGULAULIA	GGG	GETGAGATGITETTGITETTCEACTC	GICCATTICITIGDACTITICCDATG	499 1	-	TAGGIGGCAGCGCAGICCTIGLIGAAAIGIICIIGICCIICCACIC	8/10				00.00/
consis	exon4	AB	GLITGACAUGULTATTUCAU	AGG	GLACACIGIGLAAAAAGAGICAIG	GLICITAULITCATIGATGGIGLAG	314 H	к	GIGGAAIAGGCGIGICAAGCGCICITACCITCATIGAIGGIGCAG	//10	GEIGAAAIGITEITGIEETTELAETE	GAAGAGITCAGLIGGIGIGITCAG	4393	30.9%
	exons	custom	IGIGIGICUCATUIGLAACI	CGG	LUALAGAAALLIGIGLAGAILAG	GAAGAGTICAGETGGTGTGTCAG	246 1	F	AGTIGLAGATGGGALALALALALAGAAALLIGIGLAGA	9/10				
	exon3	AA	GTTGATGACACGGAAGGGTC	TGG	CTGGGATTTCAAGCCATTTTGCG	CAGTCTTCACCTTGTGGTGCAG	210 F	R	GACCETTEEGTGTCATCAACCAGTCTTCACCTTGTGGTGCAG	8/10				
cidec	exon4	AD	TGGAACTGGAATAGATACGC	AGG	GGCTCATTATTTTGCAATGTCGCTG	CTCCCAATGCGTCTGAGAATGTTTAC	497 F	F	GCGTATCTATTCCAGTTCCAGGCTCATTATTTTGCAATGTCGCTG	10/10	N/A			27.9%
	exon6	AB	GTTGCAATCAGGGTCTTTCT	TGG	CGAGTCGTTGACAATAGCAGTGTG	GTACATTCCATACAAGGTTGCCTGC	243 F	R	AGAAAGACCCTGATTGCAACGTACATTCCATACAAGGTTGCCTGC	10/10				
	exon2		ATACGAGCTAACCAAATACC	TGG	GTGTGACCGTTCATTTTTGGCTG	CGTCATCCTCACACGCTGATAAC	287 F	F	GGTATTTGGTTAGCTCGTATGTGTGACCGTTCATTTTTGGCTG	10/10				
clcf1	exon3	custom	CTATCCCATCGTCTCACTCT	GGG	CCAAAGAAGAGGGAGAGAAGGAGG	CACCTTCCGCGAGAAGTCATTTG	332 F	F	AGAGTGAGACGATGGGATAGCCAAAGAAGAGGGGAGAGAAGGAGG	9/9	GTGTGACCGTTCATTTTTGGCTG	CACCTTCCGCGAGAAGTCATTTG	2857	24.9%
	exon3		ACACGTGTGGACTTATGGCG	CGG	CAATAAGGATGCACAGTGGATGGC	CCAGATATTGAGECAAGCAACCC	416 F	F	CGCCATAAGTCCACACGTGTCAATAAGGATGCACAGTGGATGGC	10/10				
	exon1	AB	CGCACGACATCCAAAGGCCC	TGG	CGCACGACATCCAAAGGCCC	GTGAATAGTACGCGCATGCGTG	397 F	R	GGGCCTTTGGATGTCGTGCGGTGAATAGTACGCGCATGCGTG	10/10				
cldn7b	exon3	AG	TTGACTTGTAAACCAGCCAC	AGG	CTCCTGTTGTGCGCTGAAAAATGTC	GTTCATCCCAGCCTGTAGGTCATTG	432 F	R	GTGGCTGGTTTACAAGTCAAGTTCATCCCAGCCTGTAGGTCATTG	8/8	CGCACGACATCCAAAGGCCC	CCAGGTCGTGAACAAATGGCTC	4251	17.0%
	exon4	custom	ATCGAGAAATGCACCAGCCC	AGG	CAGCTAGCAACAACACTGTGAAGTG	CCAGGTCGTGAACAAATGGCTC	354 F	R	GGGCTGGTGCATTTCTCGATCCAGGTCGTGAACAAATGGCTC	10/10				
	exon5	AB	GTACATGGGACGGTTCTCGT	AGG	CGCCAAGATCTTCGACTTTGCTG	CACCCGTGCTGAACTGGAATC	324 F	R	ACGAGAACCGTCCCATGTACCACCCGTGCTGAACTGGAATC	8/8				
