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Spatial transcriptomics reveals niche-specific enrichment and 
vulnerabilities of radial glial stem-like cells in malignant  
gliomas  
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This study describes the spatial transcriptomic landscapes of DMG and GBM from 10 patient tumors 

and one non-tumor region. They performed spatial RNA sequencing (not a single cell level analysis) 

and leveraged existing single-cell RNA sequencing datasets to infer cellular composition from various 

“niches” they defined. While the study is interesting, there are numerous interpretation and 

experimental design issues that significantly reduce the potential impact of this study. 

 

Major concerns 

1) Many conclusions are premature, overinterpreted, or selective. For example, it is stated that they “ 

functionally confirmed that FAM20C specifically mediates gliomagenesis of RG-like cells” but this is not 

substantiated by the data. If anything, the authors state (but do not show) that mice transplanted 

with control KO and FAM20C KO cells reach moribund states at a similar rate, which is contrary to the 

above statement. Furthermore, one of the FAM20C KO cell lines had equivalent colony formation 

ability as the control KO cells; hence, the conclusion that “FAM20C promotes migration and growth of 

RG-like cells toward neurons (lines 282-283) is not supported by their data. Also, it is stated that 

“TPM2-201 is preferentially enriched in the invasive niche- line 154”; however, it is equivalently 

enriched in the hypoxic niche as well, but this was omitted. Similar omission for the invasive niche in 

line 183. In addition, line 246-247 (“these genes may play a cell-autonomous role”) is not 

substantiated by the data presented. 

2) Figure 3E heatmap does not seem to match the percentages shown on the right panel. 

3) Analysis of 5 samples of each tumor type (DMG and GBM) is not sufficient to call this an “atlas” 

study. 

4) The “normal region” seems to contain cancer cells as well as normal cells- as shown in Supp Fig S2. 

This should be acknowledged in the text. 

5) Many observations, especially those claiming quantitative differences, should be quantified and 

statistical significance calculated and presented in the figure. For example, Fig 1C. 

6) It is unclear why mouse neural cells were used in the migration assay. It is well known that there 

are cross-species differences in receptor/ligand interactions. They should use differentiated human 

NSCs instead. Also, these experiments do not address the molecular mechanisms of FAM20C function 

in RG-like cancer cells or the invasion niche. Does it regulate migration or motility in general or 

directed migration towards neurons? 

7) The functional significance of many observations is not clear. For example, while detecting 

alternative splicing patterns of various genes is interesting, it is not clear how this information impacts 

our understanding of gliomagenesis. This should be more explicitly stated and tested in the proper 

context. 

8) Considering that there is a significant overlap in expression patterns of receptor/ligands in different 

cell types in brain tumors (for example, cancer cells can express some traditionally considered 

immune cell markers), and since each spot in the spatial-seq data contains multiple cells of unknown 

numbers and lineages, cell-to-cell communication network analysis shown in Fig 4g is problematic. 

9) Key references are missing in many places and previous work demonstrating the same conclusion is 

missing. For example, lines 134-137 state that hypoxic and vascular niches are negatively correlated 

with prognosis, consistent with the notion that cells within these niches may evade standard 

therapies… There are many publications in the last decade that demonstrated this point and should be 

referenced. 

10) They should show tumor volume “outside” of the brain in control and FAM20C KO gliomas. It looks 

like the leptomeningeal spread is increased in FAM20C-KO tumors. 

 

Minor concerns: 

1) Statistical testing should be more detailed, and the numbers of replicates should be clearly 

indicated. 

 



 

 

Reviewer #2: 

Remarks to the Author: 

In the presented manuscript, the authors use 10X Visium Spatial Transcriptomics, including Illumine 

short and Nanopore long read sequencing, to map the spatial distribution of recurrent transcription 

programs. The term "multiomics" in the title is misused because the authors only examined the 

transcriptome; splice variants, although highly valued, do not justify the term "multiomics." The study 

included 11 data sets (from 10 patients) with 5 DMG, 2 IDH-mutated, and 3 IDH-WT samples. 

Unfortunately, the cohort of different entities is very small and it is difficult to draw conclusions from 

the small sample size. My greatest concern is that the authors mixed the entities and did not analyze 

each entity separately. IDH-mutated and WT tumors are different cancer types as is DMG. The spatial 

transcriptomics technology is new and the data sets are highly appreciated. Since the authors 

obviously followed the preprint published last year (Ravi et al.) (similar structure of figures and 

analytical approach), they should discuss and compare their results with the five spatially separated 

programs presented previously. Including and comparing their results with a large cohort may help to 

support their findings. The manuscript is clearly written, but sometimes lacks detail; in particular, I 

was disappointed by the superficial description of the methods. The authors need to work on the 

methods section to ensure reproducibility. 

 

Another high-level problem is that the authors did not use the latest computational tools developed for 

spatial transcriptomics while instead using tools tailored for transcript space analysis but ignoring the 

level of cartesian space. One example is the use of correlation: here the authors used a correlation 

analysis (Pearson? Not mentioned!) that considers each spot as independent, which is not correct in 

spatial analysis. Since adjacent spots are not independent, the authors must use correct statistical 

models such as GWR. In other words, the correlation must be corrected for spatial dependencies. 

 

The authors used pseudotime estimation to study expression differences localized in cartesian space. 

First, pseudotime estimation is flawed (mathematically and biologically) in non-single-cell, spatially 

resolved transcriptomics unless the authors can correct the model based on the cellular composition of 

individual spots. Why don't the authors use spatial trajectory analysis to estimate gene expression 

gradients in space (SPATA2 toolbox ?). 

 

Further (minor) concerns: 

 

The authors do not mention that 10X Visium does not have single cell resolution which complicates the 

analysis and interpretation of the data. First, they should show how many cells are located within each 

spot and the diversity across samples. Using all spots for cluster analysis will lead to high confounder 

based on spots which are only contain a low frequency of cancer cells. CNAs are a nice marker for 

GBM to identify the tumor content within each spot, properly the K27 mutation (or IDH mutation) can 

be used. At least the authors need to discuss and address this problem. 

 

“Unsupervised Non-negative matrix factorization (NMF) was performed on all malignant spots using 

the NMF R package23 (version 0.23.0).” This approach is highly biased for several reasons: 1. As the 

authors show in Figure 1, the data are clustered by patient, which is not surprising due to the lack of 

horizontal integration in the analysis!!! However, even after horizontal integration, spatially resolved 

transcriptomics and single-cell data (not as strong as spatial data) of cancers show high 

heterogeneity, called inter-patient heterogeneity, which has been recently discussed in several papers 

(Neftel et al., 2019). Therefore, the community strongly recommends analyzing patients individually 

and then comparing clusters to identify metamodules. For spatial data, authors should also compare 

the spatially weighted correlation of metamodules for clustering (not just correlation as shown here). 

 

 

In Figure 2 C, the spots are differently visualized (compare hypoxic vs. the rest (spot and spot 



distance)? 

 

The authors state that the hypoxic signature is enriched in necrosis. Shouldn't necrosis be excluded 

from cluster analysis? Necrosis can be well visualized by the total number of UMIs. What was the 

number of UMIs in the areas defined as necrosis? Do the hypoxic niches show a lower number of UMIs 

compared with the other groups? Wouldn't this be a confounding factor based on the fact that higher 

stress sample preparation is automatically defined as hypoxia? 

