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1 More simulation results

1.1 Simulations when z-values are from other distributions

In the main simulation, we generate the z-score of each SNP by zj ∼ N(µj, 1), j = 1, . . . ,M ,

where µj follows a bimodal distribution. We conduct additional simulations to compare the

performances of PALM and other methods under alternative distributions of µ.

Scenario Distribution

big-normal N(0, 42)

near-normal 2
3
N(0, 22) + 1

4
N(0, 32) + 1

12
N(0, 42)

skew 1
2
N(−2, 12) + 1

4
N(−1, 12) + 1

6
N(0, 22) + 1

12
N(1, 42)

spiky 0.4N(0, 0.52) + 0.2N(0, 12) + 0.2N(0, 32) + 0.2N(0, 52)

Table S1: Alternative distributions of µ.

(a) FDR

(b) Power

Figure S1: The comparison of PALM-D1 and PALM-D2 with alternative methods, BH, TGM-

Pval, TGM-Zval, LSMM and GPA-Tree under M = 20000, D = 50 and non-null z-score

distribution = big-normal. The cross-validation fold is K = 2 for PALM-D1 and PALM-D2.

The results are summarized from 50 replications.
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(a) FDR

(b) Power

Figure S2: The comparison of PALM-D1 and PALM-D2 with alternative methods, BH, TGM-

Pval, TGM-Zval, LSMM and GPA-Tree under M = 20000, D = 50 and non-null z-score

distribution = near-normal. The cross-validation fold is K = 2 for PALM-D1 and PALM-D2.

The results are summarized from 50 replications.
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(a) FDR

(b) Power

Figure S3: The comparison of PALM-D1 and PALM-D2 with alternative methods, BH, TGM-

Pval, TGM-Zval, LSMM and GPA-Tree under M = 20000, D = 50 and non-null z-score

distribution = skew. The cross-validation fold is K = 2 for PALM-D1 and PALM-D2. The

results are summarized from 50 replications.
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(a) FDR

(b) Power

Figure S4: The comparison of PALM-D1 and PALM-D2 with alternative methods, BH, TGM-

Pval, TGM-Zval, LSMM and GPA-Tree under M = 20000, D = 50 and non-null z-score

distribution = spiky. The cross-validation fold is K = 2 for PALM-D1 and PALM-D2. The

results are summarized from 50 replications.
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1.2 Simulations when z-values are generated from a linear model

In GWAS, the z-scores of SNPs are typically calculated from a linear model with individual

data. Specifically, with an assumed heritability h2 and number of non-null SNPs Nnonnull, the

common linear model takes the form:

y = Xβ + ϵ,

where y is the phenotype vector, X is the standardised genotype matrix, β ∼ N (0, h2

Nnonnull
)

and ϵ ∼ N (0, 1 − h2). The z-score of each SNP can be calculated by performing marginal

linear regression. Here we investigate the performance of PALM and compared methods with

z-scores generated in this way rather than directly from a prespecified distribution. Since

PALM assumes the independence of z-scores and mainly focus on evaluating its performance

on the computed z-scores in this section, we will generate genotype matrix with uncorrelated

SNPs. For the influence of LD, please refer to supplementary section 1.6.

We consider a realistic setting with heritability h2 = 0.2, sample size n = 20, 000, total

number of SNPs M = 10, 000 and number of annotation L = 50. First, for individual i, we

randomly sample M minor allele frequencies (MAFs) from fj ∼ U [0.05, 0.5], j = 1, ...,M and

generate genotype gij of individual i from gi ∼ Binomial(2, fj), j = 1, ...,M then standardize

gj to have mean 0 and variance 1 (the standardised genotype is denoted as xij). Second,

following the simulation in the paper, we generate annotation matrix A of shape M ×L. Third,

the prior probability of each SNP for being in non-null group πj1 is calculated by Eq. (9) in the

paper and the association status is generated by Zj ∼ Bernoulli(πj1), j = 1, ...,M . With Zj,

we know the true non-null SNP indices and thus the number of non-null SNPs Nnonnull. For

the null SNPs j ∈ {k|Zk = 0}, their effect sizes are set to be zero; for the non-null SNPs, their

effect sizes are randomly sampled by βj ∼ N (0, h2

Nnonnull
), j ∈ {k|Zk = 1}. Then the phenotype

of each individual i is generated by yi = Xiβ+ ϵi, i = 1, ..., n. Finally, the estimates of effect size

of each SNP β̂j and its standard error se(β̂j) can be calculated by regressing y onto Xj. Thus

z-score zj can be obtained by zj =
β̂j

se(β̂j)
. After the summary statistics have been generated,

we can perform and evaluate all the methods just as the simulation in the paper.

