Supplementary Information for

Structure of human Na $_{\rm V}$ 1.6 channel reveals Na $^{\rm +}$ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin

Authors

Yue Li, Tian Yuan, Bo Huang, Feng Zhou, Chao Peng, Xiaojing Li, Yunlong Qiu, Bei Yang, Yan Zhao, Zhuo Huang, Daohua Jiang

This file contains Supplementary Figure 1-10 and Table 1-3.

Supplementary Figure 1. Construct optimization of human Na_V1.6/ β 1/ β 2

a. Fluoresent SEC profiles of the Na_V1.6 WT and variants. The blue, red and green peaks represent singals from total protein absorbance at 280 nm, mCherry fluorecence and GFP fluoresence, respectively. Scissors indicate the truncation positions. **b-c**. Representative cryo-EM micrographs (Bar = 400 Å) and selected 2D class averages for Na_V1.6^{WT} (**b**) and Na_V1.6^{EM} (**c**). The experiments were repeated independently for more than 3 times with similar results.

Supplementary Figure 2. Purification of human Na_V1.6^{EM}/ β 1/ β 2 complex

a. SEC profile of human Na_V1.6^{EM}/ β 1/ β 2 complex. Fractions between two black dashed lines were pooled and concentrated for cryo-EM analysis. **b**. SDS-PAGE gel of the purified Na_V1.6^{EM}/ β 1/ β 2 sample stained by Coomassie blue. Bands for Na_V1.6^{EM} and β 1 were labelled. The experiments were repeated independently for more than 3 times with similar results. Source data are provided as a Source Data file.

Supplementary Figure 3. Cryo-EM data processing of human Na_V1.6^{EM}/β1/β2 complex

a. The flowchart of cryo-EM data processing for Na_V1.6^{EM}/ β 1/ β 2 complex. A total of 1,594k particles were picked from 3,985 micrographs. Two rounds of 2D classification and two rounds of 3D classification were performed to remove bad particles, followed by AutoRefine, Bayesian polish and contrast transfer function (CTF) refinement in Relion to improve the map quality. The final EM density map was generated by the non-uniform (NU) refinement in CryoSPARC. **b.** Local resolution distribution of the final map of the Na_V1.6^{EM}/ β 1/ β 2 complex. **c.** Angular distribution of the cryo-EM reconstruction of Na_V1.6^{EM}/ β 1/ β 2 complex used for final refinement. **d.** Fourier shell correlations (FSC) curves of the Na_V1.6^{EM}/ β 1/ β 2 complex.

Supplementary Figure 4. Cryo-EM data processing of the $Na_V 1.6^{4,9-ahTTX}$ complex

a. The flowchart of the Na_V1.6^{EM}/ β 1/ β 2 and 4,9-ah-TTX complex data processing. A total of 1,272k particles were picked from 2,929 micrographs. Two rounds of global 3D classification and a further round of local 3D classification were performed to remove bad particles, followed by AutoRefine, Bayesian polish and contrast transfer function (CTF) refinement in Relion to improve the map quality. The final EM density map was genera ted by the non-uniform (NU) refinement in CryoSPARC. **b**. Local resolution distribution of the final 3D map. The EM density of 4,9-anhydro-TTX was labelled with a red arrow. **c**. Angular distribution of the particles used for the final 3D reconstruction. **d**. Fourier shell correlations (FSC) curves of the Na_V1.6^{4,9-ahTTX} complex.

Supplementary Figure 5. Representative EM densities for Na_V1.6^{EM}/ β 1/ β 2 complex.

a. The EM densities for the S1–S6 segments in each domain were shown as gray surface. **b**. The EM densities for the Pore loop segments in each domain were shown as gray surface. Side-chains of selected residues were shown as sticks.

Supplementary Figure 6. Sequence alignments of the human Na_V channels and functional characterizations of human Na_V channels by TTX analogs.

a. Sequence alignment of the ECL₁ between human Na_V channel subtypes. The identical residues were marked in blue. As linked glycosylation sites were marked in red and labelled. **b**. Sequence alignment of P1 and P2 of human Na_V channels. The main residues involved in 4,9-ah-TTX binding are highlighted in yellow. Positively charged residues and Lys/Ala were marked in red and purple, respectively. **c**. The concentration-response curves for the blockade of Na_V1.6^{EM} (red), Na_V1.2^{WT} (blue), and Na_V1.7^{WT} (black) by TTX. Na_V1.6^{EM}, n = 5; Na_V1.2^{WT}, n = 5; Na_V1.7^{WT}, n = 4. **d**. The concentration-response curves for the blockade of Na_V1.6^{EM}, n = 5; Na_V1.6^{L1712A}, n = 4; Na_V1.6^{ECL1}, n = 5; Na_V1.6^{ECL3}, n = 4. **e**. The concentration-response curves for the blockade of Na_V1.6^{ECL1}, n = 7; Na_V1.6^{ECL3}, n = 4. Data are presented as mean ± SEM. *n* biological independent cells. Source data are provided as a Source Data file.