 

Spatial data have hidden dependencies (as mentioned above). Another level of potential confounder is 

the spatial distribution of genetic heterogeneity or subclonal architecture (which is spatially 

segregated). Authors should investigate whether their transcriptional programs are not derived from 

subclonal architecture. Since subclones also have a specific spatial distribution, the question arises 

whether transcriptional programs follow the subclonal architecture or occur independently. (See Neftel 

et al. subgroups vs sublones...). Since the Verhaak group has shown that metabolic (hypoxia) stress 

leads to an increase in CNAs and epigenetic dysregulation (Johnson KC et al, 2021) 

 

“Then the original Louvain algorithm (FindClusters) with clustering resolution 0.8 or 3.0 was 

performed to cluster spots and we manually combined clusters based on histology”… A good example 

of the lack of detail in the method. 1. Why 0.8 or 3.0 sounds very high to me. Normally an iterative 

approach should be taken, testing all resolutions from 0.1 to, say, 3. Then the stability of the cluster 

should be tested for all resolutions to find the most stable resolution. For spatial data, clustering 

methods that incorporate Cartesian space, such as BayesSpace, should be used in the first instance. 

 

The additional data on splice variants is of great interest, but needs to be better explored. How 

different is the situation in the subgroups. Can the authors find spatial gradients of splice variants 

within the subgroups? 

 

Deconvolution with 3 different data sets is very difficult to interpret. The authors should start 

integrating the datasets (horizontal integration / or azimuth mapping), including a cortex dataset (for 

the GBM). No statistics will be provided! 

 

The discussion between AC and RG is not clear to me. The authors also need to include the Neftel 

classification (as a standard single cell classification). I fully agree with the authors that the RG 

population is a distinct cell population responsible for migration and invasion. They should show that 

these cells are described as part of the AC-like subset in DMG and GBM. The statement that this 

population has not been described is not true, it has just been named differently. 

 

The analysis performed in Figure 5 is interesting, but the method used is partially flawed (as 

mentioned above). The authors should include spatial trajectories and spatially weighted correlation 

analyses. 

 

The authors state that their scores based on TCGA analysis have clinical implications. Do the authors 

not contradict themselves by showing that their signatures are recurrent in all patients and then 

showing that the signatures are associated with better or worse survival? Is the percentage of 

signatures relevant? Does it matter how much of which subgroup was resected? There is so much 

room for error here that I don't think the comparison is useful. 

 

last but not least, I would like to note that the authors need provide a QC overview with the most 

important parameters such as Mean UMI Max UMI and Min UMI nr. genres per spot (man min), 

sequencing saturation percentage of reads in sample and per spot (min max) and so on ... 

 

Finally, I would like to motivate the authors, the data set warrants publication in a reputable journal. I 

am aware that it is not easy to present the data and consider all levels of complexity, but the authors 



had better try. I would like to motivate the authors to understand my concerns, because honesty 

helps to optimize the mouse script!!!! I am looking forward to the revised version 



Response to Reviewers                                            

Response to Reviewers (NCOMMS-22-06690A) 

 

We’d like to thank both reviewers for their positive comments on our manuscript and 

constructive suggestions, and we apologize for the extended revision time due to the 

COVID 19 pandemic. We have substantially revised our manuscript and figures, 

included new data, and added two more supplementary figures and two more 

supplementary tables, and uploaded both a clean and a track-change version of the 

revised manuscript.  

 

Below, we provide a point-by-point rebuttal to the issues the reviewer raised. Page 

number references are based on the clean version of our revised manuscript.  

 

Reviewer #1 writes: “This study describes the spatial transcriptomic landscapes of 

DMG and GBM from 10 patient tumors and one non-tumor region. They performed 

spatial RNA sequencing (not a single cell level analysis) and leveraged existing single-

cell RNA sequencing datasets to infer cellular composition from various “niches” they 

defined. While the study is interesting, there are numerous interpretation and 

experimental design issues that significantly reduce the potential impact of this study.”  

 

Response: We thank this reviewer for his interest in our study and valuable suggestions. 

 

Major concerns:  

1) “Many conclusions are premature, overinterpreted, or selective. For example, it is 

stated that they “functionally confirmed that FAM20C specifically mediates 

gliomagenesis of RG-like cells” but this is not substantiated by the data. If anything, 

the authors state (but do not show) that mice transplanted with control KO and 

FAM20C KO cells reach moribund states at a similar rate, which is contrary to the 

above statement. Furthermore, one of the FAM20C KO cell lines had equivalent colony 

formation ability as the control KO cells; hence, the conclusion that “FAM20C 

promotes migration and growth of RG-like cells toward neurons (lines 282-283) is not 



Response to Reviewers                                            

supported by their data. Also, it is stated that “TPM2-201 is preferentially enriched in 

the invasive niche- line 154”; however, it is equivalently enriched in the hypoxic niche 

as well, but this was omitted. Similar omission for the invasive niche in line 183. In 

addition, line 246-247 (“these genes may play a cell-autonomous role”) is not 

substantiated by the data presented.” 

 

Response: We thank the reviewer for pointing out potential problems in our writing and 

data interpretation.  

 

For the FAM20C in vivo experiments, the FAM20C F1 KO line, while as the reviewer 

pointed out did not exhibit colony formation deficit in vitro, can be used to specifically 

test the impact of FAM20C KO on the invasive growth of RG-like cells in vivo. 

However, when we analyzed the data, we encountered an obvious complication: similar 

to previously reported human stem cell-derived DMG/DIPG models, the CTR mice 

developed tumors both inside (neuron-rich) and outside the brain (neuron-free), and the 

moribund state may be caused by either tumor type. Indeed, we observed severe 

hydrocephaly and enlargement of ventricles in moribund mice from both CTR and 

FAM20C KO groups, likely caused by blockade of the normal flow of cerebrospinal 

fluid. While FAM20C KO group also developed large tumors outside the brain 

comparable to the CTR group (see also Response to Reviewer 1, Major Concern 10), 

they barely developed tumors inside the brain. Thus, FAM20C appears essential for 

RG-like cells in a neuron-rich microenvironment, but is dispensable in a neuron-free 

subarachnoid/subventricular microenvironment, which agrees with our in vitro data and 

bioinformatic analysis. We added this discussion in our revised manuscript text (Page 

13). To avoid confusion, we have toned down and revised our abstract, section title, 

and manuscript text from “gliomagenesis of RG-like cells in a neuron-rich 

microenvironment” to “invasive growth of RG-like cells in a neuron-rich 

microenvironment”. 

 



Response to Reviewers                                            

The conclusion “FAM20C promotes migration and growth of RG-like cells toward 

neurons” is a summary of our in vitro experiments, which we believe is supported by 

the data. To address the possible cross-species differences in receptor/ligand 

interactions, we performed additional in vitro transwell migration experiments using 

hNSC-derived neurons, and got consistent results (see also Response to Reviewer 1, 

Major Concern 6).  

 

Finally, we have systematically checked and revised our text to offer a more complete 

and balanced description of our results. Since TPM-201 is no longer a differentially 

expressed isoform based on our new niche-assignment, we deleted its description in our 

revised Fig. 3 and text. For the sentence in line 246-247, we have toned down and 

removed “cell autonomous” (Page 11). 

 

2) “Figure 3E heatmap does not seem to match the percentages shown on the right 

panel.” 

 

Response: We apologize for not detailing how these percentages were calculated. A 

gene may have more than two alternatively spliced transcripts. The heatmap on the left 

was calculated as the percentage of a specific transcript among total transcripts from 

the same gene, i.e. SERPINA3 201/(201+204+other transcripts). The percentage on the 

right was calculated as the relative proportion between 201 and 204, i.e. 201/(201+204). 

While the patterns are similar, our original presentation did cause unnecessary 

confusion. In our revised Fig. 3 and Fig. S6, we used the track images to show the total 

reads and transcript structures of each isoform in different niches, while using the 

heatmap to compare the differential expression of isoforms in different niches.    

