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Table S1. List of notation used in the framework to evaluate evasion strategies (top) and in the mechanical model of three-link fish (bottom)

variable meaning
n dummy variable, index of evasion strategies, n = 1, 2, 3, 4, 5, 6
θ response angle, change in prey orientation induced by C-start response
d distance between predator and prey at the onset of a C-start evasion
φ angular position of predator in the prey frame of reference
ψ predator heading in the prey frame of reference
λ deviation between angle of predator heading ψ and its angular position φ
U prey speed
V predator speed
χ χ = arccos(U/V )
s actual variables of the predator at the onset of (can be any subset of (φ, ψ, λ)) as measured in experiment
r actual response of prey (equal to θ in this work) as measured in experiment
ŝ sensory cues perceived by prey, input to evasion strategy
r̂ evasion response intended by prey, output of evasion strategy
f(n)(s) deterministic form of evasion strategy n that maps sensory cues s to responser
p(n)(s, r) probabilistic form of evasion strategy n, a joint PDF of sensory cues s and response r
σ ≡ (σΦ, σΨ, σΛ, σΘ) noise parameters for sensing and response variables corresponding to the standard deviation of the von Mises distribution

variable meaning
α1, α2 relative rotation angles of three-link fish, α1 angle between head link and middle link, and α2 angle between middle link and tail link
β orientation of the middle link, β(t) = β(0) + θ

ms mass of each segment in three-link fish
Js moment of inertia of each segment in three-link fish
m1a added mass of each link in the direction of the major axis
m2a added mass of each link in the direction of the minor axis
Ja added moment of inertia of each link
m1 total mass of each link in the major axis, m1 = ms +m1a

m2 total mass of each link in the minor axis, m2 = ms +m2a

J total moment of inertia of each link, J = Js + Ja
(x, y) position of center of three-link fish
(v1, v2) velocity of center of three-link fish in body-fixed frame v1 = ẋ cosβ + ẏ sinβ and v2 = −ẋ sinβ + ẏ cosβ
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“Everything should be made as simple as possible, but not simpler” –Albert Einstein12

1. Data Collection and Data Processing Protocols13

A. Experimental set-up. We consider the experimental data partially published in (1), where zebrafish larvae were exposed to a14

robotic predator. All zebrafish larvae were bred from wild-type (AB line) colonies in a flow-through tank system (Aquatic15

Habitats, Apopka, FL, USA) that was maintained at 28.5◦C on a 14L:10D cycle. The robotic predator consisted of a sacrified16

adult zebrafish controlled to move through an aquarium of otherwise still water through the action of a linear servo-motor17

(fig. S1A) (1, 2). The motion of the robotic predator was set to a constant speed V = 2, 11, 20 cm s−1 to reflect the entire18

range of speeds of a foraging predator (3). The servo-motor also propelled two high-speed (250 frames s−1) cameras that were19

mounted above the predator to record the responses of larval zebrafish. The prey were generally motionless until exhibiting a20

fast start in response to the robot.21

B. Processing of video recordings. Since the predator was rigid and moved forward at a constant speed in all the experiments,22

we conveniently defined an inertial frame of reference attached to the rostrum of the predator with the x-axis along its moving23

direction (fig. S1B). Based on the kinematic analysis in (1), we obtained for each recorded response, the time of the onset24

and the end of the prey C-start response t1 and t2, as well as the positions of the rostrum xhead,1,xhead,2 and center of mass25

xcom,1, ,xcom,2 of the prey at t1 and t2 in the predator frame of reference (fig. S1B). All original measurements are three26

dimensional. Here, we considered the azimuthal response and projected all kinematic quantities onto the two-dimensional plane27

where the predator was operated. In Fig. 2 of the main text, we show, relative to the predator frame of reference, the prey28

position and orientation at t1 and t2 for each predator speed, V = 2, 11, 20 cm s−1.29

C. Transformation to prey-centric frame of reference. We then introduced a prey frame of reference attached to the center of30

mass of the prey to determine the state of the predator at the onset of evasion in a prey-centric frame (fig. S1C). The predator31

state at the onset of an evasion event in the prey’s frame of reference consisted of the predator relative distance d, predator32

angular position φ with respect to the prey heading, the predator heading ψ, and the deviation λ of the predator heading ψ33

from its angular position φ,34

d = ||xcom,1||, φ = arctan2(−xcom,1)− arctan2(xhead,1 − xcom,1),
ψ = − arctan2(xhead,1 − xcom,1), λ = − arctan2(xcom,1).