cpp4	exon6	AA	CACGGGTGGTGAGAACCGAC	CGG	GGACACCCTTGTTGCAAGTCAC	GAGGGATCGACGCCATAGTCTAAAG	374 F	F	GTCGGTTCTCACCACCCGTGGGACACCCCTTGTTGCAAGTCAC	8/9	CGCCAAGATCTTCGACTTTGCTG	CAATCTAAAGACAGCCGTGATTGTTGC	658	23.0%
	exop7	AC	CELEGEGACETETET	666	CAGGCTTCTGCTGTTTGGATCG	CAATCTAAAGACAGCCGTGATTGTTGC	275 8	F	AGAAGAGAGGGCAGGGCAGGCTTCTGCTGTTTGGATCG	9/10				
	exon1	AB	AGTGTGAACAGACTGAGAGC	AGG	CAAGGAGGACAGTTCAGTGCAC	CTCGGATGAATGTTGCAGCTGTC	259 8	R	GETTETEAGTETETETETETETETETETETETETETETET	10/10				
cycl18a 1	excen7	0.0	ATTIGAACCTIGTIGCAAAG	AGG	CTGCCAGATACTGGTCATGGAG	GACATGAGGGTGACGGATGATG	502 0		CTITECAACAAGETICAAATGACATGAGGGTGACGGATGATG	10/10	CAAGGAGGACAGTTCAGTGCAC	CTGCAGAGTATCTGCTGATTTCTGC	1311	35.0%
	exona.	45 46		TCC	CTATCATTCCTCCCAAACTACTCCC		353 1			10/10				
	exon3	AC	TATGIGTTTCCAATGCGT	100	CIGGCATTICIGACCATCATIGAAGG	GTIGICAGAGIAICIGCIGGCACTGIG	400 8	n. P	ACCCATTGGAAAAACACATATCTGCTGTCATCAAGGTGGCACTGTG	10/10				
cyclifia	exona 2	autom	TRACCACCOCCECCECCE	000	CARACICALAGEOCACCATTEC		414	-		10/10	CIGGCATTICIGACCATCATIGAAGG	COORCATICATORTITICTOCTO	509	10.09/
CALING	exons	contoin	CTCTCCACTTCTCATCA ACC	000	GAAACAGAAAGCCGACGCATTGG	COOCCATICATOGITTICIOCIC	414 1			10/10	crosserrenterakconternakada	cooocarioaroanniciocia	330	10.2 %
	exons		CIGICOAGTIGICATOCAGG	166	GADACAGADAGCCGACGCATIGG	COOLATICATOSTITICIOCIO	414 1		CETTERTERCARETEGRACAGESOSCATTCATGGTTTTETGETG	10/10				
	exon2	AF	TTTGTCTGTCGTGCCGCAAG	CGG	GGTTAACCAGGTGGTTATGATGCCTG	GGAGAAATGAACCTTCATGCATGCTG	283 F	F	CTTGCGGCACGACAGACAAAGGTTAACCAGGTGGTTATGATGCCTG	10/10				
dkkla	exon3	AB	CTGGTGTGGCTGTAACACGT	GGG	CCGATGCATCAACGGTACAAACG	GGAGATACGCAAGGAGAAACATGACAG	361 F	F	ACGTGTTACAGCCACACCAGCCGATGCATCAACGGTACAAACG	10/10	GGTTAACCAGGTGGTTATGATGCCTGG	STI GTTTTTCTCTCTGGCCTCTGCAGG	2507	21.9%
	exon4	custom	CTGGTCACGGATCTGTAAGC	CGG	CCAGCACGTCTCTGAATGCAGATC	GTTTTTCTCTCTGGCCTCTGCAGG	260 F	F	GCTTACAGATCCGTGACCAGCCAGCACGTCTCTGAATGCAGATC	10/10				
	exon2	AD	ATTATCTAACCAGCTACTAC	AGG	GTTGGCAAATGTAGATTCCAGCACAAG	GCAGGTTTGGAACAAATGAAAGGAG	436 F	R	GTAGTAGCTGGTTAGATAATGCAGGTTTGGAACAAATGAAAGGAG	10/10				