 

3) “Analysis of 5 samples of each tumor type (DMG and GBM) is not sufficient to call 

this an “atlas” study.” 

 



Response to Reviewers                                            

Response: We apologize for the misuse of “atlas” and have systematically changed it 

to “profiling” or “dataset”. 

 

4) “The “normal region” seems to contain cancer cells as well as normal cells- as 

shown in Supp Fig S2. This should be acknowledged in the text.” 

 

Response: We agree with the reviewer. Indeed, our new tumor content estimation also 

identify spots with tumor cells in this sample (revised Fig. 1d). Of note, we chose spots 

in the histologically normal cortex region instead of the entire GBM5_2 sample as a 

reference for inferCNV analysis, minimizing the impact of potential cancer cells. We 

also repeated our InferCNV analysis using histologically normal region from DMG1, 

and got consistent results. We have acknowledge this in the text as follows: “Of note, 

the peritumor sample GBM5_2 also contained an area of spots with CNVs, which were 

excluded from the normal reference” (Page 4). 

 

5) “Many observations, especially those claiming quantitative differences, should be 

quantified and statistical significance calculated and presented in the figure. For 

example, Fig 1C.” 

 

Response: We have systematically revised our figures to present quantification and 

statistical significance. For Fig. 1C, we quantified the co-localization of H3K27M and 

CNV in each DMG sample in our revised Fig. 1E.  

 

6) “It is unclear why mouse neural cells were used in the migration assay. It is well 

known that there are cross-species differences in receptor/ligand interactions. They 

should use differentiated human NSCs instead. Also, these experiments do not address 

the molecular mechanisms of FAM20C function in RG-like cancer cells or the invasion 

niche. Does it regulate migration or motility in general or directed migration towards 

neurons?” 

 



Response to Reviewers                                            

Response: We used mouse primary neurons because we thought this setting is similar 

to in vivo xenograft of hNSCs into a mouse brain microenvironment. To address 

potential cross-species differences in receptor/ligand interactions, we followed the 

reviewer’s suggestion to use human neurons differentiated from human NSCs. Briefly, 

we differentiated hNSCs in the NSC differentiation medium for 40 days to allow 

neuronal differentiation and maturation, as evidenced by neurite growth and expression 

of neuronal markers TUJ1 and MAP2 (revised Fig. S8D, E, and Methods) (Page 13 and 

30). We re-performed transwell migration assay and obtained consistent results (revised 

Fig. 6E). To test whether FAM20C regulate migration or motility in general, we 

performed a standard transwell migration assay using serum as chemoattractant, but did 

not observe any difference in the FAM20C KO cell lines (revised Fig. 6D). We also 

moved our original data using mouse primary neurons to the supplemental figure 

(revised Fig. S8B, C), and revised the text accordingly (Page 12-13). Together, these 

data support that FAM20C regulates directed migration of RG-like cells towards 

neurons.  

 

7) “The functional significance of many observations is not clear. For example, while 

detecting alternative splicing patterns of various genes is interesting, it is not clear how 

this information impacts our understanding of gliomagenesis. This should be more 

explicitly stated and tested in the proper context.” 

 

Response: We agree with the reviewer. In our revised Figure 3 and S6, we increased 

our sequencing depth of our long-read sequencing data, reanalyzed the differentially 

expressed transcripts and splicing junctions based on the new niche assignment, 

predicted potential regulatory splicing factors, and analyzed their relationship to patient 

survival to provide functional insights to these observations. On Page 8-9, we added a 

new paragraph to discuss these new results as follows: “To investigate the clinical 

relevance of niche-enriched isoforms, we compared our data with the TCGA GBM 

transcription dataset. Since the TCGA dataset is based on short-read sequencing which 

does not offer accurate full-length isoform information, we compared these datasets at 



Response to Reviewers                                            

the splicing junction (SJ) level (Methods). We identified 76899 new SJ through long-

read sequencing, while the remaining two thirds of SJs detected in our dataset were 

identified in the TCGA dataset, confirming the fidelity of our long-read sequencing (Fig, 

3f). Among the shared SJs, we filter out SJs unique to specific isoforms for perform 

survival analysis. For example, long (Tomm6-202) and short (Tomm6-201) isoforms of 

Tomm6 (translocase of outer mitochondrial membrane 6) are differentially enriched in 

the hypoxic niche versus the vascular/invasive niches (Fig. 3g, h). The long isoform 

Tomm6-202 contains a unique SJ “chr6:41789337-41789530:+”, whose high 

expression is correlated with favorable prognosis (Fig. 3i and Extended Data Table 6). 

To predict the regulatory mechanisms for niche-specific isoforms, we further identified 

splicing factors (SFs) whose expression patterns are consistent with the short isoform 

(Methods, Extended Data Table 5). The AS for Tomm6 is likely regulated by YBX3, 

which is confirmed by eCLIP and shRNA knockdown data from the ENCODE database 

(Fig. 3j). Consistently, low expression of YBX3, corresponding to high expression of 

the long isoform Tomm6-202, is associated with favorable prognosis (Fig. 3j, k). As 

another examples, we identified the U2AF2 regulated AS of SNHG6 201/203, which 

has been implicated in the progression of hepatocellular carcinoma, and the association 

with patient survival (Extended Data Fig. 6 c-f). Thus, our data provide a spatial 

profiling of diverse RNA isoforms in glioma samples, and identified survival related 

isoforms/SJs and potential regulatory SFs.”  

 

In the Discussion section, we also made an explicit statement as follows: “Also, the 

biological significance of differentially expressed isoforms needs further validation 

from functional studies.” (Page 15) 

 

8)“Considering that there is a significant overlap in expression patterns of 

receptor/ligands in different cell types in brain tumors (for example, cancer cells can 

express some traditionally considered immune cell markers), and since each spot in the 

spatial-seq data contains multiple cells of unknown numbers and lineages, cell-to-cell 

communication network analysis shown in Fig 4g is problematic.” 



Response to Reviewers                                            

 

Response: We agree with the reviewer that it is difficult to assign a specific ligand or 

receptor to a certain cell type in spatial transcriptomics due to the overlap of gene 

expression in multiple cell types, although we thought it could at least offer a rough 

estimation about the cell-to-cell communications. In the revised Fig. 4, we decided to 

remove them in the figures but kept the ligand-receptor pair prediction in Table S8 

without specific cell-type assignment. We also revised the text as follows: “To predict 

niche-specific cell-to-cell communications networks, we first identified 101 receptor-

ligand pairs that are co-expressed in spots within each niche (Methods and Extended 

Data Table 8). Considering that there is a significant overlap of receptor/ligands 

expression in different cell types in brain tumors and each spot contains multiple cell 

types, we cannot definitively assign a receptor or ligand to a specific cell type. 

Interestingly, 63/101 pairs contain at least one ligand or receptor that are among RG 

signature genes (Extended Data Table 8). The ratios are highest in the invasive (67%) 

and hypoxic niches (78%), suggesting that RG-like cells serve as communication 

centers in these niches.” (Page 10) 

 

9) “Key references are missing in many places and previous work demonstrating the 

same conclusion is missing. For example, lines 134-137 state that hypoxic and vascular 

niches are negatively correlated with prognosis, consistent with the notion that cells 

within these niches may evade standard therapies… There are many publications in the 

last decade that demonstrated this point and should be referenced.” 

 

Response: We thank the reviewer for pointing out our missing references. We have 

systematically gone through our manuscript to include necessary references. For lines 

134-137, since Reviewer 2 raised questions about the implications of survival analyses 

for these module signatures, we removed the data in revised Fig. 2 and the discussion 

in the revised manuscript (See also response to Review 2, Minor Concern 11).   