Fig. S5 shows the FDR and power for all the methods. Except for GPA-Tree, all the

other methods can provide satisfactory FDR control (the following discussion will exclude

GPA-Tree). For case (A), the power of methods integrating annotations (LSMM, PALM-D1

and PALM-D2) is of the same level with methods only using summary statistics (BH, TGM-zval

and TGM-Pval); for case (B), LSMM, PALM-D1 and PALM-D2 have similarly higher power

than methods without using annotations; for case (C)(D)(E), PALM can model nonlinear

relationship between annotation and association status thus having significant gain in power

compared with other methods. In summary, the results validate the effectiveness of PALM

with z-scores generated from a linear model.

7



Figure S5: Performance of PALM-D1 and PALM-D2 with other related methods, including

BH, TGM-Pval, TGM-Zval, LSMM and GPA-Tree. Heritability h2 = 0.2, number of samples

n = 20, 000, number of SNPs M = 10, 000, and number of annotations L = 50.
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1.3 Quantification of interaction effects between two annotations

In this section, we discuss how to quantify the interaction effects between two annotations

using PALM. Friedman’s H-statistic is introduced to quantify interaction effects [10]. Consider

a function F of several features xl, l = 1, ..., L, if two features xj and xk don’t interact, we can

decompose the 2-way partial dependence function [9] in the following way:

PDjk(xj, xk) = PDj(xj) + PDk(xk), (1)

where PDjk(xj, xk) is the 2-way partial dependence function of both features, and PDj(xj) and

PDk(xk) are the partial dependence functions of the single features. If the two features interact,

Eq. (1) no longer holds and the difference between the observed 2-way partial dependence and

the decomposed one reflects the interaction. Following this idea, the H-statistic measures the

interaction between feature xj and xk as:

H2
jk =

∑n
i=1[PDjk(x

(i)
j , x

(i)
k )− PDj(x

(i)
j )− PDk(x

(i)
k )]2∑n

i=1 PD2
jk(x

(i)
j , x

(i)
k )

, (2)

where n is the sample size for fitting the model. Theoretically, with centered partial dependence

functions, H-statistic is in [0, 1] and a larger H2
jk means a stronger interaction between xj and

xk. In the context of our paper, the 1-way and 2-way partial dependence functions can be

calculated by:

PDj(xj) =
1

M

M∑
i=1

F̂ (xj, x
(i)
\j ), (3)

PDjk(xj, xk) =
1

M

M∑
i=1

F̂ (xj, xk, x
(i)
\jk), (4)

where M is the SNP number, F̂ is the fitted boosted trees, \j and \jk represent features except

j and j, k, respectively.

We implemented the calculation of H-statistic with PALM-D2 (PALM-D1 cannot model

interaction). Fig. R1(a) shows the 2-way interactions of the first 5 annotations in case (B), (C),

(D) and (E). The H-statistics of feature pairs with interaction effects are significantly larger

than zeros while other feature pairs have H-statistics close to zero.

Figure S6: Two-way interactions of the first 5 annotations in case (B), (C), (D) and (E).
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1.4 The influence of missing annotations on the performance of

PALM on simulated data

As PALM is based on the gradient boosting decision trees, it is capable of handling missing

values in functional annotations A. We conduct simulations to gauge the influence of missing

value rate of annotation matrix A on the performance of PALM on simulated data. In details,

we consider four values of missing rates, i.e., mrate ∈ {0.05, 0.1, 0.2, 0.4}, and use 2-fold

cross-validation to select the optimal number of trees. The missing elements in the synthetic

annotation matrix A are randomly chosed.

