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1 Initialization of AdmixtureBayes

In order to use the Gelman-Rubin statistics and monitor mixing of the Markov

chain, it is desirable for AdmixtureBayes to begin in a randomly chosen initial

graph, ideally one that is overdispersed relative to the posterior. Unfortunately,

our specification of the prior on admixture graphs does not yield a natural sim-

ulation model. We instead constructed an algorithm that simulates admixture

graphs conditioned on the number of admixture events using a discrete-time

Markov chain that follows lineages back in time. We sample a number of ad-

mixture events from our prior on the number of admixture events (geometric

distribution with parameter 0.5, truncated to a maximum of 20) and then run

the following algorithm to obtain our initial graph.

If there are L leaves, there are L free lineages at the start. Given the number

of leaves and the number of admixture events, we know the number of divergence

and admixture nodes. The free lineages choose a parent node uniformly at

random such that

1. No more than two lineages choose the same divergence node

2. No more than one lineage choose the same admixture node

3. No ‘eyes’ are formed. That is, two lineages from the same admixture node

will not choose the same divergence node.

4. The complete admixture graph can still be constructed. For example, if

no two lineages had chosen the same divergence node, there would not be

any free lineages in the next step of the Markov chain.

When two lineages have chosen a divergence node, a new free lineage is re-

leased for the next step in the Markov chain. Likewise, a chosen admixture

node produces two new lineages. The algorithm stops when there is just one

free lineage left and all divergence nodes and admixture nodes have been ‘filled’.

For topologies without admixture events, our simulation algorithm chooses uni-

formly among the possible topologies. For topologies with admixture events, our
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algorithm inherently prefers admixture events closer to the root when compared

to the uniform prior. However, each graph in the state space is still chosen with

positive probability and the distribution is still overdispersed with respect to

the posterior, so this is still an acceptable way of randomly choosing an initial

graph for the purpose of Gelman-Rubin analysis.

2 Robustness correction

In the Bayesian phylogeny program MrBayes [1], it has been shown that in-

dependent, exponentially distributed priors on the branch lengths can unduly

influence posterior estimates of total tree length [2], which could also be a prob-

lem for AdmixtureBayes. To see this, consider the average branch length c̄. For

simplicity, assume the effective population size, Ne, is constant across the ad-

mixture graph. Furthermore, suppose that the exponential rate of Eq 9 (Main

Text) is 1. Let T =
∑

Ti be the total time (not drift) of all branches in the

admixture graph. Then we can write

c̄ =
1

D

D∑
i=1

e−
Ti

2Ne ≈ T

2DNe
. (1)

Since it is an average of independent random variables, its mean and variance

are

E(c̄) = 1 (2)

Var(c̄) =
1

D
(3)

This means that the prior expects T
2DNe

to be very close to 1. However, for

real datasets we would expect the ratio to vary much more, and there is no

biological reason why it should be near the arbitrary number 1. For a specific

dataset, if the true value of T
2DNe

were smaller than 1, the posterior would be

overestimated for admixture graphs with higher values of T
2DNe

. Such graphs

would generally possess a deflated number of admixture events and thereby a
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smallerD. Similarly, large true values of the ratio would result in a skew towards

admixture graphs with an inflated number of admixture events.

To mitigate the problems caused by the independent, exponential priors, Mr-

Bayes includes an alternative compound Dirichlet-Gamma prior on the branch

lengths, such that the variance of the average branch length can be set arbitrar-

ily high [2]. However, we normalize the data covariance matrix and adjust the

rates of the exponential distributions accordingly.

To reduce the sensitivity of our posterior estimates to the prior, we wish for

the prior exponential rate of ci to be close to T
2DNe

. We rewrite

E[c̄] =
2L− 2

D
·
E[

∑
i ci]

2L− 2
(4)

The first fraction is manageable because the prior is allowed to depend on L

and D. The second fraction is the average branch length if there are no ad-

mixture events in the admixture graph. It can be estimated by summing the

outgroup-leaf distances for all leaves and dividing by the number of branches be-

tween the outgroup and the leaves. Denote that divisor D̃ =
∑L

l=1 bl, where bl

is the number of branches between the outgroup and leaf l. We know that

bl will be 1 more than the number of branches between the root and leaf

l. Unfortunately, the number of branches between the root and a given leaf

node will depend on the tree topology. We therefore make the approximation

D̃ ≈
∑L

l=1 (log2(L) + 1) = L log2(L) + L based on the fact that in a balanced

full binary tree with L leaves, the number of branches between a leaf node and

the root can be approximated as log2(L). This leads to the approximation

E[c̄] ≈ 2L− 2

D
·
E[

∑L
l=1

∑
i∈Cl

ci]

L log2(L) + L
(5)

where Cl is the set of indices of the branches between the outgroup and leaf l.