 



Response to Reviewers                                            

10) “They should show tumor volume “outside” of the brain in control and FAM20C 

KO gliomas. It looks like the leptomeningeal spread is increased in FAM20C-KO 

tumors.” 

 

Response: We have calculated the tumor volume outside of the brain and did not 

observe statistically significant difference (revised Fig. 6F). Notably, since these 

tumors are “free-floating” and could be partially lost during tissue preparation, we did 

observe greater cross-sample variations. In this regard, we believe the Ki67% is more 

reflective of the state of tumors outside the brain, which are comparable between 

FAM20C KO and CTR groups (revised Fig. 6H).  

 

Minor concerns: 

“1) Statistical testing should be more detailed, and the numbers of replicates should be 

clearly indicated.” 

 

Response: We provided more detailed description of our statistics, and the original 

quantification was included as in a “Source Data” file in the resubmission.  

 

Reviewer #2 writes: “In the presented manuscript, the authors use 10X Visium Spatial 

Transcriptomics, including Illumine short and Nanopore long read sequencing, to map 

the spatial distribution of recurrent transcription programs. The term "multiomics" in 

the title is misused because the authors only examined the transcriptome; splice 

variants, although highly valued, do not justify the term "multiomics." The study 

included 11 data sets (from 10 patients) with 5 DMG, 2 IDH-mutated, and 3 IDH-WT 

samples. Unfortunately, the cohort of different entities is very small and it is difficult to 

draw conclusions from the small sample size. My greatest concern is that the authors 

mixed the entities and did not analyze each entity separately. IDH-mutated and WT 

tumors are different cancer types as is DMG. The spatial transcriptomics technology is 

new and the data sets are highly appreciated. Since the authors obviously followed the 

preprint published last year (Ravi et al.) (Similar structure of figures and analytical 



Response to Reviewers                                            

approach), they should discuss and compare their results with the five spatially 

separated programs presented previously. Including and comparing their results with 

a large cohort may help to support their findings. The manuscript is clearly written, but 

sometimes lacks detail; in particular, I was disappointed by the superficial description 

of the methods. The authors need to work on the methods section to ensure 

reproducibility.” 

 

Response: We thank this reviewer for his positive comments and frank suggestions. 

Following his suggestions, we have 1) replaced “multi-omics” with “transcriptomics” 

throughout the manuscript; 2) analyzed different tumor types separately wherever 

possible; 3) discussed and compared our results with Ravi et al.; and 4) rewrote the 

Methods section to provide more details. 

Specifically, we compared our results with Ravi et al. both in the results and discussion. 

We added a panel in revised Fig. 2e and a paragraph in the results section as follows: 

“Ravi. et al. recently published a spatial transcriptomic dataset of 20 GBM patient 

samples, revealing five recurrent spatial transcriptional programs. To compare our 

results with a larger cohort, we performed spatially weighted correlation between our 

modules and their transcriptional programs in our dataset (Fig. 2e). Our “Hypoxic niche” 

strongly correlates with the “Reactive Hypoxia” program. “Tumor core” correlates with 

“Spatial OPC” and “Neuronal development”, while “Invasive niche” correlates best 

with “Radial glia”. “Vascular niche” does not appear to have a clear counterpart, 

exhibiting correlation with “Radial glia”, “Reactive hypoxia”, and “Reactive immune”. 

Thus, our analysis identified similar but different spatial transcriptomic programs, 

possibly due to different spot filtering and data processing methods.” (Page 6-7). 

 

In the discussion section, we also added a paragraph “Notably, our niche-specific 

transcriptional programs correlate with but differ from Ravi. et al.’s spatial 

transcriptional programs. In their study, they used a very stringent threshold (90% based 

on their tumor content estimation) to filter malignant spots, trying to identify tumor cell 

specific transcriptional programs in different microenvironment. However, our 
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deconvolution analysis shows that spots rarely contain more than 50% of tumor cells 

even in the tumor core. Consistent with single-cell GBM datasets, there are a significant 

portion of immune and vascular cells within the tumor. The current 10X Visium 

platform lacks single-cell resolution and each cell contain multiple cells from different 

cell types. The diffusive nature of malignant gliomas also argues against the prevalence 

of spots with >90% tumor cells. Thus, we believe it is more feasible to consider each 

spot as a multicellular ecosystem, and identify recurrent niche-specific signatures 

correlated with histopathology.” (Page 14-15) 

 

“Another high-level problem is that the authors did not use the latest computational 

tools developed for spatial transcriptomics while instead using tools tailored for 

transcript space analysis but ignoring the level of cartesian space. One example is the 

use of correlation: here the authors used a correlation analysis (Pearson? Not 

mentioned!) that considers each spot as independent, which is not correct in spatial 

analysis. Since adjacent spots are not independent, the authors must use correct 

statistical models such as GWR. In other words, the correlation must be corrected for 

spatial dependencies.” 

 

Response: We thank this reviewer for pointing out problems with our statistic model. 

We have tested multiple latest computational tools including SpotClean, Seurat, 

SpatialPCA, Spruce, SpatialDE2, BayesSpace, Banksy, GWR package, and SPATA2, 

reanalyzed our data, and thoroughly revised our figures. In the revised analytic pipeline 

(revised Fig. 1A and Methods), we used SpotClean (https://doi.org/10.1038/s41467-

022-30587-y) to adjust for contamination from adjacent spots (“spot swapping”), 

BANSKY (https://doi.org/10.1101/2022.04.14.488259) to perform spatial weighted 

clustering and signature gene identification (Page 4 and 21), and calculated spatial 

weighted correlation between cluster signatures using GWR (Page 5 and 23) (See also 

Response to Reviewer 2, Minor Concern 2 and 6).  
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“The authors used pseudotime estimation to study expression differences localized in 

cartesian space. First, pseudotime estimation is flawed (mathematically and 

biologically) in non-single-cell, spatially resolved transcriptomics unless the authors 

can correct the model based on the cellular composition of individual spots. Why don't 

the authors use spatial trajectory analysis to estimate gene expression gradients in 

space (SPATA2 toolbox?)”. 

 

Response: We thank the reviewer for the suggestion and have used SPATA2 to perform 

spatial trajectory analysis in revised Fig. 5D and identified the GCL_TI signature based 

on SPATA2-predicted dynamic gene expression pattern (Page 11). 

 

Minor concerns: 

1) “The authors do not mention that 10X Visium does not have single cell resolution 

which complicates the analysis and interpretation of the data. First, they should show 

how many cells are located within each spot and the diversity across samples. Using 

all spots for cluster analysis will lead to high confounder based on spots which are only 

contain a low frequency of cancer cells. CNAs are a nice marker for GBM to identify 

the tumor content within each spot, properly the K27 mutation (or IDH mutation) can 

be used. At least the authors need to discuss and address this problem.” 

 

Response: Following the reviewer’s suggestion, we have used CNV to infer the tumor 

content in each spot since all our tumor samples exhibit significant CNVs (revised 

Fig.1C, D) (Page 4), and added a new section of tumor content estimation in Methods 

(Page 20). We also tried to use H3K27M for DMG. While the majority of spots with 

H3K27M mutation also exhibit broad CNVs, the low detection rate (~1 per 100,000 

reads) makes it less reliable to estimate the tumor content. Similarly, we did not detect 

sufficient IDH mutant reads to perform tumor content estimation in IDH-mut GBM 

samples. Thus, we used CNV-based tumor content estimation to filter out malignant 

spots for subsequent analyses.  