edn2	exon3	AA	ACTGGAGCAGGTACGATCGG	CGG	CCTTTGTACAACAGTAAGATCACCCCG	GCCAATAGACAGTTTCTCTTTCTCTCCC	324 F	R	CCGATCGTACCTGCTCCAGTGCCAATAGACAGTTTCTCTTTCTCTCCCC	8/8	GTTGGCAAATGTAGATTCCAGCACAAG	5G GATTTGATCTTCAGGGTGGAGCG	870	33.0%
	exon3	AB	AAGATCACCCCGCTTGGTCT	TGG	CTCCTTTCATTTGTTCCAAACCTGC	GATTTGATCTTCAGGGTGGAGCG	459 F	F	AGACCAAGCGGGGGGGGGTGATCTTCTCCCTTTCATTTGTTCCAAACCTGC	10/10				
	exon3	AA	TCCCACCCGATCTTGTGTCC	TGG	CACGAGCACAGACATGCCTAAC	CACTGTTGACGCACCAGCATAC	302 F	R	GGACACAAGATCGGGTGGGACACTGTTGACGCACCAGCATAC	10/10				
epcom	exon4	AC	CTCAGTTTGGTGGCATCAAT	GGG	GAACATAAAGTGCGAGCCTGCG	CCAAACCGTAACGCTGCTGTAG	365 F	R	ATTGATGCCACCAAACTGAGCCAAACCGTAACGCTGCTGTAG	10/10	CACGAGCACAGACATGCCTAAC	CAGCAATGATACCACCAGTCAGC	1152	16.9%
	exop7	custom	CEEGGAACATEAACETEAAA	TGG	CGACCETACTACAGATCTETCCC	CAGCAATGATACCACCAGTCAGC	293 8	R	TITGAGGTTGATGTTCCGGGCAGCAATGATACCACCAGTCAGC	10/10				
	exon2	AD	TAACCAACCTAATTCGCTCC	066	CGAAAGAACGTAAGTACACCCGTG	CAAFGACACTGAACTGAAAGGACAC	640 F	R	GGAGCGAATTAGGTTGGTTACAACGACACTGAACTGAAAGGACAC	9/9				
enha7a	excen2	0.0	CEGEAAGAGEEAGTITEGAA	AGG	CIGIAGAGCIGAGCIICATOGICC	GACAGGIGGIGIAGAACACCCCC	221 0		TICGAAACTGGCTCTTGCGGCTGTAGAGCTGAGCTTCATCGTCC	10/10	N/A			20.3%
	exond	artam	AACACCCAACGTTCGGGACG	666	GETTERAACCAGTAAAGGETTCAGC	GGAAGAGCTAGAGAAGCAGCAGTG	206 0		OFFCCCGAACGTCGGCGTCTGGAAACGAGTAAAGGGTTCAGC	7/7				20.070
	excel		GAGAGICGIAITATGATTCC	CGG	GGCGTAAGGACACTGAAGAAAAGC	OGTAGAGICCICAGIGICATICIGC	506 5		CONTRATA TACCACTOR CONTRACTOR CONTRACTOR	10/10				
faulth	excert2		CACTOCATACACCAC	000	CLACATCACACTCACCACTCACC		410		CICCICIA ATACACICICIOSCUTA AGUACACIGA GAGAGAGO	10/10	CCCCT 1 1 CC 1 C 1 C 1 C 1 C 1 C 1 C 1 C	CATCHEAACCACCACATCACCAC	2020	25.09/
JUSILD	exonz	custom	CLACIOCICCATTACABGAC	GGG	GLAGAATGACACTGAGGACTCTACG	CTACAGDACTGACTGACTGCTCC	410		GIGETGIAATGGAGGAGTGGETACAGCACTGACTGACTGC	10/10	GGCGTAAGGACACTGAAGAAAAGC	GATCIGAACCAGCAGATTCAGCAC	3035	33.0 %
	exon4		AAGAGATTGULALALITGAA	AGG	GAAAGGAACAGGGTAGCAGCTG	GATCIGAACCAGCAGATTCAGCAL	330 1	F	TICAAGIGIGGCAATCICIIGAAAGGAACAGGGIAGCAGCIG	10/10				
	exon2		TTGCTGGAAGAGACTTGAAC	CGG	CTGGTGGATGCCAGCAGTTTC	GGGTCTGATTGCAGCAAGACC	367 F	R	GTTCAAGTCTCTTCCAGCAAGGGTCTGATTGCAGCAAGACC	9/9				