Supplementary Figure 7. Structural comparison of Na⁺ binding sites of Na_V1.6^{EM} and Ca²⁺ binding sites of Ca_V3.1.

a-b. Side view of the Na⁺ sites compared with the Ca²⁺ sites of Ca_V3.1 (PDB code: 6KZO, colored in light blue). The diagonal repeats of DI and DIII (**a**), DII and DIV (**b**) are shown separately for clarity. **c-d**. Top-down view of the Na⁺ sites of Na_V1.6 compared with the Ca²⁺ sites of Ca_V3.1 (PDB code: 6KZO, colored in light blue) (c) and that of Ca_VAb (PDB code: 4MS2, colored in gray) (d), respectively. Key residues were shown side-chains in sticks. Ions were shown as spheres.

Supplementary Figure 8. Different conformations of 4,9-ah-TTX binding to $Na_V 1.6$ and $Na_V 1.7$ from MD.

a. The binding affinity of TTX and 4,9-ah-TTX to Na_V1.6 and Na_V1.7 calculated by MM/GBSA from the MD simulations. MD simulations for Na_V1.6^{TTX}, Na_V1.6^{4,9-ahTTX}, Na_V1.7^{TTX}, and Na_V1.7^{4,9-ahTTX} were repeated 6 times independently. Data are presented as mean ±SEM. **b-e**. Detailed binding modes of the four major conformations of 4,9-ah-TTX binding in Na_V1.7 from the MD simulations. **f**. The only major binding mode of 4,9-ah-TTX in Na_V1.6 from the MD simulations. Source data are provided as a Source Data file.

Residues interacting with ligands	N a _v 1.6 ^{4,9-}	ahTTX	N	a _v 1.	.7 ^{4,9-ah}	TTX		N	a _v 1.6	ГТХ		N	a _v 1.7	TTX	
	c.1 c.2		c.1	c.2	c.3	c.4	c.5	c.1	c.2	c.3 (c.4	c.1 (c.2	c.3	c.4
Clusterpopulation (ns)	599	2	342	105	82	67	5	555	32	11	2	479	87	30	3
₽ [GLU936 (GLU927)]	100%	100%	87%	97%	100%	28%	60%	100%	84%	100%	100%	100%	100%	100%	100%
HA [GLU936 (GLU927)]	100%	100%	71%	98%	80%	22%	80%	92%	9%	91%	100%	100%	100%	100%	100%
HA [GLU373 (GLU364)]	100%	100%	55%	48%	7%	97%	60%	100%	100%	82%	50%	100%	100%	100%	100%
₽ [GLU939 (GLU930)]	98%	100%	21%		87%	78%		91%	34%	73%	100%	39%	76%	43%	33%
₽ [ASP370 (ASP361)]	97%	100%	53%	1%	91%	100%	20%	100%	100%	100%	100%	100%	100%	100%	100%
HA [ASP370 (ASP361)]	96%	100%	52%	1%	80%	100%		100%	100%	100%	100%	98%	100%	100%	100%
HA [GLU939 (GLU930)]	93%	50%	46%	91%	91%	78%	100%	92%	31%	82%	100%	62%	70%	73%	67%
HD [M ET1416 (THR1409)]	92%	100%	92%	54%	100%	97%	80%	99%	100%	100%	100%	100%	100%	100%	100%
HD [ASP1417 (LE1410)]	79%	100%	30%		60%	60%		25%	100%	18%		65%	18%	70%	100%
HD [GLY1414 (GLY1407)]	75%	100%	92%	5%	98%	100%	20%	41%	100%	55%	100%	100%	100%	100%	100%
HA [ASP1417 (LE1410)]	73%	50%						20%	100%	9%					
HD [TRP1415 (TRP1408)]	65%	50%	45%	10%	24%	97%	60%	46%	100%	45%		84%	85%	70%	67%
AR [TYR371 (TYR362)]	54%		21%	53%		61%	60%	32%	6%	9%		8%	15%		
HA [ASP1708 (ASP1701)]	51%	100%	37%		9%	99%		52%	100%			37%	54%	30%	
HD [ARG931 (ARG922)]	47%	50%	48%	65%	45%		80%	10%		9%		53%	2%	87%	100%
HY [TYR371 (TYR362)]	39%	50%	58%	82%		30%	60%	37%	9%	18%		23%	24%	7%	
HD [GLY1706 (GLY1699)]	12%		1%					36%	22%	18%		71%	84%	80%	100%
HA [GLY1414 (GLY1407)]	11%	50%	0%					19%	3%	18%					
HA [PHE1412 (PHE1405)]	5%		16%	27%				4%	31%	9%		11%	11%	20%	
HD [GLY1709 (GLY1702)]	5%	50%						23%		9%					
₽ [GLU373 (GLU364)]	5%		38%	54%	20%		60%	34%		9%		73%	2%	100%	100%
HY [LYS1413 (LYS1406)]	1%														
HA [GLY1706 (GLY1699)]	1%							5%							
HA [TYR371 (TYR362)]	1%		7%				40%	1%			50%	2%	1%		
HD [TYR371 (TYR362)]	0%		3%					65%	100%	91%	100%	21%	91%	3%	
HD [ASN 374 (ASN 365)]	0%							4%							
HD [TRP1707 (TRP1700)]	0%														
HA [GLY317 (GLY308)]			1%												
HD [LEU319 (LYS310)]			2%	6%								0%			
HA [GLN 369 (GLN 360)]			5%			7%	20%	1%	16%			1%	9%		
HA [CYS934 (CYS925)]			1%			1%									
HA [GLY935 (GLY926)]			47%			93%						1%	16%		
HD [LYS1413 (LYS1406)]			1%					10%	100%			19%	57%		
AR [TRP1415 (TRP1408)]			1%	3%											
HA [M ET1416 (THR1409)]			78%	6%	100%	97%		0%				99%	100%	100%	100%
₽ [ASP1708 (ASP1701)]			13%	1%								0%			
HA [THR314 (TYR305)]				1%											
HD [TRP917 (TRP908)]				4%			20%								
HD [TYR1420 (TYR1413)]				21%			60%								
HD [TRP372 (TRP363)]								5%		9%					
HA [LYS1413 (LYS1406)]								20%		27%					