 



Response to Reviewers                                            

2) “Unsupervised Non-negative matrix factorization (NMF) was performed on all 

malignant spots using the NMF R package23 (version 0.23.0). This approach is highly 

biased for several reasons: 1. As the authors show in Figure 1, the data are clustered 

by patient, which is not surprising due to the lack of horizontal integration in the 

analysis!!! However, even after horizontal integration, spatially resolved 

transcriptomics and single-cell data (not as strong as spatial data) of cancers show 

high heterogeneity, called inter-patient heterogeneity, which has been recently 

discussed in several papers (Neftel et al., 2019). Therefore, the community strongly 

recommends analyzing patients individually and then comparing clusters to identify 

metamodules. For spatial data, authors should also compare the spatially weighted 

correlation of metamodules for clustering (not just correlation as shown here).” 

 

Response: Following the reviewer’s suggestions, we have used BANSKY, a new 

spatial clustering algorithm that incorporate Cartesian space to analyze patient samples 

individually (revised Fig. S1B and S2B), identify signature genes for each cluster from 

different patients, and then horizontally integrated cluster signatures to identify 

metamodules (revised main text and Methods, Page 5 and 22-23). We also calculated 

spatial weighted correlation between cluster signatures using GWR (Revised Fig. 2B).  

 

3) “In Figure 2 C, the spots are differently visualized (compare hypoxic vs. the rest 

(spot and spot distance)?” 

 

Response: Since the original tissue sections from each patient varies in size, Seurat has 

a default “auto-scale” setting to visualize each sample at a different magnification. We 

tried to change the setting but found the resulting images were visually compromised, 

particular for those small sections. Thus, we chose to keep the default setting while 

labeling the magnification for each image such as 2.3X, 3.5X to reflect the auto-scale 

in revised Fig. 2D. Fig. S1B, and Fig. S2B. 

 



Response to Reviewers                                            

4) “The authors state that the hypoxic signature is enriched in necrosis. Shouldn't 

necrosis be excluded from cluster analysis? Necrosis can be well visualized by the total 

number of UMIs. What was the number of UMIs in the areas defined as necrosis? Do 

the hypoxic niches show a lower number of UMIs compared with the other groups? 

Wouldn't this be a confounding factor based on the fact that higher stress sample 

preparation is automatically defined as hypoxia?” 

 

Response: We compared the gene number and mitochondrial gene % in spots from 

hypoxic niches with spots from other niches across all glioma samples, and did not 

observe dramatic differences (revised Fig. S5A). We also checked two DMG samples 

with typical Pseudopalisading necrosis histology, and did not observe dramatic 

differences in the hypoxic niches (revised Fig. S5B, C). Based on H&E staining, 

pseudopalisading necrotic areas do contain cells with prominent nuclear staining. Thus, 

we think our standard QC has already removed low quality spots and the remaining 

spots in the hypoxic niches can be used for subsequent analyses. We also discussed 

these results in the main text: “To test whether the spatial transcriptional modules are 

influenced by low-quality spots (particularly those in the hypoxic/necrotic area), we 

compared the gene number and mitochondrial gene percentage in spots from hypoxic 

niches with spots from other niches across all glioma samples, and did not observe 

dramatic differences based on the median values.” (Page 6)  

 

5) “Spatial data have hidden dependencies (as mentioned above). Another level of 

potential confounder is the spatial distribution of genetic heterogeneity or subclonal 

architecture (which is spatially segregated). Authors should investigate whether their 

transcriptional programs are not derived from subclonal architecture. Since subclones 

also have a specific spatial distribution, the question arises whether transcriptional 

programs follow the subclonal architecture or occur independently. (See Neftel et al. 

subgroups vs subclones...). Since the Verhaak group has shown that metabolic (hypoxia) 

stress leads to an increase in CNAs and epigenetic dysregulation (Johnson KC et al, 

2021)” 



Response to Reviewers                                            

 

Response：Following the reviewer’s suggestion, we identified subclones in each sample 

based on tumor signature CNV events (total 24 subclones), and analyzed their spatial 

distribution across glioma niches. We found 10/24 niche-dominant subclones (defined 

as more than 75% of spots per subclone in a niche), and 14/24 non-niche dominant 

subclones (Fig. 2f, Extended Data Fig. 3b, and 4b). Thus, similar to the Ravi et al. study, 

subclonal architecture does not appear to play a major role in specifying the 

transcriptional programs. We described these results in the main text (Page 7). 

 

6) “Then the original Louvain algorithm (FindClusters) with clustering resolution 0.8 

or 3.0 was performed to cluster spots and we manually combined clusters based on 

histology… A good example of the lack of detail in the method. 1. Why 0.8 or 3.0 sounds 

very high to me. Normally an iterative approach should be taken, testing all resolutions 

from 0.1 to, say, 3. Then the stability of the cluster should be tested for all resolutions 

to find the most stable resolution. For spatial data, clustering methods that incorporate 

Cartesian space, such as BayesSpace, should be used in the first instance.” 

 

Response：Following the reviewer’s suggestion, we tested several recently developed 

spatially aware tools such as Seurat, BayesSpace, SpatialPCA, Spruce, SpatialDE2, and 

Banksy (Methods). Since the DMG1 sample contains a significant portion of normal 

cerebellum tissue with clearly demarcated anatomic domains, we used DMG1 as a 

benchmark to compare the clustering results, and found that the clusters generated by 

Banksy best correlate with anatomical domains in DMG1. Thus, we performed 

BANSKY on spots from each sample, generating unique spatial clusters that can be 

mapped onto distinct histopathological regions. We added this discussion in the revised 

main text and Methods on Page 4 and 21. 

 

7) “The additional data on splice variants is of great interest, but needs to be better 

explored. How different is the situation in the subgroups. Can the authors find spatial 

gradients of splice variants within the subgroups?” 



Response to Reviewers                                            

 

Response: Since long-read sequencing is more error prone compared to short-read 

sequencing, the barcode recovery rate for long-read spatial transcriptomics is not very 

high in our original dataset, making it difficult to identify spatial gradients of isoforms 

in tumor subgroups. To address this question, we further increased the sequencing depth 

of our long-read sequencing data (adding 80 gigabytes data), reanalyzed the expression 

of transcript isoforms and splicing junctions, and identified spatially differentially 

expressed isoforms that exhibit recurrent patterns across glioma samples (pan-glioma) 

or within subgroups (DMG, GBMIDHwt, or GBMIDHmut), summarized in revised Table 

S5 and described on Page 7. Still, we believe the sample sizes for GBM subtypes are 

too small to push a strong claim. Instead, we predicted potential regulatory splicing 

factors, and analyzed their relationship to patient survival to provide functional insights 

to these observations (See also Response to Reviewer 1, Major Concern 7). 

8) “Deconvolution with 3 different data sets is very difficult to interpret. The authors 

should start integrating the datasets (horizontal integration / or azimuth mapping), 

including a cortex dataset (for the GBM). No statistics will be provided!” 

 

Response: Following the reviewer’s suggestion, we integrated Bhaduri et al. GBM 

scRNA-seq, Nowakowski et al. human cortex scRNA-seq, Filbin et al. DMG scRNA-

seq, and Aldinger et al. human cerebellum snRNA-seq datasets as reference datasets to 

perform deconvolution analysis (revised Fig. 4A and Methods) (Page 9 and 23-24). We 

also provided the statistics for cell content comparisons (revised Fig. 4B, C).  

 

9) “The discussion between AC and RG is not clear to me. The authors also need to 

include the Neftel classification (as a standard single cell classification). I fully agree 

with the authors that the RG population is a distinct cell population responsible for 

migration and invasion. They should show that these cells are described as part of the 

AC-like subset in DMG and GBM. The statement that this population has not been 

described is not true, it has just been named differently.” 