Regardless of the true topology, we can estimate E[
∑L

l=1

∑
i∈Cl

ci] by the trace
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of the data covariance matrix.

Ê[c̄] =
2L− 2

D
· tr[S/h̄]

L log2(L) + L
(6)

=
2L− 2

D
· 1

cS
(7)

Instead of letting (7) be the exponential rate of the branch length prior, we

normalize the data covariance matrix by cS and let 2L−2
D be the expected mean

of the branch lengths. We avoid having a prior that depends on the data by

moving cS out of the prior. However, since cS depends on the data, the matrix

cSS/ĥ would not be Wishart distributed, even if S/ĥ were truly Wishart dis-

tributed. The scaling by cS therefore adds another layer of approximation to

the likelihood.

This robustness correction makes the graph inference independent of the

absolute scale (as measured by the trace) of the data covariance matrix. The

maximum likelihood methods TreeMix [3], qpGraph [4], OrientAGraph [5], and

MixMapper [6] inherently have this property as well.

3 Evaluating convergence and mixing rate

In order to evaluate the convergence of the MCMC sampler, we used two dif-

ferent metrics, both of which are based on examining summary statistics of the

chain. The summary statistics we chose to consider were the number of admix-

ture events, the posterior probability, and the total branch length of the graph.

Our first metric was simply examining the trace plots of the chain. From these

plots, it is often possible to visualize the burn-in period. The second metric was

the more sophisticated Gelman-Rubin convergence diagnostic, which analyzes

the behavior of several chains run in parallel from different starting states [7].

This diagnostic is based on calculating the ratio of the variance of the summary

statistic between chains to the variance of the summary statistic within chains.

A ratio close to 1 signifies that all chains have converged from their disparate
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starting states to the same equilibrium distribution. We used the coda package

to perform this comparison [8]. To evaluate the mixing rates of the chain, we

plotted the autocorrelation of the summary statistics as a function of the lag

between samples.

We demonstrated these analyses on the real dataset of Arctic and Native

Americans presented in this paper. We ran AdmixtureBayes for 3 independent

runs, each with --MCMC chains 32 (which means that each run has 32 paral-

lel Metropolis-coupled chains which each vary in “temperature”) and using a

random starting state, which is the default behavior of AdmixtureBayes. We

plot the convergence and mixing results in S11 Fig, S12 Fig, and S13 Fig. The

exact code used to run AdmixtureBayes for this analysis as well as the conver-

gence analysis code is available in the Convergence folder of the AdmixtureBayes

GitHub.

4 Quantifying uncertainty due to small sample

sizes

As discussed in the section “AdmixtureBayes Model”, our method explicitly

takes into account variance in the allelic covariance matrix due to sampling few

haplotypes. We here give a formal demonstration of the way in which Admix-

tureBayes is able to quantify uncertainty due to sampling a small number of

haplotypes from each population. We consider a simple model in msprime

with 4 populations whose history can be described by the simple tree

(((pop1,pop2),pop3),pop4). There are no admixture events. We simulate a

genomic region in this model where we sample 4 haplotypes from each popula-

tion and when we sample 40 haplotypes from each population. We perform each

of these simulations 100 times and run AdmixtureBayes on each of the output

files (taking pop4 as the outgroup). We then examine the posterior probabil-

ities of the inferred topologies of AdmixtureBayes. We plot the results in S15

Fig. From these boxplots, we observe that while the true topology is indeed
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the one inferred by AdmixtureBayes to have the highest posterior in both cases,

the simulated datasets with 40 haplotypes generate a probability distribution

that is much more concentrated on the true admixture graph. We therefore see

that AdmixtureBayes shows a higher level of uncertainty when sampling small

numbers of haplotypes from populations and lower uncertainty when sampling

many haplotypes from populations, which is consistent with the Admixture-

Bayes model. The code to run this analysis is in the folder SampleSize on the

AdmixtureBayes GitHub.