[1]35

Note that (d, φ) represent the polar coordinates of the predator in the prey’s frame of reference.36

The prey’s response consisted of the direction of the escape response, here parameterized by the change in orientation θ37

relative to the prey’s initial direction, and the average escape speed U ,38

θ = arctan2(xhead,2 − xcom,2)− arctan2(xhead,1 − xcom,1),

U = ‖xcom,2 − xcom,1‖
t2 − t1

.
[2]39

Note that the orientation of the prey is defined as the direction from the center of mass to the head. In (1), the response angle40

was defined as the angle arctan2(xcom,2 − xcom,1)− arctan2(xhead,1 − xcom,1) which is the angle that the displacement vector41

(xcom,2−xcom,1) of the fish center of mass makes during fast start relative to the fish heading (xhead,1−xcom,1) prior to evasion.42

Here, we define the response angle θ as the angle the prey heading direction of the prey makes between pre- and post-evasion.43

D. Statistical analysis. We separated the experimental data into three sub-datasets based on the predator approaching speed:44

slow predator (V = 2 cm s−1), mid-speed predator (V = 11 cm s−1) and fast predator (V = 20 cm s−1). The univariate45

distribution of the predator’s state d, φ, ψ and λ at the onset of evasion are displayed in fig. S2(A-D) and the univariate46

distribution of the prey change in orientation θ at evasion are displayed in fig. S2E. Bivariate distributions between (φ, λ),47

(φ, θ), (ψ, θ) are shown in Figs. fig. S5–fig. S7.48

For the univariate distributions of d, φ, ψ, λ and θ in fig. S2, we calculated the mean and standard deviation (using the49

Circular Statistic Toolbox in MATLAB for φ, ψ, and λ (4)); values reported in the caption of fig. S2 and in table S2. For the50

bivariate distributions in figs S3–S7, we calculated the correlations between the corresponding two variables and the p-values.51

The p-value indicates the probability that the true correlation coefficient is zero: smaller values of the p-value indicate higher52

confidence that a correlation between two (or more) variables exists. Conventionally, people use 0.05 or 0.01 as the threshold,53

lower p-values indicate a significant correlation. The correlation coefficient C ranges between −1 and 1, indicating the strength54

of the linear relationship between two variables and whether they are positively or negatively correlated. We also calculated55

the linear regression between the pairs of variables in figs. S5-S7. For example, in fig. S5, we set θ = c1φ+ c2 and we sought56

values of c1 and c2 that best fit the data. To deal with the inherent periodicity of the variables θ and φ, we used a customized57

loss function L =
∑

i
[sin(c1φi + c2)− sin(θi)]2 +

∑
i
[cos(c1φi + c2)− cos(θi)]2, and we employed a gradient descent approach58

to solve for the coefficients c1 and c2; values are reported in the captions of figs S3–S7 and in table S2.59

The predator relative distance d at which the prey was reactive extended up to 55 mm (the prey’s length is about 4 mm)60

(fig. S2A). However, when plotting the bivariate histograms between the reactive distance d and prey’s response θ (fig. S3), we61
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saw no marked correlation between the two, implying that the prey change in orientation θ at evasion is independent of the62

reactive distance d.63

The predator’s angular position φ at the onset of evasion covered all directions between 0 and 2π (fig. S2B), indicating that64

evasion responses were triggered at any relative angular position of the predator. However, although the prey was randomly65

placed in the tank, the angular positions φ that triggered evasion were not uniformly distributed: the prey were more alert to66

predatory signals approaching from behind, especially at slow predator speed. The prey perception of the predator is influenced67

by both vision (5) and flow sensing (2, 3, 6). Vision has a “blind zone” when the predator is approaching behind the prey68

(φ→ 180◦)(1, 7), but flow sensing can still be triggered. The prey were more responsive as the deviation λ = ψ−φ−π between69

the predator heading and angular position increase.70

When plotting the bivariate histograms between φ and λ for which an evasion event is triggered (fig. S4), we observed two71

trends. First, both vision and flow sensing seemed to be compromised when the predator is approaching symmetrically behind72

the prey at φ = 180◦ and λ = 0◦. Second, at slow predator speed, although λ and φ are mathematically independent, the73

bivariate histogram showed a weak correlation between the predator’s angular position φ and relative heading λ. That is, at74

slow predator speed, the prey was more likely to escape when the predator is headed towards the front side of prey (λ > 0 for75