 



Response to Reviewers                                            

Response: We reanalyzed the Neftel et al. GBM dataset, and found that RG scores are 

highest in a subset of cells at the AC-like and MES-like states. Since the MES-like cell 

state is associated with glioma invasion but not a specific cell-type, it is not surprising 

that RG-like cells exhibit MES-like state. Thus, these analyses support that RG-like 

cells are present in both DMG and GBM, which were classified as AC-like or MES-

like cells in previous studies (revised Fig. 4G) (Page 10), and toned down our statement 

to say that this population has not been classified as RG in the previous studies, instead 

of “has not been described” (Page 10). 

 

10) “The analysis performed in Figure 5 is interesting, but the method used is partially 

flawed (as mentioned above). The authors should include spatial trajectories and 

spatially weighted correlation analyses.” 

 

Response: As mentioned above, we used SPATA2 to perform spatial trajectory analysis 

in revised Fig. 5D. 

 

11) “The authors state that their scores based on TCGA analysis have clinical 

implications. Do the authors not contradict themselves by showing that their signatures 

are recurrent in all patients and then showing that the signatures are associated with 

better or worse survival? Is the percentage of signatures relevant? Does it matter how 

much of which subgroup was resected? There is so much room for error here that I 

don't think the comparison is useful.” 

 

Response: We agree with the reviewer and have removed the correlation analyses of 

niche module score expression with TCGA patient survival in revised Fig. 2.  

 

12) “last but not least, I would like to note that the authors need provide a QC overview 

with the most important parameters such as Mean UMI Max UMI and Min UMI nr. 

genres per spot (man min), sequencing saturation percentage of reads in sample and 

per spot (min max) and so on ...” 



Response to Reviewers                                            

 

Response: We added a new supplementary table (Table S2) to present the complete QC 

information for each sample in our short-read and long-read datasets.  

 

13) “Finally, I would like to motivate the authors, the data set warrants publication in 

a reputable journal. I am aware that it is not easy to present the data and consider all 

levels of complexity, but the authors had better try. I would like to motivate the authors 

to understand my concerns, because honesty helps to optimize the mouse script!!!! I am 

looking forward to the revised version” 

 

Response: We’d like to thank this reviewer for these encouraging words, and his/her 

suggestions have clearly improved our manuscript.  



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This is a much-improved manuscript but still fraught with problems. Authors tried to address the 

concerns expressed by both reviewers, but many responses are unsatisfactory and have not 

addressed the critical, inherent problem in the experimental design. As the other reviewer pointed out, 

DMG and GBM are very different tumors and should not be analyzed together, especially when 

assessing microenvironment/niche differences since they are strongly influenced by metabolic 

differences. The metabolism between IDH wt and mutant gliomas are well documented. The authors 

may have been forced to perform their analysis with combined samples due to the small sample size 

from each tumor type (inherent experimental design flaw). While the text has been toned down and 

data reanalyzed with proper methods in response to both reviewer comments, there are still 

unsubstantiated claims and general lack of rigor in analysis, interpretation, and data presentation. 

Finally, there are very little technical or conceptual advances that are strongly supported by the data 

presented. The most interesting and novel analysis is the slice variant analysis but it seems to be from 

a n=1 analysis. 

 

1) It is not convincing that FAM20C is essential for RG-like cells in a neuron-rich microenvironment. 

What is the evidence that the artificial DMG-like cells they used are RG-like? Also, if the IC injections 

were performed properly in the pons, then the KD cells had to migrate through the normal brain to 

reach the leptomeningeal space where they grow out “outside the brain”. So how can one conclude 

that FAM20C is required for invasive growth of RG-like cells in a neuron-rich environment when the KD 

cells could invade through the brain parenchyma? 

2) Related to above point, they show that proliferation of FAM20C-KD cells is reduced in vivo. In this 

case, they need to control for differences in proliferation in the in vitro invasion assay. 

3) Measuring cresyl violet in invasion assay to conclude that KD cells do not migrate towards human 

neurons is not convincing. There is no way to distinguish the dye content from neurons and invading 

glioma cells as the assay is performed. 

4) The title and data presented imply that FAM20C regulates radial glial cancer stem cell-like cells but 

this is also not supported by the data: clonogenicity is not significantly different in FAM20C_KD F1 

cells compared to control. While colony formation is not a commonly used method to assess CSC-like 

cells in gliomas, it is the closest data they have presented to testing the CSC-like phenotype. Overall, 

there are too many inconsistencies with their observations with FAM20C-KD cells. 

5) Splice variant analysis does not address the possibility that alternative splice variants represent the 

presence of different cell types in different niches. Given that it is n=1 analysis, and it does not 

address whether the variation arises from different cellular composition or microenvironmental 

influence, it is not clear what solid conclusions can be drawn from this study. 

6) Cell:cell communication analysis is again not performed rigorously and does not support the 

statement that “RG-like cells serve as communication centers” in the invasive and hypoxic niches. 

7) “dramatic” vs “significant” differences should be supported by statistical analysis. Just one example 

(among many) line 169-173 referring to Supp Fig 5a-c may not be “dramatic” but may be statistically 

significant. 

8) Line 164-165 is questionable. DMG4 invasive and hypoxic module scores are not mutually 

exclusive? Supp Fig 3a. Need to show high magnification image of the area? 

9) Line 175-177. Was the comparison performed with only the GBM (IDH WT) modules or all samples? 

A fair comparison would be only with matching types of tumors, and it is not clear what samples were 

compared here. 

10) How generalizable are the different slice variants in different niches? Data presented appear to 

come from only one sample. They should demonstrate that the same pattern holds up in other 

samples. Otherwise, what is the significance? Especially since it is not even clear whether the pattern 

arises from different cellular compositions in different niches (in one sample). 

11) The observation with Tomm6-202 variant is confusing. It is well established that hypoxia is 

associated with worse prognosis in gliomas but the Tomm6-202 unique slice variant enriched in the 



hypoxic niche is associated with favorable prognosis (lines 231-232)? 

12) Heatmaps shown in figure 3 do not seem to match the actual reads indicated on genomic traces. 

How were they normalized to generate the heat map? 

13) Lines 254-255 should be re-written. As is, it’s confusing and misleading. Fig 4a shows AC-like cells 

are most abundant in the invasive niche and not “the invasive niche has the highest neuronal content 

(Fig 4a, b)”. It should be “neuron content is the highest in the invasive niche (Fig 4b)”? Minimally, Fig 

4a and Fig4b should be called out separately to clarify the meaning. 

 

 

 

Minor concerns 

Line numbers and page numbers in the rebuttal letter do not match the revised manuscript in places. 

 

Figure call outs are incorrect in some place- such as liens 357 & 359 on page 13. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have cleared up the errors and doubts that were raised and I would like to congratulate 

them on a successful manuscript. I am looking forward to seeing the manuscript in press. 



Response to Reviewers (NCOMMS-22-06690B) 

 

We’d like to thank both reviewers for their comments, and we are glad that Reviewer 

#2 thinks we have addressed all his/her concerns. Below, we provide a point-by-point 

rebuttal to address the remaining concerns from Reviewer #1. Main text revisions are 

highlighted by the yellow color. 

 

Reviewer #1 writes: “This is a much-improved manuscript but still fraught with 

problems. Authors tried to address the concerns expressed by both reviewers, but many 

responses are unsatisfactory and have not addressed the critical, inherent problem in 

the experimental design. As the other reviewer pointed out, DMG and GBM are very 

different tumors and should not be analyzed together, especially when assessing 

microenvironment/niche differences since they are strongly influenced by metabolic 

differences. The metabolism between IDH wt and mutant gliomas are well documented. 