(a) FDR

(b) Power

Figure S7: The comparison of PALM-D1 and PALM-D2 under different missing rates. M =

20000, D = 50 and non-null z-score distribution = big-normal. The results are summarized

from 50 replications.
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(a) FDR

(b) Power

Figure S8: The comparison of PALM-D1 and PALM-D2 under different missing rates. M =

20000, D = 50 and non-null z-score distribution = near-normal. The results are summarized

from 50 replications.
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(a) FDR

(b) Power

Figure S9: The comparison of PALM-D1 and PALM-D2 under different missing rates. M =

20000, D = 50 and non-null z-score distribution = skew. The results are summarized from 50

replications.
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(a) FDR

(b) Power

Figure S10: The comparison of PALM-D1 and PALM-D2 under different missing rates. M =

20000, D = 50 and non-null z-score distribution = spiky. The results are summarized from 50

replications.
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1.5 The influence of missing annotations on the performance of

PALM on real data

We also conduct simulations to gauge the influence of missing value rate of annotation matrix

A on the performance of PALM on real data. In details, we consider four values of missing

rates, i.e., mrate ∈ {0.05, 0.1, 0.2, 0.4}, and use 2-fold cross-validation to select the optimal

number of trees. The missing elements in the real annotation matrix A are randomly chosen. In

general, the number of prioritized SNPs will decrease as the missing rate of annotation matrix

increases. The two exceptions are Alzheimer’s disease and HIV, whose numbers of prioritized

SNPs under mrate = 0.2, 0.4 are slightly greater than those of without missing values. The

figure below therefore excludes these two GWASs for the sake of visualization.

Figure S11: The number of risk variants identified by PALM-D1 and PALM-D2 on real data,

under under different missing value rates of annotation matrix. For visualization purpose,

these numbers are normalized by dividing the corresponding number of variants identified with

mrate = 0. The number of variants identified are summarized from 30 replications.
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1.6 The influence of cross-validation folds on the performance of

PALM

In the main simulation, the optimal number of trees is selected by 5-fold cross validation. We

conduct simulations to gauge the influence of cross-validation (CV) folds on the performance

of PALM. Specifically, we apply PALM with 2-fold CV and 5-fold CV to the same simulated

data then evaluate FDR and power.

Figure S12: FDR

Figure S13: Power

Figure S14: The comparison of PALM-D1 and PALM-D2 with different cross-validation folds

(K ∈ {2, 5}) under M = 20000, D = 50 and non-null z-score distribution = bimodal. The

results are summarized from 30 replications.
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1.7 The influence of shrinkage parameter on PALM

In the main paper, we fix the shrinkage parameter ν to be 0.1. Here, we use several different

shrinkage parameters ν ∈ {0.01, 0.05, 0.2, 0.4, 0.8} to run PALM under the same simulation

setting as Fig 1(a) with M = 20, 000 and L = 50. From Figure S15(a), we observe that the

magnitude of shrinkage parameter has minor impact on FDR control and power: for PALM-D1,

the estimated FDR and power with different ν under the five cases are almost the same. For

PALM-D2, FDR with ν = 0.8 in case (C) is slightly higher than other ν’s but still in the

tolerable range; power with ν = 0.01 in case (D) is slightly lower than other ν’s. Apart from

the two exceptions, the differences on FDR and power between different shrinkage parameters

are inapparent. Thus, the performance of PALM is insensitive to the choice of shrinkage

parameters, as long as the number of trees is determined by cross-validation.

Although shrinkage parameter shows little influence on risk SNP prioritization, it has some

impact on the number of trees of the final model after cross validation. As displayed in Figure

S15, with a very small shrinkage parameter (e.g ν = 0.01, 0.05), the number of trees in the final

model increases, i.e., the EM algorithm needs more iterations, thus more time-consuming.

Figure S15: The influence of shrinkage parameter ν on (a) the performances of PALM-D1 and

PALM-D2 and (b) the log optimal number of trees of PALM-D1 and PALM-D2. ν and D in

the figures represent the shrinkage parameter and tree depth, respectively.
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1.8 The influence of tree depth on PALM

We have extensively explored PALM with tree depth 1 and 2. Here, we performance PALM

with tree depth 3 and 4 (PALM-D3 and PALM-D4 for short) under the same simulation

settings in paper with SNP number M = 20, 000 and annotation number L = 50. Figure

S16(a) implies that PALM-D3 can still control FDR while PALM-D4 shows a little inflation on

FDR in case (B) and case (C). In terms of statistical power, PALM-D3 and PALM-D4 show

no further improvement compared with PALM-D2 in case (C) and case (D). Although the

optimal numbers of optimal trees of PALM-D3 and PALM-D4 are smaller than PALM-D1 and

PALM-D2, the total computational times of PALM-D3 and PALM-D4 are notably higher since

a larger individual tree costs more time to be fitted.