0◦ < φ < 180◦ and λ < 0 for 180◦ < φ < 360◦), as opposed to when the predator was headed towards the back side of prey.76

This correlation got weaker for faster predator. These results suggest that the prey is more likely to initiate an escape response77

when it is more strongly stimulated.78

The distribution of the predator heading direction ψ at the onset of evasion (fig. S2C) is consistent with these observations:79

evasion instances were less likely to be triggered when the predator heading ψ was close to 180◦ in magnitude. Importantly,80

when plotting the deviation λ = ψ − φ − π of the predator’s heading away from the angular position where it appears in81

the prey’s visual field (fig. S2D), we observed that evasion was rarely triggered when λ was close to 180◦ in magnitude, that82

is, when φ ≈ ψ and the predator was heading away from the prey. Evasion was mostly triggered around λ = 0, for which83

ψ = φ+ π, when the predator was heading straight towards the prey.84

To tease out how the prey’s evasion response depends on the predator’s state at evasion, we plotted the bivariate histograms85

between φ and θ (fig. S5), and between ψ and θ (fig. S6A) as well as between λ and θ (fig. S6B), for each predator speed and86

for the combined dataset. The results in fig. S5 show a linear correlation between θ and φ with a constant of proportionality87

that is approximately equal to 5/9. That is, when φ→ 0◦, the prey’s change in heading could be as large as 100◦. The change88

in heading is mediated by the C-start response of the prey; it is known that at about 100◦ angle, the efficiency of the C-start89

response drops, most likely due to the prey’s mechanical constraints and wake interception (8).90

Compared to the correlation between θ and φ, the results in fig. S6 show a weaker correlation between θ and ψ, and91

correspondingly, between θ and λ, especially at slow predator speed. There is also a large variance in these plots that is not92

explained by linear regression. However, when at each predator speed, we separated the data based on whether the stimulus is93

sinistral or dextral, that is, based on whether the predator approach heading at the onset of evasion was to the left or to the94

right of where it appeared in the predator field of vision (fig. S1C), we found a strong and consistent correlation between θ and95

ψ, especially at intermediate and fast predator speeds fig. S7.96

E. Summary of insights based on statistical analysis. The statistical analysis in fig. S2–S7 and table S2 leads to the following97

general observations:98

• The prey’s change in orientation θ at evasion is independent of the reactive distance d (fig. S3).99

• The prey’s evasion response θ correlates linearly with φ, consistent with (9) (fig. S5); it also correlates linearly with ψ,100

especially when the data is arranged based on λ values to distinguish between sinistral and dextral stimuli (fig. S7). In101

all cases, the dependence of θ on φ (fig. S5) and on ψ (fig. S7) is qualitatively independent of the predator speed.102

• Large reorientation angles θ exceeding about 100◦ occur at lower frequency, independent of the predator state (fig. S2E103

and fig. S5–fig. S7).104

These observations imply that the evasion behavior is independent of d and that the predator speed V does not change105

qualitatively the trend of how θ depends on φ, ψ, λ. However, while insightful, these observations do not disambiguate which of106

the predator states at evasion φ, ψ, λ are most relevant for determining the evasion direction θ. To investigate these questions,107

we present six theoretical evasion models. In these models, the escape heading depends on one or more of the variables φ, ψ, λ,108

whereas V (or any quantity that depends on V ) is included as a model parameter. We then develop a probabilistic approach109

for comparing the theoretical evasion models to experimental data, as explained in the following sections.110