Supplementary Figure 9. Ligand-protein contact analysis based on MD study.

The type and frequency of interactions between protein and ligand are listed for each conformation cluster of a protein-ligand system. C.# indicates the index of the cluster. The digits associated with green-white color scheme indicate the appearance frequency of the interaction within the cluster. For residues interacting with ligands, the annotation follows the format of "Interaction Type [Residue in Na_V1.6 (Counterpart the residue in Na_V1.7)]". The interaction identification and interaction type definition follow the study described by Daria et al¹. A general annotation for interaction types is listed below: IP (salt bridges), HY (hydrophobic interactions), HA (hydrogen bond, ligand atom as acceptor), HD (hydrogen bond, ligand atom as donor), AR (aromatic system related stacking).

Supplementary Figure 10. Ligand dynamics in MD study.

a to **d**, The ligand RMSD plots for each replicate of the simulations for $Na_v 1.6^{4,9-ahTTX}$ (a), $Na_v 1.7^{4,9-ahTTX}$ (b), $Na_v 1.6^{TTX}$ (c), and $Na_v 1.7^{TTX}$ (d). Before RMSD calculation, all the structures in each trajectory were aligned with the initial structure of that trajectory by using Least Squares algorithm.

Human subtypes	Compounds	IC50 (nM)	95% CI	n
Na _∨ 1.6 ^{EM}	4,9-ah-TTX	52.0	44.33 to 61.09	5
Na _∨ 1.2 ^{w⊤}	4,9-ah-TTX	257.9	217.4 to 305.9	6
Na _∨ 1.7 ^{w⊤}	4,9-ah-TTX	1340	1209 to 1486	6
Na _V 1.6 ^{ELC1}	4,9-ah-TTX	7773	4538 to 13313	5
Na _v 1.6 ^{ELC3}	4,9-ah-TTX	137.2	123.1 to 152.9	4
Na _v 1.6 ^{L1712A}	4,9-ah-TTX	61.1	55.45 to 67.23	4
Na _V 1.6 ^{M1416T/D1417I}	4,9-ah-TTX	256.5	224.0 to 293.7	5
Na _∨ 1.6 ^{EM}	TTX	1.9	1.76 to 2.13	5
Na _∨ 1.2 ^{w⊤}	TTX	4.9	4.43 to 5.46	5
Na _∨ 1.7 ^{w⊤}	TTX	16.7	14.54 to 19.18	4
Na _v 1.6 ^{ELC1}	TTX	167.0	115.2 to 242.3	7
Nav1.6 ELC3	TTX	2.2	2.01 to 2.41	4

Supplementary Table 1. Concentration-response inhibition statistics of 4,9-ah-TTX or TTX for different subtypes and variants.