1110	exon3	custom	GACATGGTCTCCCACATCGG	GGG	CTCTCATCGCAGGTCAAGCCTAC	CTTGCCTGATCACCCTAACCATCC	501 F	F	CCGATGTGGGAGACCATGTCCTCTCATCGCAGGTCAAGCCTAC	10/10	CTGGTGGATGCCAGCAGTTTC	CCGGACTGACGATACAACTCATC	2833	32.0%
	exon4		CGTCCTGCCCAACACTCGAG	CGG	GACATAGTGTGAAAATGCCCTTGC	CCGGACTGACGATACAACTCATC	462 F	R	CTCGAGTGTTGGGCAGGACGCCGGACTGACGATACAACTCATC	6/8				
	exon1		CAAGCCATCAGGATGATGAG	GGG	GTTTTTGTGCTAACAGTGTCGCC	TGGGAAAACTAGCCCTCAAAATGAC	284 F	R	CTCATCATCCTGATGGCTTGTGGGAAAACTAGCCCTCAAAATGAC	9/10				
#11b	exon3	custom	CCAATTCGTCACTATTCCGT	TGG	CCTACCAATATGCCATAGTGGGTC	GTAGGTGACAGACAGCACAGTTG	486 F	R	ACGGAATAGTGACGAATTGGGTAGGTGACAGACAGCACAGTTG	6/8	GTTTTTGTGCTAACAGTGTCGCC	GCACCATAAAGATTGGCTGACGG	2375	30.1%
	exon4		CTTCAGGGATCCAAGTGCTC	TGG	CTTACAGCTCGGACAGACAGCA	GCACCATAAAGATTGGCTGACGG	212 F	R	GAGCACTTGGATCCCTGAAGGCACCATAAAGATTGGCTGACGG	6/8				
	exon1	AA	GACCCACGGCTCCCGAAGAC	AGG	GCTTGTTAATATCATCCCTGGTGGCC	GAAGTACATCATGCTAAACCAAGTGCCAAC	397 F	F	GTCTTCGGGAGCCGTGGGTCGCTTGTTAATATCATCCCTGGTGGCC	7/10				
lepb	exon2	AB	GGAGGAACTGGCCGTCTCAC	AGG	GTCTCCAGAGATTGATTTCGGCCC	GTTGAGGCAGAGCTTCTCCAGG	301 F	F	GTGAGACGGCCAGTTCCTCCGGTCTCCAGAGATTGATTTCGGCCC	10/10	GCTTGTTAATATCATCCCTGGTGGCC	GTTGAGGCAGAGCTTCTCCAGG	1877	36.7%
	exon2	AD	GACATCGACAACCCCATTGA	TGG	GGGAAAAAGGCTCTTGGTTCTTGGC	CCTCCAGTGTCCTCAGGAGAGTCTC	383 F	F	TCAATGGGGTTGTCGATGTCGGGGAAAAAAGGCTCTTGGTTCTTGGC	6/6				
	exon2		GACCACACTCGAGGTTGGCA	066	STGCACACCTGTAAGCAAGTGTC	CGATGIGGTIGATCCAGATTGGC	269 8	R	TECCANCELOGATETECTOCENTETECTOCENTER	10/10				
Anih	exand	custom	GITGGATCGAGACGITCCTC	AGG	GGCACAAIGCCTTCCTCAGITAG	GIGGGIGICICCTGIALIGUILLCC	796 8		GAGGAACGICICGATCCAACGIGGGIGCCCCCGTGTATGTTCCC	10/10	STGCACACCTGTAAGCAAGTGTC	STATETCEACCETGACCTCTCC	5080	40.5%
	excert.		CONTRATORNAL	TCC	CTATCOTOTOTOTOTOTOTOTOTOTOTOTOTO		100 1			10/10				
	exon3	44	TEGAGTIGECACTIEGEGT	TGG	CETTECEAACTCTEAACCTCTEAG	GTTGAAAACCACTTGAGCCGAACG	259 5	0		10/10				
	exona.		reakarraceneerreacar	100	Confectorerenereneren			-	ACCOMACTOCAACTCCACTTCACACCACTTCACCCCCCACC	10/10	21/2			20.7%
met	exonz	AB	TAAGACIGGACCGGICCAIG	AGG	LICCAAACICGALLICICAGIGAL	CUTCTAACACATGACGALTGLAGAC	341 1		CATGGACCGGTCCAGTCTTACTCCAAACTCGACCTCTCAGTGAC	10/10	N/A			20.7 %