2. Theoretical Evasion Strategies111

A. Evasion Strategies. We examined six candidate evasion strategies, or mappings from predator state to prey response. Four112

strategies are based on existing theories: pure-protean, distance-optimal, parallel, and contralateral. The orthogonal strategy is113

postulated based on intuition that the prey should escape in a direction that makes it challenging for the predator to change its114

approach course. The antipodal strategy is postulated based on present (fig. S5) and prior experimental observations (9). The115

contralateral strategy is also based on empirical observations (1). We described all strategies in a mathematically consistent116

manner assuming that, at evasion, the prey turns instantaneously and swims in the direction defined by θ, and that the prey117

and the predator are point masses equipped with heading directions.118
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Distance-optimal strategy According to classic game theory (10), the optimal strategy for the prey is to turn in a direction119

that maximizes its distance of closest approach to the predator. This requires the prey to estimate both the trajectory of the120

predator and its own trajectory after the escape response. Using b1,b2 to denote the prey-centric frame, the prey estimate of121

its own trajectory xprey and that of the predator xpredator are given by122

xprey = Ut cos θb1 + Ut sin θb2,

xpredator = (do cosφ+ V t cosψ) b1 + (do sinφ+ V t sinψ) b2,
[3]123

where do is the distance between predator and prey right before the evasive response, and the respective speeds of the prey and124

predator U and V are both assumed to be constant. The estimated distance between predator and prey d(t) = ‖xprey−xpredator‖125

is126

d2(t) = (do cosφ+ V t cosψ − Ut cos θ)2 + (do sinφ+ V t sinψ − Ut sin θ)2. [4]127

Taking the derivative of d2(t) with respect to t and finding its zero (∂(d2)/∂t = 0) yield the time of closest approach128

tmin = do [U cos(θ − φ)− V cos(ψ − φ)]
U2 + V 2 − 2UV cos(ψ − θ) . [5]129

We substitute tmin into Eq. (4) to get the distance of closest approach130

d2
min = d2

o [U sin(θ − φ)− V sin (ψ − φ)]2

U2 + V 2 − 2UV cos(ψ − θ) . [6]131

Next, we take the derivative of d2
min with respect to θ and find its root (∂d2

min/∂θ = 0) to get the optimal escape angle θ that132

maximizes the distance of closest approach for V ≥ U (predator faster than prey) and χ = cos−1 (U/V ),133

θ = f (1)(ψ, λ;χ) =

ψ − χ λ ∈ (0, π) (sinistral stimulus),

ψ + χ λ ∈ (−π, 0) (dextral stimulus).
[7]134

When U > V (prey faster than predator), the closest approach happens at tmin = 0 and can be maximized by a range of escape135

angles. In this case we choose χ = 0, θ = ψ to maximize the distance between predator and prey at all t > 0.136

Here, the escape direction depends on ψ, λ, and on U/V , or more precisely on χ = cos−1(U/V ). Note that ψ = φ+ λ+ π,137

thus, in our analysis in section 3–4, we treat φ and λ as independent variables and χ as a parameter.138

Orthogonal strategy If we take the speed ratio to the limit U/V → 0 (fast predator), we obtain a strategy where the prey139

orients itself at χ = π/2 from the heading angle of the predator. The predator will want to turn away from the predicted140

trajectory of the predator.141

θ = f (2)(ψ, λ) =

ψ −
π

2 , λ ∈ (0, π) (sinistral stimulus),

ψ + π

2 , λ ∈ (−π, 0) (dextral stimulus).
[8]142

Here, the escape direction depends on ψ and λ; the prey does not need an exact estimate of the relative speed U/V .143

Parallel strategy A simple strategy in the limit of slow predator U/V > 1 is for the prey to reorient itself along the predator144

heading: the predator is bound to stay behind the prey and never catch it. This strategy is equivalent to the distance-optimal145

strategy for χ = 0. That is,146

θ = f (3)(ψ) = ψ, [9]147

and the escape direction depends only on ψ. This strategy has a serious disadvantage compared to other strategies: it could148

place the predator in the prey’s blind zone.149

Antipodal strategy we suggest a strategy in which the prey reorients itself antipodal to the angular position of the predator,
consistent with the observations in fig. S5,

θ = f (4)(φ) =

φ+ π, φ ∈ (0, π) (left stimulus)

φ− π, φ ∈ (π, 2π) (right stimulus).
[10]

Contralateral strategy In (1), the authors suggested that the prey escapes contralateral to the predator when approached from
the side. This strategy predicts that the prey turns either ‘left’ or ‘right’ by π/2 depending on the predator’s angular position.

θ = f (5)(φ) =

−
π
2 , φ ∈ (0, π) (left stimulus),

π
2 , φ ∈ (π, 2π) (right stimulus).