In summary, if we aim to identify more risk SNPs and the computation cost is not a concern,

PALM-D2 is recommended; if we want to be more conservative and speed up the prioritization,

then PALM-D1 is a great choice. We don’t recommend to use trees with depth greater than 2

for risk SNP prioritization.
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Figure S16: Comparison between PALM-D1, PALM-D2, PALM-D3 and PALM-D4 on (a) FDR

and power of risk SNP prioritization, (b) optimal number of trees and total computational

time, and (c) evaluated variable importance.
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1.9 The influence of LD effects on PALM

Following LSMM, we study the influence of LD effects on PALM using real genotype data

from The Wellcome Trust Case Control Consortium (WTCCC). We consider 23170 SNPs

in chromosome 1 after quality control and randomly select 23 SNPs as true causal SNPs.

We assume the 23 causal SNPs explain 5% phenotypic variance. We use GCTA to simulate

phenotypes and PLINK to calculate p-values for all SNPs. We simulate 110 annotations: SNPs

within 1Mb of causal SNPs are annotated by the first 10 annotations and by 20 of the last 100

annotations with a probability of 60%. All the other SNPs are annotated with a probability

of 10%. We apply two-groups model of p-values (TGM-Pval), PALM-D1 and PALM-D2 to

prioritize risk SNPs.

Because of the LD effects, it is unrealistic to detect the true causal SNPs. However, we can

expect to identify the regions containing causal SNPs. We set different distance threshold to

define the regions around causal SNPs. Any prioritized risk SNP within the regions will be

counted as true positive. As shown in Figure S17, without integrating annotations, two-groups

model can stably control FDR even under the smallest distance threshold (100kb). Since

SNPs within 1Mb of causal SNPs are more likely to be annotated, resulting in the increasing

probability of being prioritized, it is difficult for PALM to well control FDR under a small

distance threshold. As the distance threshold increases, both PALM-D1 and PALM-D2 become

more conservative. We observe that FDR can be controlled at the nominal level 0.1 with a

distance threshold of 500kb and 800kb for PALM-D1 and PALM-D2, respectively.

Figure S17: FDR of two-groups model and PALM for risk SNPs prioritization with different

distance thresholds. The results are summarized from 50 replications.
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2 More about real data analysis

2.1 Discussion on the performance of GPA-Tree

GPA-Tree [12] extends the two-groups model (TGM) by modeling the prior of SNP association

status with a single tree. For the algorithm of GPA-Tree, on the first stage, parameter α of the

two-groups model is estimated by fitting a linear regression in the M step; on the second stage,

with α fixed at its estimation, a full tree is fitted then pruned with a complexity parameter cp

in each iteration until the incomplete likelihood no longer increases even with other cp choices.

In the simulation study, GPA-Tree did not well control FDR under several cases. In the real

data analysis, GPA-Tree did not provide a satisfactory prioritization of risk SNPs: for quite a

few traits, it identified even fewer SNPs than TGM; but it identified much more SNPs than

other related methods on several traits. It seems that GPA-tree suffers from a stability issue.

To figure out the problem with GPA-Tree, we investigate the model fitting process of

GPA-Tree on real data. Figure S18 shows the incomplete log-likelihoods on the first and

second stage obtained by GPA-Tree. We observe that for more than half of the GWASs, the

log-likelihood at the end of second stage is even smaller than that at the end of first stage;

while for several traits, namely HIV, lupus and rheumatoid arthritis, the log-likelihood has

a jump on the second stage (these three traits are exactly the ones with much more SNPs

prioritized by GPA-Tree). The cause of these phenomena can be attributed to the algorithm

design and limitation of the model. In order to prevent overfitting, GPA-Tree pruned the fitted

full tree with the complexity parameter cp. An aggressive cp might leads to uncontrolled FDR

while a conservative cp can limit the power of risk SNP prioritization. With a common cp (e.g

0.005), it is hard to achieve both good power and FDR control for all GWASs. Hence, for some

traits, the log-likelihood using the pruned tree increases compared with that using a linear

regression model; but for many other traits, the log-likelihood degrades on the second stage,

indicating that the use of pruned tree is not more effective than a linear model; for several

other traits, because another smaller cp in the set of candidate cp’s has been found, the newly

pruned tree is dramatically enlarged, resulting in a sudden increase in log-likelihood. Since

there is no stable regularization in GPA-Tree, it cannot credibly and consistently improve risk

SNP prioritization.