5 Number of admixture graph topologies

In order to compute the prior on the space of admixture graphs, we use the

number of possible admixture graph topologies with K admixture events. This

number grows at least exponentially with K and is further complicated by our

specific requirements to the admixture graph topology. For computational con-

venience we will consider an extended class of admixture topologies: a multi-

graph topology with L leaves is an acyclic directed multigraph (which is a graph

that allows more than one edge between two vertices) for which

1. There exists one and only one root. That is a node with no parents and

exactly one child.

2. The number of nodes with no children is L. All these nodes have only one

parent and are called leaves.

3. If a node is neither a root nor a leaf, it has either

(a) 1 parent and 2 children in which case we call it a divergence node, or

(b) 2 parents and 1 child in which case we call it an admixture node.

This extends our original definition of an admixture graph topology by allowing

eyes, i.e. admixture nodes whose parent branches merge in the same divergence

node. The root is also now a node with one child instead of two, which means
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that all multigraph topologies have a single branch “on top.” We also ignore the

outgroup. This will have no effect on the enumeration of topologies as we know

it is always connected by a single edge to the root. Furthermore, we explicitly

label all inner nodes. As before each admixture node will have one main parent

branch and one admixture parent branch. We will use the notation

• The edges leading to leaves are referred to as terminal edges.

• A set of two terminal edges from a single node is a pair.

These graph elements are illustrated in S1 Fig.

A multigraph topology consists of a set of nodes V, a set of main edges EM ,

and a set of admixture edges EA. There are L leaf nodes, {l1, . . . , lL} ⊆ V.

For every admixture node, one of its parent branches belongs to EA and the

other belongs to EM . Note that all nodes are uniquely labeled. However, we are

only interested in counting the number of topologies that differ in a nontrivial

way. For example, switching the labels of leaf nodes that form a pair can be

considered a trivial change to a topology. Therefore, we construct equivalence

classes on the set of multigraph topologies and count those equivalence classes

instead.

Let E = EA ⊎EM be the multiset union of EM and EA. The admixture edges

of a multigraph topology (V, EM , EA) are classified into two subsets, EM and

EA, but we can also disregard the classification and consider the reduced multi-

graph topology (V, E). We call a graph isomorphism between reduced multi-

graph topologies shape preserving while a graph isomorphism between multi-

graph topologies is symmetry preserving. A symmetry preserving isomorphism

is clearly also shape preserving. If f is a symmetry preserving graph isomor-

phism, we say that f is leaf preserving if f(lj) = lj for all j = 1, . . . , L. When

counting admixture graphs, we consider two admixture graphs different if and

only if they are not isomorphic under such an isomorphism.

For a fixed number of leaves L, number of pairs P , number of admixture

events K, and eyes E, we will consider the three sets

8



1. The set of equivalence classes under shape preserving isomorphisms is

denoted SL,P,K,E . The equivalence classes are called shapes.

2. The set of equivalence classes under symmetry preserving isomorphisms is

denoted UL,P,K,E . The equivalence classes are called unlabeled topologies.

3. The set of equivalence classes under leaf preserving isomorphisms is de-

noted TL,P,K,E . The equivalence classes are called topologies and some-

times explicitly labeled topologies.

We are particularly interested in the cardinality of the set TL,P,K,E , which

we denote by N(L,P,K,E). The difference between the sets SL,P,K,E , UL,P,K,E

and TL,P,K,E is illustrated in S2 Fig.

In S2 Fig, both shapes in S3,1,1,0 correspond to two unlabeled topologies in

U3,1,1,0, and each of the four unlabeled topologies in U3,1,1,0 correspond to three

topologies in T3,1,1,0. However, in general some graphs exhibit more symmetry

than others. Let US be the set of unlabeled topologies corresponding to the

shape S, and TU the set of topologies corresponding to the unlabeled topology

U , so that

TL,P,K,E =
⋃

U∈UL,P,K,E

TU =
⋃

S∈SL,P,K,E

⋃
U∈US

TU . (8)

As illustrated in S3 Fig, we can have |US1
| ̸= |US2

| with S1, S2 ∈ SL,P,K,E , and

|TU1
| ≠ |TU2

| with U1, U2 ∈ US , S ∈ SL,P,K,E .

Given an unlabeled topology U ∈ UL,P,K,E , choose an arbitrary multigraph

topology representative of U denoted G. Let T ′
U be the set of all multigraph

topologies obtained by relabeling the L leaves of G using the L! possible permu-

tations. Clearly each equivalence class in TU is represented by at least one of the

elements in T ′
U , implying |TU | ≤ |T ′

U |. Consider the set of elements of T ′
U that

are isomorphic to G under a leaf preserving isomorphism. It can be considered

as a set of permutations, HG, where the identity permutation corresponds to G.

