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GWAS summary statistics for PSC and other polygenic traits used in the present study. 

We downloaded publicly available GWAS summary statistics from existing data resources, the NHGRI-EBI GWAS 

Catalog1, the MR IEU OpenGWAS data2,3, and the international PSC Study Group4. PSC summary statistics can be 

downloaded from the international PSC Study Group (IPSCSG; https://www.ipscsg.org/published-studies/) and the 

NHGRI-EBI GWAS Catalog (http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST004001-

GCST005000/GCST004030). The details, including data code, category of trait, sample size, number of SNPs, reference 

with PMID, and download link, are shown in Supplementary Data 1.  

Estimates of genetic heritability and pairwise genetic correlation using LDSR analysis. 

We implemented LD score regression (LDSR; ldsc v1.0.1, https://github.com/bulik/ldsc)5,6 to estimate genome-wide SNP-

array heritability (h2) representing the proportion of phenotypic variance explained by all common SNPs and to examine 

the shared genetic contribution (rg) of PSC against numerous polygenic traits using publicly available GWAS summary 

statistics and linkage disequilibrium (LD) information with European samples from 1000 Genome Project as a reference for 

the pattern of genome-wide LD. LDSR is a method regressing χ2 statistics from summary statistics on LD scores, estimating 

genetic correlation without bias due to population stratification or cryptic relatedness5,6. By regressing SNP-level 

associations for two traits, (i.e., the product of Z scores, ZPSC× Ztrait1) and weighting each SNP by its LD score, which is an 

estimate of the total amount of genetic variations tagged by each variant, we can estimate the magnitude and direction of 

the shared genomic architecture between PSC and a tested trait. We first implemented the command option of LD Score 

with “munge_sumstats.py” to generate the “.sumstats” format from the summary statistics after selecting approximately 

1.22M HapMap3 SNPs with minor allele frequency (MAF) > 0.01 and exclusion of multi-allelic SNPs and the major 

histocompatibility complex (MHC) region (Chr6:25Mb-34Mb) as recommended. The major histocompatibility complex 

(MHC) region was excluded from summary statistics because of the complex and extended LD pattern and genetic 

architecture of the MHC region7-10. We then applied “ldsc.py --rg PSC.sumstats.gz, trait1.sumstats.gz --ref-ld-chr 

eur_w_ld_chr/ --w-ld-chr eur_w_ld_chr/ --out PSC_trait1”.  

Joint association analysis of multi-traits on PSC. 

We carried out MTAG11 (mtag v1.0.8; https://github.com/JonJala/mtag) to discover new independent PSC risk-associated 

loci against polygenic traits that demonstrated strong genetic correlation with PSC through LDSR analysis. MTAG11 

estimates the effect size per SNP for each trait by incorporating information included in other correlated traits by utilizing 

https://www.ipscsg.org/published-studies/
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST004001-GCST005000/GCST004030
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST004001-GCST005000/GCST004030
https://github.com/bulik/ldsc
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bivariate LD score regression to gauge sample overlaps between summary statistics from multiple GWAS as input in MTAG 

(since MTAG does not require summary statistics from independent samples11 among the multiple GWAS). It then carries 

out a combined LD score regression and meta-analysis approach from the genetically related traits. MTAG aligned all alleles 

in all summary statistics analyzed, and SNPs not present in any summary statistics were removed further. The output from 

MTAG provides re-estimated effect size and P-value (P) per each SNP for each trait. 

Summary statistics imputation. 

Since MTAG utilizes a common set of SNPs that overlap among all tested traits, MTAG implementation with high-powered 

GWAS is recommended11. The number of SNPs for PBC is approximately 5M, and those for other immune-mediated 

disorders are approximately ~8M (PSC and lupus) and ~10M (IBD, CD, and UC). We imputed the GWAS summary 

statistics for PBC12 using SSimp package13 (ssimp v.0.5.6; https://github.com/zkutalik/ssimp_software)  and European 

individuals from the 1000 Genomes Project phase 3 reference panel, filtering out SNPs with a MAF ≤ 0.005. This imputation 

increased the number of SNPs from 5,054,572 to 8,412,578 for subsequent analyses, such as LDSR and MTAG, after 

removing SNPs with poor imputation quality (r2 < 0.5). We applied “ssimp --gwas in.chr22 \ --ref 

~/reference_panels/1000genomes/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz \  

--sample.names 

~/reference_panels/1000genomes/integrated_call_samples_v3.20130502.ALL.panel/sample/super_ pop=EUR 

 --imputed.maf 0.005 --impute.range 22 --out out.chr22 “ in SSimp as an example for chromosome 22 (as an example script 

for chromosome 22). 