	exon11	custom	CGTGGAAGATCCCAAATTTG	AGG	GALLIGLAGILAIGAIGAGGAIAAG	IGALALIAIGLGIGALAAIGLAIAL	31/ 1	F	CAAATTIGGGATCTTCCACGGACCTGCAGTCATGATGAGGATAAG	9/10				
	exon1	AB	ILLILIGTCACCTGTAATGA	CGG	GAGITTECTCTGGACTTCACAGC	GGAGTGAAGTTCGAACCTTCAGC	264 F	•	TCATTACAGGTGACAGAGGAGAGAGTTTTCCTCTGGACTTCACAGC	111				
notum1b	exon2	AA	GATTCTGTCTCCACAACCAG	AGG	GACCAACCCAGTACTAGTAAGGTG	CCCATGAACGCATAGTCATCTGAAC	563 F	F	CTGGTTGTGGAGAGAGAGAGCGACCCAACCCAGTACTAGTAAGGTG	8/10	GAGTTTTCCTCTGGACTTCACAGC	CTCCTTGATGACCTCCTGAATGATC	4259	32.3%
	exon3	custom	CAAACGTCACTGGAGCAGTA	CGG	CTGAGACAACATATGCTGGATATGGG	CTCCTTGATGACCTCCTGAATGATC	343 F	R	TACTGCTCCAGTGACGTTTGCTCCTTGATGACCTCCTGAATGATC	8/10				
	exon2		CCATGGCAAGTGCTTCACGC	TGG	GCTCTGCAGTAAAACCTCTCCTC	CATGTAGAACGACAGTGTGACGG	276 F	F	GCGTGAAGCACTTGCCATGGGCTCTGCAGTAAAACCTCTCCTC	10/10				
nrg1	exon5	custom	TCCACCGGAAAACCTGCAGC	TGG	GCAATGTCCTCCCGTCTAAGAG	GTAAGCCGTCAGCTAGTAAGCG	382 F	F	GCTGCAGGTTTTCCGGTGGAGCAATGTCCTCCCGTCTAAGAG	10/10	N/A			30.3%
	exon6		TCTGTCATATGAGCTGGGAC	AGG	GCCCCATTITGGTGTCTTTGTC	GGCTAGATGAGTGAGTGATGGC	277 F	R	GTCCCAGCTCATATGACAGAGGCTAGATGAGTGAGTGATGGC	10/10				
	exon2	AB	ACATGATGGAGTCCTCCACC	AGG	CGTCAGTGTTTCAACATCACAAGAGG	GAATGTGTTTCTGCTGACTGTACAGC	413 F	F	GGTGGAGGACTCCATCATGTCGTCAGTGTTTCAACATCACAAGAGG	9/10				
ogfri1	exon3	AA	CGATATTCATTCGGCTGACG	AGG	GCTGTACAGTCAGCAGAAACACATTC	GCAGCTTTGTACTGTGAAAAGACTTCC	337 F	R	CGTCAGCCGAATGAATATCGGCAGCTTTGTACTGTGAAAAGACTTCC	10/10	N/A			13.3%
	exon7	AD	ACTOGCATTCTGAAGAGTCT	TGG	GCGTCCTTTCATGTTTGGCATTG	GTGTGAAGACGAAGTATTCCAGTGC	261 F	F	AGACTCTTCAGAATGCGAGTGCGTCCTTTCATGTTTGGCATTG	10/10				
	exon4	44	CEGACGTACAATGCTGATTA	TGG	CAGCATCTCTTACCTGAGGGATGG	CATGAGACTGCTCCTCTGTGGATC	373 F	F	TAATCAGCATTGTACGTCGGCAGCATCTCTTACCTGAGGGATGG	7/10				
ntns2n	excen7	A.B.	CETTEGATAAACACACGCCC	TGG	CTCGACCAGAGTAACGCATCTCTG	GOGTGTGAGAAGCTCAGCTGTAAG	457 5	p	GEOGETETETTATCCAAGGGCGTGTGAGAAGCTCAGCTGTAAG	10/10	CTCGACCAGAGTAACGCATCTCTG	OSTCAACETATAAATCGCACCCTG	1237	28.4%
	exonS	AE	GCATATITATGGAGAGAGACCC	TGG	CTCTCACCAGTCTTCCAGTCGGA	OGTCAACGTATAAAATCGCACCCTG	200 5	5	GEGETETETETATAAATATGECTETEAAGTICTECAAGTICGGA	0/0				20.470
	exono			000			305 1			3/5				