Besides the instability, we also notice that, for almost all traits without a jump in log-

likelihood, the tree structure does not change throughout the second stage of GPA-Tree. Figure

S19 shows the tree depths along the iterations on the second stage. Except for HIV, lupus

and rheumatoid arthritis, the tree depths of all the other traits remain unchanged during EM

iterations. Indeed, not only the tree depths keep the same but also the split nodes barely

change throughout the second stage. For instance, the tree structure of BMI only changed once

during EM iterations and the final tree only involves two annotations; the tree structure of

type 1 diabetes keeps unchanged in all iterations (Figure S20(a)(b)). In other words, only the

leaf values are updated in most of the iterations but at the cost of fitting a huge full size tree

and pruning, suggesting the low efficiency of GPA-Tree’s model fitting process.

We also plot the trees fitted by GPA-Tree of traits with abnormally large number of

prioritized SNPs (Figure S20(c)(d)(e) for rheumatoid arthritis, HIV and lupus) and two

traits with prioritized SNPs fewer than TGM (Figure S20(f)(g) for multiple sclerosis and
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type 2 diabetes). Notice that the annotations used to split nodes in rheumatoid arthritis,

HIV and lupus before the jump are in accordance with the important annotations ranked by

PALM. Because of the unstable algorithm, however, GPA-Tree fits much larger trees in the

following iterations and causes inflation. For multiple sclerosis and type 2 diabetes, although

the complexity of the final trees is controlled, it does not fully make use of the annotations.

Compared with PALM, the tree of multiple sclerosis does not use the annotation primary B

cells from peripheral blood which is evaluated to have nonnegligible importance; the tree of type

2 diabetes does not include multiple useful annotations such as monocytes-CD14+ RO01746

primary cells, K562 leukemia cells and fetal hearts. On the contrary, PALM uses a shallow tree

to fit the residual in each EM iteration and ensemble these trees. Therefore, each individual

tree in PALM can contribute to fitting a complex function in different aspects by choosing

several annotations, and the aggregation of trees leads to a strong and stable model.

Figure S18: Incomplete log-likelihoods of 30 GWASs by GPA-Tree. Dots on the left and right

side of the blue vertical line belongs to the first and second stage of GPA-Tree algorithm,

respectively. The complexity parameter cp = 0.005.

21



Figure S19: Tree depths of 30 GWASs along the iterations on the second stage of GPA-Tree.

The complexity parameter cp = 0.005.
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Figure S20: Example fitted trees by GPA-Tree. (a) BMI: tree structure in the 1st and 2nd

iterations (left), tree structure in the rest of iterations (right). (b) Type 1 diabetes: pruned

tree structure in all iterations. (c) Rheumatoid arthritis: tree structure in the 1st and 2nd

iterations (left), tree structure in the 3nd-57th iteration (right). (d) HIV: tree structure in the

1st-4th iterations. (e) Lupus: tree structure in the 11th iteration. Tree structures in the rest

iterations of rheumatoid arthritis, HIV and lupus are not shown here due to their large size. (f)

Multiple sclerosis: tree structure in all iterations. (g) Type 2 diabetes: tree structure in all

iterations.
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2.2 Performance of PALM with tree depth greater than 2

Continuing the discussion on tree depth in section 1.8, we perform PALM-D3 and PALM-D4

on real data and add the results to Figure 2 as shwon in Figure S21. The performance of

PALM-D3 and PALM-D4 on real data verify the simulation result in S16: with the increase of

tree depth, more SNPs can often be identified but PALM-D3 and PALM-D4 may not provide

satisfactory FDR control.