The authors may have been forced to perform their analysis with combined samples 

due to the small sample size from each tumor type (inherent experimental design flaw). 

While the text has been toned down and data reanalyzed with proper methods in 

response to both reviewer comments, there are still unsubstantiated claims and general 

lack of rigor in analysis, interpretation, and data presentation. Finally, there are very 

little technical or conceptual advances that are strongly supported by the data 

presented. The most interesting and novel analysis is the slice variant analysis but it 

seems to be from a n=1 analysis.” 

 

Response: We thank this reviewer for saying that our manuscript is “much improved”. 

We appreciate the reviewer's feedback and first we’d like to clarify about our 

experimental design. In our last revision, as Reviewer #2 suggested, we already 

analyzed DMG, IDHwt and IDHmut GBMs as different tumor entities in addition to pan-

glioma analyses, and showed that our major conclusions are consistent across different 

glioma types, which was appreciated by Reviewer #2. In this revision, we added an 



additional supplementary figure and text to make this point more clear (Revised Fig. 

S3, Page 5 and 7).  

 

We respectively disagree with Reviewer 1’s assessment regarding the novelty or 

technical/conceptual advance of our manuscript, particularly in light of the Nature 

Communications policy that papers published during manuscript revision (since March, 

2022) do not compromise our novelty.  

 

Finally, our isoform analysis is not an n=1 analysis, and we apologize if our data 

presentation led to this confusion. Indeed, these analyses were based on recurrent 

patterns across glioma samples/niches. Specifically, in our last revision, we first 

performed sample-wise paired comparisons among the four niches to find niche-

specific differentially expressed isoforms (DEIs), and then only kept DEIs that 

exhibited conserved niche-enrichment across all samples (pan-glioma) or specific 

glioma types (DMG, IDHwt GBM, IDHmut GBM or pan-GBM) (Table S5). In this 

revision, we further modified the figures to show the isoform expression pattern in all 

samples or specific glioma types, and added more details in the methods to address 

Reviewer 1’s concerns (Revised Fig. 3c, d, g, h and Fig. S7c, d, Page 26) (See also 

Response to Reviewer 1, Major Concern 5 and 10).  

 

Major concerns:  

1) “It is not convincing that FAM20C is essential for RG-like cells in a neuron-rich 

microenvironment. What is the evidence that the artificial DMG-like cells they used are 

RG-like? Also, if the IC injections were performed properly in the pons, then the KD 

cells had to migrate through the normal brain to reach the leptomeningeal space where 

they grow out “outside the brain”. So how can one conclude that FAM20C is required 

for invasive growth of RG-like cells in a neuron-rich environment when the KD cells 

could invade through the brain parenchyma?” 

 



Response: We thank the reviewer for pointing out this alternative interpretation for our 

data. We added bulk RNA-seq and RG marker immunostaining of HPT cells to show 

these cells most closely resemble RG-like cells (Revised Fig. S8f, g, Page 13). To test 

whether the tumors outside the brain are results of continuous growth/invasion of 

endstage tumors inside the brain, we examined brain sections from three mice 21 days 

after HPT cell xenograft (Revised Fig. S9h, Page 15, and the figure below). We 

consider this as an early stage since it takes 2-3 months for these cells to develop into 

tumors. At this stage, we can already identify clusters of mCherry+ cells in the 4th 

ventricle and the subarachnoid space (yellow dashed lines). In the meantime, we only 

observed diffusely infiltrating mCherry+ cells in the pons (white dashed lines), which 

are not yet full-blown tumors and do not exhibit obvious connections with cells outside 

the brain. These data indicate that from the early stage on tumors inside and outside are 

growing independently under different microenvironmental context, which may or may 

not merge together at the endstage. Furthermore, we analyzed multiple sections from 

endstage FAM20C KD mice and did not observe migration paths of mCherry+ cells 

through the brain parenchyma. Thus, at least in our models, the fact that FAM20C KD 

cells can form tumor masses outside the brain does not mean they have to invade 

through the brain parenchyma. 

To check whether this phenomenon is unique to our models, we checked up two other 

published hNSC-derived DIPG/DMG models using similar protocols (Funato et al., 

Science, 2014; Haag et al., Cancer Cell, 2021). Based on their descriptions and 

histology, they also noted tumor development outside the brain without prominent 

tumor growth in the pons (injection site) (see the above figure). One possible 



explanation is that for mutant hNSC-xenograft DMG models, since there is injury along 

the injection path from the lambda suture deep into the pons (with possible involvement 

of the 4th Ventricle), mutant hNSCs could spread along the injection path, flow with the 

cerebrospinal fluid, and eventually develop into tumor masses outside the brain. 

 

Taken together, we think it is appropriate to treat tumors inside and outside as different 

entities under distinct microenvironmental context. The observation FAM20C KD cells 

do not grow well inside the brain parenchyma supports our conclusion that FAM20C is 

required for invasive growth of RG-like cells in a neuron-rich environment.  

 

2) “Related to above point, they show that proliferation of FAM20C-KD cells is 

reduced in vivo. In this case, they need to control for differences in proliferation in the 

in vitro invasion assay.” 

 

Response: We did not control for the proliferation differences in the in vitro invasion 

assays since HPT hNSCs in the upper insert were placed in growth factor deprived 

culture medium (hNSC culture medium with B27 but without bFGF) (Fig. 6d, e and 

S9c, d, cartoons on the left), following a published protocol by Michelle Monje group 

(Cell, 2017, Ref. #81). This is an inhibitory condition for cell proliferation, allowing us 

to directly compare migratory capacities. To ascertain this, we performed additional 

CCK-8 assay to show that HPT cells cultured under this condition barely increased in 

number during the experimental interval (48h), using cells cultured in normal hNSC 

culture medium as positive control (Revised Fig. S9b, Page 13 and 34).  

 

3) “Measuring cresyl violet in invasion assay to conclude that KD cells do not migrate 

towards human neurons is not convincing. There is no way to distinguish the dye 

content from neurons and invading glioma cells as the assay is performed.” 

 

Response: Based on our experimental protocol, we believe we could indeed distinguish 

the dye content from neurons and invading glioma cells. In our transwell migration 



assays, the RG-like cells were cultured in the upper insert with permeable membrane, 

and neurons were adherently cultured in the lower well. After 48h, the RG-like cells 

that migrated through to the other side of the membrane were stained by cresyl violet, 

and the total intensity of the dye was measured. We also did not observe detachment of 

neurons from the bottom of the lower well during the experiment. Thus, the physical 

separation ensures that all the migrated cells from the upper insert and stained by cresyl 

violet are RG-like cells. We have added more details to our Methods section to avoid 

any confusion (Page 35).  

 

4) “The title and data presented imply that FAM20C regulates radial glial cancer stem 

cell-like cells but this is also not supported by the data: clonogenicity is not significantly 

different in FAM20C_KD F1 cells compared to control. While colony formation is not 

a commonly used method to assess CSC-like cells in gliomas, it is the closest data they 

have presented to testing the CSC-like phenotype. Overall, there are too many 

inconsistencies with their observations with FAM20C-KD cells.” 

 

Response: We’d like to point out that clonogenicity is not the only feature/phenotype 

of CSC-like cells. Indeed, migration and invasive growth are also features/phenotypes 

of CSC-like cells, which may be regulated by different regulators depending on the 

microenvironmental context (recently reviewed by Jeremy N. Rich group in Cell Stem 

Cell). Indeed, our in vitro and in vivo data consistently show that FAM20C regulates 

the migration and invasive growth of CSC-like cells in a neuronal context. 