ntos2h	exon2	AB	CEAGETETETETACEGAAAT	666	GETTIGCACAGGAGGTAAGCCTAC	GECAAAAGEAGAAATGGGEAGAG	328	F	ATTTEETACAGACACTEGGGTTTGCACAGGAGGTAAGCCTAC	10/10	GGTTTGCACAGGAGGTAAGCCTAC	CARATACGCACCCCATGGTTCAG	2344	24.4%
	00005	AD	AGATTGGTGCGTTGAGGATC	TGG	CETTEGGETGEGEATA AGEA AC	CAAATACGCACCCCATGGTTCAG	420		GATCHTCAACGCACCCAATACGCACCCCCATGGTTCAG	10/10			A.344	/ -
	e AURIS	nv		100		CTCACTTCATCCCATGOTTCAG	420 1			10/10				
	ex0n1		AATACCIGAIGAGGALLAGI	100	CIGATATTAACACATGGCCAGCAGGC	GICACITCATEGATTICIGTTIGGEAG	41/ F	-	ACTORICCICATCADDIATICICATATIAACACATGGCCAGGC	10/10	21/2			21.00/
p0x30	exon2	LUSION	1616AAGAGCTTATCCCATT	TGG	GIGGAIAGEATGTTGACGEAATGAC	LAGATGLGCAAGATCCACCATAC	435 F	к	AA I GGGA I AAGLI CTTCACACAGATGCGCAAGATCCACCATAC	10/10	ny A			31.0%
	exon3		ATTGGTCCTAAGCAATCCAT	GGG	GCCTGACACTTCATTCAAGTCTGG	GATGCACTCTGTCCACTCAACAC	307 F	R	ATGGATTGCTTAGGACCAATGATGCACTCTGTCCACTCAACAC	10/10				
	exon1	AC	CAGAGAGTAGCCCATCTTGG	AGG	CAGTCTGCTCCGGATCGAAATCTG	GCTACCTCCACTCCATCTTCACTG	308 F	R	CCAAGATGGGCTACTCTCGGCTACCTCCACTCCATCTTCACTG	10/10				
serpine1	exon2	AD	GGTTGACCGGAAGATCATCT	TGG	GGTTGACCGGAAGATCATCT	CATCAGTGTGGTCAGACGTCCAG	379 F	F	AGATGATCTTCCGGTCAACCGCTACTCTAAAACTGCTCGCCTCC	9/10	CAGTCTGCTCCGGATCGAAATCTG	GCCATCETTAGACACGAACTCACC	903	23.5%
	exon3	AB	GAATGCCCTGCACTTCCACG	GGG	CTGGACGTCTGACCACACTGATG	GCCATCCTTAGACACGAACTCACC	463 F	F	CGTGGAAGTGCAGGGCATTCCTGGACGTCTGACCACACTGATG	10/10				
	exon2	AA	ATTCCCTGTGGATTCTTCGT	GGG	CTGCTGCCAACAAACTGATCATTC	CTGCTGCCAACAAACTGATCATTC	305 F	F	ACGAAGAATCCACAGGGAATCTGCTGCCAACAAACTGATCATTC	10/10				
2gc:153911	exon3	AC	GACGGATGGAGTCAATCTGC	TGG	ACCTGCTCCATCAGCACAAACTC	CAGCTGGACACGATGTAAAGTCC	350 F	F	GCAGATTGACTCCATCCGTCACCTGCTCCATCAGCACAAACTC	8/10	CTGCTGCCAACAAACTGATCATTC	CTGTGACAAACACACCAGATATCTGAC	1368	33.3%
	exon4	custom	CAGACTITITAGTITICACTGG	AGG	CAGACTITTAGTTTCACTGG	CTGTGACAAACACACCAGATATCTGAC	358 8	R	CCAGTGAAACTAAAAGTCTGCTGTGACAAACACACCAGATATCTGAC	9/10				
	N/A	#1	CGTTAATCGCGTATAATACG											
scrambled	N/A	#2	CATATTGCGCGTATAGTCGC	NA										6.0%
	N/A	#3	GEOGOSTATAGTOGOGOSTA											
			e e e e e e e e e e e e e e e e e e e											

Table S1. crRNAs and primers used in this study.