Figure S21: The improvement on the number of prioritized risk SNPs for LSMM, GPA-Tree,

PALM-D1, PALM-D2, PALM-D3 and PALM-D4 compared with TGM under the global FDR

threshold τ = 0.05 and τ = 0.1.
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2.3 Numbers of prioritized SNPs in 30 GWASs

GWAS TGM LSMM GPA-Tree PALM-D1 PALM-D2

Alzheimer 501 573 436 558 578

Bipolar Disorder 134 183 189 195 218

BMI 1299 1382 1024 1415 1428

CAD 386 485 379 495 541

Crohns Disease 3568 3821 3694 3874 3943

HDL 3108 3284 3533 3313 3355

height 78514 80628 79362 80394 80650

HIV 2 19 1173 7 13

IBD 4928 5335 5173 5382 5416

LDL 2860 3037 3180 3055 3080

Lupus 1726 1890 4161 1909 1968

MCH 2058 2242 2027 2254 2277

MCV 2459 2674 2463 2696 2712

Menopause 2788 2978 2654 3002 3059

Multiple sclerosis 408 484 323 526 550

Neuroticism 3092 3122 3134 3148 3193

Primary biliary cirrhosis 1312 1477 1033 1523 1578

RBC 1436 1622 1496 1629 1685

Rheumatoid Arthritis 1235 1430 4213 1360 1426

SCZ1 77 85 110 122 144

SCZ2 635 736 786 781 842

SCZ3 2800 3088 3180 3177 3279

SCZ4 27446 28590 28151 28735 28920

TC 3984 4235 4469 4241 4270

TG 2423 2548 2667 2545 2588

Type 1 Diabetes 1482 1630 1427 1658 1712

Type 2 Diabetes 430 445 376 457 475

Ulcerative Colitis 1983 2179 1964 2183 2209

Years of Education1 476 525 555 556 611

Years of Education2 18678 19286 19040 19389 19306

Table S2: Numbers of prioritized SNPs of 30 GWASs with different methods under the global

FDR threshold τ = 0.05.
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GWAS TGM LSMM GPA-Tree PALM-D1 PALM-D2

Alzheimer 813 927 736 892 921

Bipolar Disorder 311 429 450 451 531

BMI 1918 2082 1659 2178 2210

CAD 819 992 817 995 1069

Crohns Disease 4760 5165 5349 5239 5341

HDL 3638 3872 4493 3913 3961

height 107647 109652 107658 109309 109791

HIV 43 147 2193 109 126

IBD 6905 7496 7644 7549 7602

LDL 3343 3579 4027 3596 3624

Lupus 2882 3194 6952 3175 3279

MCH 2847 3125 3022 3144 3199

MCV 3503 3838 3713 3867 3892

Menopause 3663 3927 3739 3960 4037

Multiple sclerosis 586 718 575 789 840

Neuroticism 5841 5864 5870 5865 5929

Primary biliary cirrhosis 1824 2107 1687 2182 2291

RBC 2378 2718 2561 2706 2784

Rheumatoid Arthritis 2045 2383 7030 2251 2354

SCZ1 458 533 595 611 678

SCZ2 2089 2392 2479 2482 2646

SCZ3 6773 7487 7554 7645 7824

SCZ4 48307 50158 49152 50336 50624

TC 4675 4987 5626 4999 5037

TG 2835 3007 3399 3002 3060

Type 1 Diabetes 2187 2432 2265 2477 2577

Type 2 Diabetes 716 754 645 777 806

Ulcerative Colitis 3030 3377 3185 3372 3381

Years of Education1 1512 1589 1644 1638 1749

Years of Education2 33526 34490 33904 34685 34306

Table S3: Numbers of prioritized SNPs of 30 GWASs with different methods under the global

FDR threshold τ = 0.1.
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2.4 Genic category of prioritized SNPs by PALM

We use ANNOVAR [26] to obtain the genic categories of SNPs prioritized by PALM. We found

that most prioritized SNPs are indeed in the non-coding regions (Figure S22), consistent with

the fact that most GWAS hits are in the non-coding regions.

Figure S22: The proportion of 9 genic functional categories of SNPs prioritized by PALM-D1

and PALM-D2 under the FDR threshold τ = 0.05 and τ = 0.1.
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2.5 Analysis on four Schizophrenia GWASs with different sample

sizes

Figure S23: Venn diagrams comparing SNPs prioritized by TGM, LSMM and PALM-D2 of

four SCZ GWASs under the FDR control threshold τ = 0.05.
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Figure S24: Venn diagrams comparing SNPs prioritized by TGM, LSMM and PALM-D2 of

four SCZ GWASs under the FDR control threshold τ = 0.1.
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Figure S25: Venn diagrams comparing SNPs prioritized by TGM, PALM-D2 of SCZ GWAS

with a smaller sample size and TGM of SCZ GWAS with a larger sample size under the FDR

control threshold τ = 0.05.