Colocalization between GWAS and Expression quantitative trait locus signals from the Genotype-Tissue Expression 

Based on the prediction that risk variants may exert their effects via various tissues, we surveyed all 49 tissue types available 

in Genotype-Tissue Expression (GTEx)14 v8. The sample size of each tissue is described in Supplementary Data 3. All 

variant-gene cis-expression quantitative trait locus (eQTL) associations tested in each tissue within ±100kb windows of the 

lead variant presented in MTAG_PSC were extracted. Colocalization of the MTAG_PSC and eQTL signals was calculated 

using the LD-independent colocalization approach (coloc v5.1.0; https://cran.r-project.org/web/packages/coloc/)15. 

Although the PSC GWAS4 implemented population stratification analysis and focused on European-descent individuals, 

we applied the LD-independent approach to avoid spurious colocalizations due to the violation of common LD assumption 

https://github.com/zkutalik/ssimp_software
https://cran.r-project.org/web/packages/coloc/
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in the GWAS summary-level data. We considered the colocalizations when coloc suggested the plausible posterior 

probability that both PSC and a tissue from GTEx v8 are associated and share a single function variant (PP4 > 0.80).   

Gene-based functional enrichment analysis using STRING database and DAVID Bioinformatics Resources 

We carried out gene-based enrichment analysis of protein-protein interaction (PPI) networks amongst 406 potential 

candidate genes from position mapping, eQTL mapping, and chromatin interaction mapping as well as newly 19 MTAG-

identified and previously reported PSC risk-associated genes using STRING PPI networks (STRING v11.5; https://string-

db.org/cgi/input?sessionId=bmwWOuutn8ZR). We selected the setting options with the max number of interactions = 20 

and the highest confidence score of 0.9 to survey the functional enrichment of numerous pathways by genes. We also utilized 

the Database for Annotation, Visualization, and Integrated Discovery (DAVID v6.8; https://david.ncifcrf.gov/) 

Bioinformatics Resources to survey the enrichment of various functional annotations (count > 2, P-value < 0.05).  

Network-based proximity between drugs and disease-identified proteins for drug repurposing 

To estimate a drug-disease proximity measures, distance (d) and the corresponding relative proximity (z), we implemented 

network-based proximity analysis for drug repurposing developed by Guney et al.16. The method provides a relative 

measure that quantifies the network-based proximity (or closeness) between drugs and disease proteins encoded by genes 

associated with disease12,16. We obtained the drug and drug target data from the DrugBank database17 (version 5.1.9, 

https://go.drugbank.com/releases/latest, accessed in April 2022). In this study, we selected 39 PSC-associated genes from 

previously reported genome-wide significant associations18 and newly MTAG-identified associations at P=5.00×10-8 

(Supplementary Data 16). Among them, 32 candidate genes were converted to NCBI gene IDs using Ensembl 

BioMart19and used to calculate the relative proximity between each drug in the DrugBank database (v5.1.9) and a set of 

candidate proteins for PSC (Supplementary Table 1). All required packages are available at the emreg00 GitHub 

repository (https://github.com/emreg00)16.  
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Supplementary Table 1. PSC risk-associated candidate protein input for drug repurposing analysis. Candidate 
proteins were selected based on a genome-wide significant P-value shown in Supplementary Data 16.    

Gene stable ID version Gene name NCBI gene ID Gene stable ID version Gene name NCBI gene ID 
ENSG00000178562.13 CD28 940 ENSG00000038532.10 CLEC16A 23274 
ENSG00000178623.7 GPR35 2859 ENSG00000105287.8 PRKD2 25865 
ENSG00000109471.4 IL2 3558 ENSG00000114861.14 FOXP1 27086 

ENSG00000134460.11 IL2RA 3559 ENSG00000198218.6 QRICH1 54870 
ENSG00000068383.14 INPP5A 3632 ENSG00000061273.13 HDAC7 51564 
ENSG00000128604.14 IRF5 3663 ENSG00000160185.9 UBASH3A 53347 
ENSG00000109323.4 MANBA 4126 ENSG00000138684.3 IL21 59067 

ENSG00000173531.11 MST1 4485 ENSG00000112182.10 BACH2 60468 
ENSG00000204842.10 ATXN2 6311 ENSG00000142606.11 MMEL1 79258 
ENSG00000196628.9 TCF4 6925 ENSG00000103047.3 TANGO6 79613 

ENSG00000118503.10 TNFAIP3 7128 ENSG00000124780.9 KCNK17 89822 
ENSG00000183527.7 PSMG1 8624 ENSG00000167037.14 SGSM1 129049 