Table S2. RPE regions (>20 continuous angular degrees) with significant differences.

Gene name	Region(s) with significant difference (>20 angular degrees) compared to scrambled controls	Total region size (angular degrees)
nrgl	40-63(+); 81-143(+)	85
fosl1b	34-67(+); 105-150(+)	78
ogflr1	30-62(+); 103-134(+)	63
ccn111	100-150(+)	50
lipib	104-150(+)	46
cldn7b	101-133(+)	32
cidec	101-131(+)	30
ill1a	104-126(+)	22
zgc:153911	30-111(-)	81
cpa4	30-106(-)	76
adamtsl7	55-82(-); 104-147(-)	70
dkk1a	30-76(-)	46
epha2a	82-102(-); 120-143(-)	43
lepb	37-71(-)	34
serpinel	61-91(-)	30

(+)/(-) indicate higher/lighter (+) or lower/darker (-) pixel intensity in the F0 knockouts than the scrambled controls.

Figures	Numbers of independent experiments (N)	Compared groups	Statistical tests	Biological replicates (n)	<i>p</i> -values
Fig. 3G	N=1, N=1	2dpi scrambled vs. 2dpi <i>cldn7b</i>	unpaired Student's t- test with Welch's correction	n=9, n=11	<i>p</i> =0.2367
	N=3, N=3	3dpi scrambled vs. 3dpi <i>cldn7b</i>	unpaired Student's t- test with Welch's correction	n=19, n=23	<i>p</i> =0.0017
	N=3, N=3	4dpi scrambled vs. 4dpi <i>cldn7b</i>	unpaired Student's t- test with Welch's correction	n=14, n=16	<i>p</i> =0.0040
Fig. S6E	N=3, N=3, N=3, N=3	9dpf scrambled vs. 9dpf <i>cldn7b</i> vs. 4dpi scrambled vs. 4dpi scrambled	Kruskal–Wallis one- way ANOVA	n=15, n=12, n=22, n=23	H=51.29 <i>p</i> <0.0001
		9dpf scrambled vs. 9dpf <i>cldn7b</i>	Dunn's multiple comparison test		<i>p</i> >0.9999
		4dpi scrambled vs. 4dpi <i>cldn7b</i>	Dunn's multiple comparison test		<i>p</i> >0.9999
		9dpf scrambled vs. 4dpi scrambled	Dunn's multiple comparison test		<i>p</i> <0.0001
		9dpf <i>cldn7b</i> vs. 4dpi <i>cldn7b</i>	Dunn's multiple comparison test		<i>p</i> <0.0001
Fig. S7G	N=1, N=1	7dpf scrambled vs. 7dpf <i>cldn7b</i>	Mann Whitney test	n=6, n=5	<i>p</i> =0.3030
Fig. S7H	N=3, N=3	8dpf scrambled vs. 8dpf <i>cldn7b</i>	Mann Whitney test	n=11, n=12	<i>p</i> =0.7509
Fig. S7I	N=3, N=3	9dpf scrambled vs. 9dpf <i>cldn7b</i>	unpaired Student's t- test with Welch's correction	n=14, n=11	<i>p</i> =0.7285
Fig. S8E	N=1, N=1	8dpf scrambled vs. 8dpf <i>cldn7b</i>	Mann Whitney test	n=6, n=6	<i>p</i> =0.6970
	N=1, N=1	3dpi scrambled vs. 3dpi <i>cldn7b</i>	Mann Whitney test	n=6, n=6	<i>p</i> =0.8182
Fig. S8J	N=1, N=1	9dpf scrambled vs. 9dpf <i>cldn7b</i>	Mann Whitney test	n=6, n=6	<i>p</i> =0.1861
	N=1, N=1	4dpi scrambled vs. 4dpi <i>cldn7b</i>	Mann Whitney test	n=6, n=7	<i>p</i> =0.8065

Table S3. Statistics