[11]

This is the simplest of all deterministic strategies: it requires only knowledge of whether the predator appears to the left or150

right of the prey. Compared to this strategy, the antipodal strategy in Eq. (10) requires the prey to have more precise sensory151

information about the predator’s angular position.152
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Pure-protean strategy An evasion strategy by which an animal flees in a random direction may be optimal for survival (11):153

the high variability in evasion directions makes it difficult for the predator to anticipate the prey’s heading. Mathematically,154

the pure-protean strategy consists of a completely random change in orientation, which requires no precise measurement of the155

predator state. However, the change of orientation θ in the experiment (fig. S2E) does not conform to a uniform distribution and156

exhibits strong correlations with the predator angular position φ (fig. S5) and heading ψ (fig. S7). The pure-protean strategy is157

unlikely to be the dominant strategy implemented by larval zebrafish, and we thus eliminate it from further consideration.158

3. Probabilistic Modeling of Evasion159

To emphasize the generality of the probabilistic approach presented here and in the main document, we write our approach in160

terms of stimulus s and response r, without specifying apriori the degrees of freedom that they encompass. In the zebrafish161

experiments, r = {θ} whereas s could include φ, ψ, λ; d is discounted based on the statistical analysis in section 1 and fig. S3,162

and V is treated separately as a model parameter (see section 7). Theoretically, the vector s depends on the evasion model (see163

section 2), and each evasion model can be written as a mapping from stimulus s to response r of the form164

r = f(s;n) ≡ f (n)(s), [12]165

where n is a dummy index to distinguish between strategies.166

A. Probabilistic interpretation of experimental data. We view the experimental data points (si, ri), i = 1, . . . N , as sampled167

from a joint probability density function (PDF), denoted po(s, r), whose exact form is unknown. An evasion behavior follows a168

conditional probability po(r|s), related to the joint probability po(s, r) via po(s, r) = po(r|s)po(s), where po(s) is the distribution169

of stimuli that elicit an escape response (fig. S8A). Only discrete samples of the PDFs po(s, r) and po(s) are available from170

experiments.171

It is worth noting that in probability theory, the random variable is often denoted by a capital letter and a realization of the172

random variable is denoted by a lower case letter. For example, the random variable associated with the stimulus vector would173

be S, whereas s would refer to a specific state occupied by the predator. It is also customary to write the probability density174

function associated with S as poS (s). Here, we simplify the notation, with the understanding that, in the mathematical models,175

both s and r are random variables and si and ri are realizations.176

B. Stimulus and response without and with noise. We distinguish between the actual predator state s and the prey’s perception177

ŝ of the predator state. Similarly, we distinguish between the actual escape response r and the prey’s desired escape response178

r̂. If the prey’s perception and motor response are precise, the stimulus perceived by the prey ŝ is the same as the actual179

predator state s obtained from video recording, and the prey’s desired escape response r̂ is the same as the recorded prey180

escape response r. However, the sensorimotor modalities underlying evasion are often noisy: the prey may perceive a noisy181

version ŝ of the predator’s state s and its desired response r̂ may be altered by noisy execution or environmental conditions to182

yield r. We treat the two cases, without and with perception and motor/environmental noise, separately (fig. S8B,C),183 Without noise: ŝ = s, r̂ = r,

With noise: p(ŝ|s) = S(ŝ; s,σS), p(r|r̂) = R(r; r̂,σR)
[13]184

Here, S and R denote the probability distribution functions of the noise in sensing/perception and response, parameterized by185

the mean s and standard deviation σS, and the mean r and standard deviation σR, respectively. That is, in the perception186

model, we take ŝ to be normally-distributed around the actual state of the predator s, with dispersion σS, and in the response187

model, we take r to be normally-distributed around the desired response r̂ of the prey, with dispersion σR. For the components188

of s and r̂ that are angles, we use the von Mises distribution (normal distribution on the circle), as discussed in section 4.189

C. Conditional probability based on theoretical evasion strategies. In section 2, each strategy n defines a desired escape190

response r̂ given a perceived predatory stimulus ŝ. An evasion strategy n can be expressed as a conditional probability using191

the Dirac-delta function192

p(n)(r̂|ŝ) = δ
(
r̂− f (n)(ŝ)