It is straightforward to show that HG is a subgroup of the permutation group.

Because HG is a subgroup, its cosets are disjoint, contain the same number of
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elements, and span the whole permutation group (see S4 Fig). This characteri-

zation gives us a more concrete representation of the elements TL,P,K,E , namely

as equi-sized sets of permutations of the leaf-labels.

There are two basic approaches for counting phylogenetic trees with labeled

leaves: recurrence by splitting the tree at the root [9] or recurrence by removal

of one of the leaves [10]. The first approach is difficult to generalize to admix-

ture graphs, but the latter strategy behaves relatively nicely. Our strategy for

counting topologies is based on decomposing a topology into a recursive series

of predecessors, such that we only need to count the number of possible pre-

decessors in each step. The predecessor ρ(G) of a labeled topology G with L

leaves is defined as follows. In ρ(G) the leaf lL and the terminal edge leading

to it are removed and

1) If the terminal edge was from a node with outdegree 2, the edge to it and

the remaining edge from it are combined to a single edge.

2) If the terminal edge was from an admixture node, the admixture node is

also removed, its parental edge in EM is redirected to a new leaf lL and

its parental edge in EA is redirected to a new leaf lL+1.

Examples of topologies and their predecessors are given in S5 Fig. The topology

with only one edge (graph ρ(G1.2) in S5 Fig) has no predecessor. By examining

the graph elements of the predecessors, we can now derive a recurrence formula
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for the numbers N(L,P,K,E):

N(L,P,K,E) = 2(E + 1)N(L− 1, P,K,E + 1)

+(L− 2P + 1)N(L− 1, P − 1,K,E)

+(L+ 2P + 3K − 2E − 2)N(L− 1, P,K,E)

+
2(P + 1)

L(L+ 1)
N(L+ 1, P + 1,K − 1, E − 1)

+
4(P + 1)(P + 2)

L(L+ 1)
N(L+ 1, P + 2,K − 1, E)

+
4(P + 1)(L− 2P − 1)

L(L+ 1)
N(L+ 1, P + 1,K − 1, E)

+
(L− 2P )(L− 2P + 1)

L(L+ 1)
N(L+ 1, P,K − 1, E)

(9)

The initial conditions are N(1, 0, 0, 0) = 1 and N(L,P,K,E) = 0 if L < 1,

P > 2L, K < E or E < 0.

The predecessor of any topology in TL,P,K,E is from one of eight possible

sources TL′,P ′,K′,E′ . We count N(L,P,K,E) by looking at these eight sub

cases and finding out which graphs in TL′,P ′,K′,E′ are eligible predecessors and

of how many graphs in TL,P,K,E . An example of all the sub cases 1.1) – 2.4) is

presented in S5 Fig.

1.1) The latest leaf lL stems from an edge forming an eye in ρ(G). Then

ρ(G) ∈ TL−1,P,K,E+1, and since every topology in TL−1,P,K,E+1 has E+1

eyes, and every eye has two edges, the contribution to N(L,P,K,E) is

2(E + 1)N(L− 1, P,K,E + 1) (10)

1.2) The latest leaf lL stems from a terminal edge not belonging to any pairs in

ρ(G). Since ρ(G) ∈ TL−1,P−1,K,E , and every topology in TL−1,P−1,K,E has

L− 1 terminal edges, 2(P − 1) of which belong to a pair, the contribution

to N(L,P,K,E) is

(L− 2P + 1)N(L− 1, P − 1,K,E) (11)
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1.3) The latest leaf lL stems from an edge belonging to a pair in ρ(G). Since

ρ(G) ∈ TL−1,P,K,E , and every topology in TL−1,P,K,E has 2P edges be-

longing to a pair, the contribution to N(L,P,K,E) is

2PN(L− 1, P,K,E) (12)

1.4) The latest leaf lL stems from an edge which is neither terminal nor form an

eye in ρ(G). Since ρ(G) ∈ TL−1,P,K,E , and every topology in TL−1,P,K,E

has 2L+3K−3 edges by induction, L−1 of which are terminal and other

2E form eyes, the contribution to N(L,P,K,E) is

(L+ 3K − 2E − 2)N(L− 1, P,K,E) (13)

2.1) The latest leaf lL of G stems from an admixture node formed by joining

together the edges lL and lL+1 that form a pair in ρ(G). We now have

ρ(G) ∈ TL+1,P+1,K−1,E−1, but not every topology in TL+1,P+1,K−1,E−1

have the property p1 that the leaves lL and lL+1 form a pair.