Supplementary Table 2. Primers used in this study.

Name	Sequence (5' to 3')				
Na _v 1.6 F	atggcagcgcggctgcttg				
Na _v 1.6 R	acacttggattctctgacctctttttgt				
Na _∨ 1.6 ^{△DI-DII} F	tcccctcggagctctcggaaggacagaatcaacagtata				
Na _∨ 1.6 ^{△DI-DII} R	gattctgtccttccgagagctccgaggggagccccctcc				
Na _∨ 1.6 ^{△DII-DIII} F	acagaggatgttagcggcaagtcttggtggatcctgcgg				
Na _∨ 1.6 ^{△DII-DIII} R	ccaccaagacttgccgctaacatcctctgtgttgaggtt				
Na _∨ 1.6 ^{∆CTer} F	caccgggagaaaaaagagctggaagttctgttccaggggcccatggtgagcaa				
Na _V 1.6 ^{∆CTer} R	ctggaacagaacttccagctcttttttctcccggtgtgtgt				
Na _v 1.6 ^{L1712A} F	gatggcctgctgGCGcccatcctaaaccgccccctgact				
Na _V 1.6 ^{L1712A} R	ggtttaggatgggCGCcagcaggccatcccaaccagctga				
Na _∨ 1.6 ^{ECL1} F	ctgcagctgttcatggggaaccttaagcataaatgttttcgaaattca				
Na _v 1.6 ^{ECL1} R	agtgtcaaaacttgtgtaaccataatcagggtttctgccaattttcac				
Na _V 1.6 ^{ECL3} F	ttcagcatcatgggagttaacttgtttgctggcaagttctatgagtgt				
Na _v 1.6 ^{ECL3} R	aagaagggccaggtatcctgccccgacattatcaaagttcactttcag				
Na _v 1.6 ^{M1416T/D1417I} F	ccttcaaaggctggacgattatcatgtatgcagctgtagattcccggaagcctg				
Na _V 1.6 ^{M1416T/D1417I} R	cagctgcatacatgataatcgtccagcctttgaaggttgctacttgaagaagggc				

	Na _∨ 1.6 ^{EM} /β1/β2	Nav1.6 ^{4,9-ahTTX}		
	(EMDB-34387)	(EMDB-34388)		
	(PDB: 8GZ1)	(PDB: 8GZ2)		
Data collection				
and processing				
Magnification	130,000 ×	130,000 ×		
Voltage (kV)	300	300		
Electron exposure (e–/Å ²)	60	60		
Defocus range (µm)	-1.2 ~ -2.2	-1.2 ~ -2.2		
Pixel size (Å)	1.04	1.04		
Symmetry imposed	C1	C1		
Initial particle images (no.)	1594472	1272486		
Final particle images (no.)	41387	76448		
Map resolution (Å)	3.4	3.3		
FSC threshold	0.143	0.143		
Map resolution range (Å)	3.0 ~ 5.0	3.0 ~ 5.0		
Refinement				
Initial model used (PDB code)	6J8I	Na _V 1.6-β1-β2		
Model resolution (Å)	3.7	3.6		
FSC threshold	0.5	0.5		
Map sharpening <i>B</i> factor (Å ²)	-69.0	-58.1		
Model composition				
Non-hydrogen atoms	11912	11984		
Protein residues	1445	1467		
Ligands	19	18		
<i>B</i> factors (Ų)				
Protein	90.46	79.36		
Ligand	98.52	75.52		
R.m.s. deviations				
Bond lengths (Å)	0.003	0.005		
Bond angles (°)	0.623	0.818		
Validation				
MolProbity score	1.89	2.03		
Clashscore	10.55	12.37		
Poor rotamers (%)	0.00	0.00		
Ramachandran plot				
Favored (%)	94.98	93.62		
Allowed (%)	5.02	6.38		
Disallowed (%)	0.00	0.00		

Supplementary Table 3. Cryo-EM data collection, refinement and validation statistics

SUPPLEMENTARY REFERENCES

1 Kokh, D. B. *et al.* A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories. *J Chem Phys* **153** (2020).