Figure S26: Venn diagrams comparing SNPs prioritized by TGM, PALM-D2 of SCZ GWAS

with a smaller sample size and TGM of SCZ GWAS with a larger sample size under the FDR

control threshold τ = 0.1.
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2.6 Analysis on two Years of Education GWASs with different

sample sizes

Figure S27: Venn diagrams comparing SNPs prioritized by TGM, LSMM and PALM-D2 of

two Years of Education GWASs under the FDR control threshold τ = 0.05 and τ = 0.1.

Figure S28: Venn diagrams comparing SNPs prioritized by TGM, PALM-D2 of Years of

Education GWAS with a smaller sample size and TGM of Years of Education GWAS with a

larger sample size under the FDR control threshold τ = 0.05 and τ = 0.1.
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2.7 Sources of 30 GWASs

GWAS/Trait Sample size Paper/Data link

Alzheimer 74,046 [13] (https://alkesgroup.broadinstitute.org/sumstats formatted/)

BMI 249,796 [25] https://alkesgroup.broadinstitute.org/sumstats formatted/

Bipolar Disorder 16,731 [2] (https://alkesgroup.broadinstitute.org/sumstats formatted/)

CAD (Coronary Artery Disease) 86,995 [24] (http://www.cardiogramplusc4d.org/data-downloads/)

Crohns Disease 75,000 [11] (https://alkesgroup.broadinstitute.org/sumstats formatted/)

Height 253,288 [27] (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files)

HDL (High-density Lipoprotein) 188,577 [4] (http://csg.sph.umich.edu//abecasis/public/lipids2013/)

HIV 13,500 [14] (https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003515)

IBD (Inflammatory Bowel Disease) 75,000 [11] (https://alkesgroup.broadinstitute.org/sumstats formatted/)

LDL (Low-density Lipoprotein) 188,577 [4] (http://www.sph.umich.edu/csg/abecasis/public/lipids2013/)

Lupus 23,210 [5] (https://www.immunobase.org/downloads/protected data/GWAS Data/)

MCH (Mean Cell Haemoglobin) 135,367 [21] (https://ega-archive.org/studies/EGAS00000000132)

MCV (Mean Cell Volume) 135,367 [21] (https://ega-archive.org/studies/EGAS00000000132)

Menopause 69,360 [8] (http://www.reprogen.org/data download.html)

Multiple Sclerosis 15,474 [1] (https://www.immunobase.org/downloads/protected data/GWAS Data/)

Neuroticism 170,911 [18] (http://ssgac.org/documents/Neuroticism Full.txt.gz)

Primary Biliary Cirrhosis 13,239 [7] (https://www.immunobase.org/downloads/protected data/GWAS Data/)

Red Cell Count 135,367 [21] (https://ega-archive.org/studies/EGAS00000000132)

Rheumatoid Arthritis 103,638 [17] (https://alkesgroup.broadinstitute.org/sumstats formatted/)

SCZ1 (Schizophrenia) 17,115 [16] (https://www.med.unc.edu/pgc/results-and-downloads)

SCZ2 (Schizophrenia) 21,856 [3] (https://www.med.unc.edu/pgc/results-and-downloads)

SCZ3 (Schizophrenia) 32,143 [23] (https://www.med.unc.edu/pgc/results-and-downloads)

SCZ4 (Schizophrenia) 150,064 [20] (https://www.med.unc.edu/pgc/results-and-downloads)

TC (Total Cholesterol) 188,577 [4] (http://csg.sph.umich.edu//abecasis/public/lipids2013/)

TG (Triglycerides) 188,577 [4] (http://csg.sph.umich.edu//abecasis/public/lipids2013/)

Type 1 Diabetes 26,890 [6] (https://www.immunobase.org/downloads/protected data/GWAS Data/)

Type 2 Diabetes 149,821 [15] (http://diagram-consortium.org/downloads.html)

Ulcerative Colitis 75,000 [11] (https://alkesgroup.broadinstitute.org/sumstats formatted/)

Years of Education1 126,559 [22] (https://alkesgroup.broadinstitute.org/sumstats formatted/)

Years of Education2 293,723 [19] (http://ssgac.org/documents/EduYears Main.txt.gz)

Table S4: Sources of 30 GWASs in the real data analysis.
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