 

5) “Splice variant analysis does not address the possibility that alternative splice 

variants represent the presence of different cell types in different niches. Given that it 

is n=1 analysis, and it does not address whether the variation arises from different 

cellular composition or microenvironmental influence, it is not clear what solid 

conclusions can be drawn from this study.” 

 



Response: We’d like to emphasize this is not an n=1 analysis. In our previous 

submission we only included differentially expression isoforms that exhibit conserved 

niche-enrichment across all samples or specific glioma types. While we acknowledge 

that differential isoform expression may derive from different cellular compositions in 

our experimental setting, such analysis has been performed on mouse cortex spatial 

transcriptomic dataset (Joglekar et al., Nature Communications, 2021, Ref. #22) and 

bulk primary and recurrent GBM samples (Aaron A. Diaz group, Genome Biology, 

2021; Li and Guo, BMC Cancer, 2021), and revealed consistent patterns despite facing 

the same technical challenge.  

 

6) “Cell:cell communication analysis is again not performed rigorously and does not 

support the statement that “RG-like cells serve as communication centers” in the 

invasive and hypoxic niches.” 

 

Response: While we believe our ligand-receptor pair analysis offers a closest estimate 

regarding the cell-communication center, we followed the reviewer’s advice to remove 

this statement in the main text and abstract to be more rigorous (Page 11). 

 

7) ““dramatic” vs “significant” differences should be supported by statistical analysis. 

Just one example (among many) line 169-173 referring to Supp Fig 5a-c may not be 

“dramatic” but may be statistically significant.” 

 

Response: We double-checked our figures to make sure statistical significances are 

indicated by stars (*) or p values in every quantification/comparison. For the example 

the reviewer pointed out, we revised the text to state that the differences are statistically 

significant but not dramatic (Page 7).  

 

8) “Line 164-165 is questionable. DMG4 invasive and hypoxic module scores are not 

mutually exclusive? Supp Fig 3a. Need to show high magnification image of the area?” 

 



Response: We consulted with the pathologists and confirmed this sample does not 

contain large areas of invasive/infiltrative or hypoxic regions. Consequently, the 

differential expression of these module scores are more subtle than other samples. 

Despite this, our scoring system based on the relative expression of all four modules 

was able to distinguish small hypoxic regions (arrows) bordering necrosis versus 

invasive regions (See below, high mag image of the area). Since in some areas we 

cannot definitely say these two scores are mutually exclusive for this sample, we 

removed this statement in the revised main text (Page 6).  

 

9) “Line 175-177. Was the comparison performed with only the GBM (IDH WT) 

modules or all samples? A fair comparison would be only with matching types of tumors, 

and it is not clear what samples were compared here.” 

 

Response: The comparison was performed with pan-glioma modules from all samples 

since we found these modules are conserved across glioma types. To rigorously test 

this, we followed the review’s suggestion to perform additional comparison using 

IDHwt GBM modules only, and got consistent results (Fig. S3b bottom right panel, 

Page 7).  

 

10) “How generalizable are the different slice variants in different niches? Data 

presented appear to come from only one sample. They should demonstrate that the same 

pattern holds up in other samples. Otherwise, what is the significance? Especially since 

it is not even clear whether the pattern arises from different cellular compositions in 

different niches (in one sample).” 

 



Response: In this revision, we modified the figures to show the isoform expression 

pattern in all samples or specific glioma types, and added more details in the methods 

to address Reviewer 1’s concerns (Revised Fig. 3c, d, g, h and Fig. S7c, d, Page 26) 

 

11) “The observation with Tomm6-202 variant is confusing. It is well established that 

hypoxia is associated with worse prognosis in gliomas but the Tomm6-202 unique slice 

variant enriched in the hypoxic niche is associated with favorable prognosis (lines 231-

232)?” 

 

Response: Since the two isoforms of Tomm6 are respectively enriched in invasive and 

hypoxic niche and exhibit isoform switch, higher level of 202 is accompanied by lower 

level of 201 (enriched in the invasive niche). Then it comes to whether hypoxic niche 

or invasive niche plays a more dominant role in patient prognosis, which is hard to 

determine. Thus, we believe for isoform/SJ-survival analysis based on bulk TCGA data, 

we should describe the result as it is.  

 

12) “Heatmaps shown in figure 3 do not seem to match the actual reads indicated on 

genomic traces. How were they normalized to generate the heat map?” 

 

Response: We added more detailed description how the heatmaps are generated (Page 

27). Briefly, the mean expression of an isoform in a given niche is calculated as total 

reads divided by the number of high-quality spots in the niche. The values from four 

niches were then auto-scaled and visualized in the heatmap to shown enrichment of this 

isoform in specific niches. To avoid confusion, in this revision we instead labeled the 

mean expression of each isoform in each niche (Revised Fig.3c, h and Fig. S7d).  

 

13) “Lines 254-255 should be re-written. As is, it’s confusing and misleading. Fig 4a 

shows AC-like cells are most abundant in the invasive niche and not “the invasive niche 

has the highest neuronal content (Fig 4a, b)”. It should be “neuron content is the 



highest in the invasive niche (Fig 4b)”? Minimally, Fig 4a and Fig4b should be called 

out separately to clarify the meaning.” 

Response: We agree with the reviewer and have rewritten this description as the 

reviewer suggested (Page 10).   

 

Minor concerns 

“Line numbers and page numbers in the rebuttal letter do not match the revised 

manuscript in places.” 

 

Response: We apologize for this confusion, which might be caused by WORD to PDF 

conversion. In this revision, we ensure the page numbers are properly referenced. 

 

“Figure call outs are incorrect in some place- such as liens 357 & 359 on page 13.” 

 

Response: The figure call outs have been thoroughly checked and revised in this 

revision. 

 

Reviewer #2 writes: “The authors have cleared up the errors and doubts that were 

raised and I would like to congratulate them on a successful manuscript. I am looking 

forward to seeing the manuscript in press.” 

 

Response: We’d like to again thank this reviewer for his constructive suggestions. 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Thank you for addressing my concerns and providing new data. Most concerns have been addressed; 

however, the point regarding cancer stem cells remains. 

 

The gold standard definition of a cancer stem cell is a cell that can generate a tumor that replicates 

the original tumor phenotype upon transplantation. Clogenicity in vitro and migration/invasive growth 

phenotypes are both characteristics associated with CSCs but are defining characteristics. Plenty of 

cancer cells have migratory or clonogenic characteristics without fulfilling the functional CSC 

phenotype in vivo. As such, responses regarding the role of FAM20C in regulating GSCs and the title of 

the study are weak. 



Response to Reviewers (NCOMMS-22-06690C) 

 

We’d like to again thank both reviewers for their constructive comments. Below, we 

provide a rebuttal to address the remaining concern from Reviewer #1.  

 

Reviewer #1 writes: “Thank you for addressing my concerns and providing new data. 

Most concerns have been addressed; however, the point regarding cancer stem cells 

remains. The gold standard definition of a cancer stem cell is a cell that can generate 

a tumor that replicates the original tumor phenotype upon transplantation. Clogenicity 

in vitro and migration/invasive growth phenotypes are both characteristics associated 

with CSCs but are defining characteristics. Plenty of cancer cells have migratory or 

clonogenic characteristics without fulfilling the functional CSC phenotype in vivo. As 

such, responses regarding the role of FAM20C in regulating GSCs and the title of the 

study are weak.” 

 

Response: We agree with the reviewer and have toned down the cancer stem cell aspect 

of this study in the revised manuscript. In both the title and main text, we use “radial 

glia-like cells” or “radial glial stem-like cells” instead of “cancer stem cells” to be more 

rigorous. 
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