ENSG00000153094.17 BCL2L11 10018 ENSG00000162927.9 PUS10 150962 
ENSG00000111252.6 SH2B3 10019 ENSG00000119919.9 NKX2-3 159296 
ENSG00000150637.4 CD226 10666 ENSG00000168071.17 CCDC88B 283234 
ENSG00000170145.4 SIK2 23235 ENSG00000266760.1 MIR4464 100616109 
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Supplementary Figure 1. LocusZoom plots of regional genome-wide associations for MTAG-identified PSC-

specific new susceptibility associations. LocusZoom genomic regional plot displays a new PSC-specific risk locus 

identified from the multi-trait analysis of GWAS (MTAG) in the discovery study. All presented P-values (p-value) are 

two-sided unadjusted P-values. The newly MTAG-identified PSC risk variant is colored in purple, and colors dots 

indicate LD measure r2 with the lead variant in purple. (a) - (g) displays newly discovered loci in this study and (h) new 

lead variant in the previously reported locus.  (a) rs7608697 in PUS10 on 2p16.1; (b) rs228614 in MANBA on 4q24; (c) 

rs12198665 in KCNK17 on 6p21.2; (d) rs17780429 in TNFAIP3 on 6q23.3; (e) rs3757387 in IRF5 on 7q32.1; (f) 

rs791168 in NKX2-3 on 10q24.2; (g) rs79390277 in TANGO6 on 16q22.1; (h) rs6787808 in QRICH1 on 3p21.31. 

LocusZoom (v1.4; https://github.com/statgen/locuszoom-standalone) was used to visualize regional GWAS results. 

https://github.com/statgen/locuszoom-standalone
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Supplementary Figure 2. Manhattan and quantile-quantile plots from PSC-specific genome-wide associations. The 

solid lines in red and the dotted lines in blue indicate the genome-wide significant two-sided unadjusted P-value of 

− log10(5 × 10−8) and the suggestive significant two-sided unadjusted P-value of  − log10(1 × 10−5), respectively. (a, 

e) the single-trait GWAS (GWAS_PSC); (b, f) MTAG-identified PSC GWAS against five immune-mediated disorders, 

CD, UC, IBD, lupus, and PBC (MTAG_PSC); (c, g) MTAG PSC GWAS excluding IBD (MTAG_PSC⟂IBD); (d, h) 

MTAG PSC GWAS in the replicate phase (MTAG_PSC_R). 
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Supplementary Figure 3. Interactions of chromatin and eQTL within PSC risk loci. Genes mapped by either Hi-C 

(orange), or eQTL (green) are shown on the inner circle. Genes mapped by both Hi-C and eQTL are shown in red on the 

inner circle. The most outer layer represents Manhattan plot including only SNPs with P < 0.05. SNPs in genomic risk loci 

are color-coded as a function of their maximum LD r2 to the one of the independent significant SNPs in each locus, as 

follows: r2 > 0.8 in red, r2 > 0.6 in orange, r2 > 0.4 in green, r2 > 0.2 in blue. SNPs not in LD with any of the independent 

significant SNPs (r2 ≤ 0.2) are grey. The rsIDs of the top SNPs in each risk locus are displayed in the most outer layer. Y-

axis ranges from 0 to the maximum -log10(P-value) of the SNPs. The second layer displays the chromosome ring and 

genomic risk locus highlighted in blue. The third layer aligns the position of genes with genomic coordinate and genomic 

risk locus in blue. (a) 2p16.1; (b) 3p21.31; (c) 4q24; (d) 6p21.2; (e) 7q32.1; (f) 10q24.2, (g) 16q22.1; (f) 21q22.2.   
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Supplementary Figure 4. Colocalization plots between PSC MTAG and eQTL tissue. Functional validation of the 

MTAG-identified PSC candidate genes suggests the plausible posterior probability that both PSC and tested tissue are 

associated and share a single function variant (PP4) at the threshold of PP4 > 0.80. (a1-a3) Tissue-specific colocalization 

for MANBA; (bC1-b30) for IRF5; (c1-c3) for NKX2-3. 
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Supplementary Figure 5. STRING protein-protein interaction (PPI) plots modeled in STRING using 406 candidate 

genes. The prioritized 406 genes displayed relevant groups of related genes involved in the regulation of specific 

biological pathways using PPI networks. Results of highly enriched pathways using STRING PPI are shown in 

Supplementary Data 13.  
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Supplementary Figure 6. STRING protein-protein interaction (PPI) plots modeled in STRING. MTAG-identified 

PSC-specific candidate gene network reported for (a) MANBA (PPI enrichment P-value, P=5.16×10-14); (b) for IRF5 

(P=1.00×10-16); (c) for NKX2-3 (P=1.13×10-9). 
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