Let U ∈ UL+1,P+1,K−1,E−1 be any unlabeled topology. By simple combi-

natorics, the proportion of multigraph topologies with property p1 among

the (L + 1)! elements in T ′
U is 2(P + 1)/(L2 + L). Since the property p1

is invariant under leaf preserving graph isomorphisms, and every equiv-

alence class under the leaf preserving graph isomorphisms in T ′
U have

the same cardinality, the proportion of p1 among the labeled admix-

ture graphs in TU is also 2(P + 1)/(L2 + L). Finally, because this ap-

plies to every U ∈ UL+1,P+1,K−1,E−1, using (8) we conclude that the

proportion of topologies having property p1 among all the topologies in

TL+1,P+1,K−1,E−1 must be 2(P + 1)/(L2 + L) too. Therefore, the contri-

bution to N(L,P,K,E) is

2(P + 1)

L2 + L
N(L+ 1, P + 1,K − 1, E − 1) (14)
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2.2) The latest leaf lL stems from an admixture node formed by joining to-

gether two edges belonging to two distinct pairs in ρ(G). We now have

ρ(G) ∈ TL+1,P+2,K−1,E , but not every topology in TL+1,P+2,K−1,E have

the property p2 that the leaves lL and lL+1 belong to two distinct pairs.

Let U ∈ UL+1,P+2,K−1,E be any unlabeled topology. By simple combina-

torics, the proportion of multigraph topologies having property p2 among

the (L+ 1)! elements in T ′
U is 4(P 2 + 3P + 2)/(L2 + L). As before, since

the property p2 is invariant under leaf preserving graph isomorphisms, all

equivalence classes in T ′
U are of equal size and this holds for all unlabeled

topologies, the proportion of topologies having property p2 among the

elements in TL+1,P+2,K−1,E is the same. Therefore, the contribution to

N(L,P,K,E) is

4(P 2 + 3P + 2)

L2 + L
N(L+ 1, P + 2,K − 1, E) (15)

2.3) The latest leaf lL stems from an admixture node formed by joining together

two terminal edges exactly one of which belongs to a pair in ρ(G). We now

have ρ(G) ∈ TL+1,P+1,K−1,E , but not every topology in TL+1,P+1,K−1,E

have the property p3 that exactly one of the leaves lL and lL+1 belong to

a pair.

Let U ∈ UL+1,P+1,K−1,E be any unlabeled topology. By simple combina-

torics, the proportion of multigraph topologies having property p3 among

the (L + 1)! elements in T ′
U is 4(PL + L − 2P 2 − 3P − 1)/(L2 + L). As

before, since the property p3 is invariant under leaf preserving graph iso-

morphisms, all equivalence classes in T ′
U are of equal size and this holds

for all unlabeled topologies, the proportion of topologies with property

p3 among the topologies in TL+1,P+1,K−1,E is the same. Therefore, the

contribution to N(L,P,K,E) is

4(PL+ L− 2P 2 − 3P − 1)

L2 + L
N(L+ 1, P + 1,K − 1, E) (16)
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2.4) The latest leaf lL stems from an admixture node formed by joining to-

gether two terminal edges outside the pairs of ρ(G). We now have ρ(G) ∈

TL+1,P,K−1,E , but not every topology in TL+1,P,K−1,E have the property

p4 that the leaves lL and lL+1 do not belong to a pair.

Let U ∈ UL+1,P,K−1,E be any unlabeled topology. By simple combina-

torics, the proportion of multigraph topologies having property p4 among

the (L + 1)! elements in T ′
U is (L2 − 4PL + L + 4P 2 − 2P )/(L2 + L).

As before, since the property p4 is invariant under leaf preserving graph

isomorphisms, all equivalence classes in T ′
U are of equal size and this holds

for all unlabeled topologies, the proportion of topologies having property

p4 among the elements in TL+1,P,K−1,E is the same. Therefore, the con-

tribution to N(L,P,K,E) is

L2 − 4PL+ L+ 4P 2 − 2P

L2 + L
N(L+ 1, P,K − 1, E) (17)

Formula (9) follows by summing up all the contributions (10) – (17). The

recurrence procedure converges in L+ 2K steps, because either L decreases by

one, or K decreases by one increasing L by one.
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