)
. [14]193

D. Probabilistic evasion strategies without noise. In the absence of noise, we have ŝ = s and r = r̂. Using the probabilistic194

representation of evasion strategy Eq. (14), the joint probability p(n)(s, r) following the theoretical evasion model n is given by195

p(n)(s, r) = p(n)(r = r̂|ŝ = s)po(s) = δ
(
r− f (n)(s)

)
po(s). [15]196

E. Probabilistic evasion strategies with noise. In the presence of perception and response noise, the joint probability p(n)(s, r)197

following the theoretical evasion model n is given by the Law of Total Probability (12)198

p(n)(s, r) =
∫∫

p(r|r̂; σR)p(n)(r̂|ŝ)p(ŝ|s; σS)po(s)dŝ dr̂. [16]199
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4. Explicit Expressions of Probabilistic Evasion Strategies With Perception and Response Noise200

Our goal here is to rewrite the noisy probabilistic evasion model presented in Eq. (16) in component form for each evasion201

strategy n.202

A. Perception noise. The predator’s actual state is described by its angular position φ relative to the prey and heading ψ in a203

prey-centric frame. The deviation angle λ = ψ − φ − π depends on φ and ψ. Alternatively, one could consider φ and λ as204

independent variables, and ψ = λ+ φ+ π as the dependent variable. This distinction may not be important for the prey, or for205

how the escape heading depends on these angles, but it is important for how noise is incorporated in the model. Without loss206

of generality, we chose to apply normally-distributed noise to φ, λ and let the noise on ψ follow from ψ = φ+ λ+ π.207

Note that for completeness and to ensure robustness of our results to how noise is incorporated in the model, we also used φ208

and ψ as the independent variables where noise is applied and calculated the noise on λ from λ = ψ − φ− π. Qualitatively, we209

arrived at the same conclusions. For simplicity of exposition, we present only the latter case where noise is applied to φ and λ210

for all strategies.211

Mediated by the prey’s ability to perceive the predator, the noisy estimate of the predator state is denoted as φ̂ and λ̂. This212

noisy perception is modeled by the conditional distribution213

p((φ̂, λ̂)|(φ, λ)) = p(φ̂|φ)p(λ̂|λ), [17]214

where each state is perceived independently. Specifically, the noise follows the von Mises distrubtions, which approximates a
normal distribution on a circle, centered around the actual state φ and λ of the predator,

p(φ̂|φ) = 1
2πI0(σ−2

Φ )
exp
[

cos(φ̂− φ)
σ2

Φ

]
, p(λ̂|λ) = 1

2πI0(σ−2
Λ )

exp
[

cos(λ̂− λ)
σ2

Λ

]
. [18]

Here, I0 is the modified bessel function of order zero, and σΦ, σΛ are noise parameters representing the dispersion of the von215

Mises distributions over φ and λ.216

B. Response noise. By means of its motor control and through interaction with the fluid environment, the prey engages in an217

escape maneuver which is characterized by its actual change in orientation θ. The actual escape heading θ might be different218

from the desired escape heading θ̂ due to motor control or environmental noise. The noise in the underlying biomechanical219

process and environmental conditions is modeled by the conditional distribution p(θ|θ̂),220

p(θ|θ̂) = 1
2πI0(σ−2

Θ )
exp
[

cos(θ̂ − θ)
σ2

Θ

]
, [19]221

where I0 is the modified bessel function of order zero, and σΘ represents the dispersion in the actual response θ around the222

desired response θ̂.223

C. Conditional probability based on theoretical evasion strategies. The prey’s desired response θ̂ is modeled as one of several224

strategies described by the conditional distribution introduced in Eq. (15) and expressed here in component form225

p(n)(θ̂|(φ̂, λ̂)) = δ
(
θ̂ − f (n)(φ̂, λ̂)

)
. [20]226

Distance-optimal strategy conditional probability We rewrite Eq. (20) for the distance-optimal strategy described in Eq. (7). The227

desired escape heading θ̂ depends on the perceived heading of the predator ψ̂ and perceived deviation λ̂ = ψ̂− φ̂− π between ψ̂228

and perceived angular position φ̂. The conditional probability distribution associated with Eq. (7) is given by229

p(1) (θ̂|(ψ̂, λ̂);χ
)

= δ
(
θ̂ − ψ̂ + χ

)
rect(0,π)(λ̂) + δ

(
θ̂ − ψ̂ − χ

)
rect(−π,0)(λ̂), [21]230

where δ(·) is the Dirac delta function and rect(a,b)(·) is the rectangular window function, equal to 1 between a and b and 0231

otherwise.232

Orthogonal strategy conditional probability The conditional probability distribution describing the orthogonal strategy in Eq. (8)233

is given by234

p(2) (θ̂|(ψ̂, λ̂)
)

= δ
(
θ̂ − ψ̂ + π

2

)
rect(0,π)(λ̂) + δ

(
θ̂ − ψ̂ − π

2

)
rect(−π,0)(λ̂). [22]235

Parallel strategy conditional probability The conditional probability distribution describing the parallel strategy in Eq. (9) is236

given by237

p(3) (θ̂|ψ̂) = δ
(
θ̂ − ψ̂

)
. [23]238

Antipodal strategy conditional probability According to Eq. (10), the conditional probability distribution describing the antipodal
strategy is given by

p(4)(θ̂|φ̂) = δ
(
θ̂ − φ̂− π

)
rect(0,π)(φ̂) + δ

(
θ̂ − φ̂+ π

)
rect(π,2π)(φ̂)

Using the periodicity condition φ+ 2π → φ, we get that239

p(4)(θ̂|φ̂) = δ
(
θ̂ − φ̂− π

)
[24]240
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Contralateral strategy conditional probability According to Eq. (11), the conditional probability distribution associated with the
contralateral strategy is

p(5)(θ̂|φ̂) = δ
(
θ̂ + π

2

)
rect(0,π)(φ̂) + δ

(
θ̂ − π

2

)
rect(π,2π)(φ̂). [25]

D. Probabilistic evasion models with perception and response noise. Using the Law of Total Probability (12), we rewrite Eq. (16)241

in component form and perform the cascading operations242

p(n)(θ|(φ, λ)) =
∫∫∫

p(θ|θ̂)p(n)(θ̂|(φ̂, λ̂))p((φ̂, λ̂)|(φ, λ))dθ̂ dφ̂ dλ̂. [26]243

Given p(θ|(φ, λ)) and using the definition of conditional probability, the joint distribution of predator state and prey response244

can be computed using245

p(n)(θ, φ, λ) = p(n)(θ|(φ, λ))po(φ, λ). [27]246

The joint distribution p(n)(θ, φ, λ) forms a probabilistic model with perception and response noise that can then be compared247

to measured experimental data.248

In the following, we derive the conditional distribution p(n)(θ|(φ, λ)) in Eq. (26) for each of the five strategies.249

Distance-optimal strategy with perception and response noise Substitute ψ̂ = λ̂ + φ̂ + π into Eq. (21) to obtain the conditional
probability based on the distance-optimal strategy

p(1)(θ̂|φ̂, λ̂) = δ
(
θ̂ − λ̂− φ̂− π + χ

)
rect(0,π)(λ̂) + δ

(
θ̂ − λ̂− φ̂− π − χ

)
rect(−π,0)(λ̂). [28]

Now, substitute Eq. (28), Eq. (18) and Eq. (19) into Eq. (26) and simplify the resulting integrals to arrive at

p(1)(θ|(φ, λ)) = 1
8π3I0(σ−2

Λ )I0(σ−2
Φ )I0(σ−2

Θ )

[∫ 2π

0

∫ π

0
exp
(

cos(θ̂ − θ)
σ2

Θ
+ cos(λ̂− λ)

σ2
Λ

+ cos(θ̂ − λ̂− π + χ− φ)
σ2

Φ

)
dλ̂dθ̂ [29]

+
∫ 2π

0

∫ 0

−π
exp
(

cos(θ̂ − θ)
σ2

Θ
+ cos(λ̂− λ)

σ2
Λ

+ cos(θ̂ − λ̂− π − χ− φ)
σ2

Φ

)
dλ̂dθ̂

]
.

Orthogonal strategy with perception and response noise The computation is similar to that of the distance-optimal strategy, with250

χ = cos−1 (U/V ) = π/2. We get251

p(2)(θ|(φ, λ)) = 1
8π3I0(σ−2

Λ )I0(σ−2
Φ )I0(σ−2

Θ )

[∫ 2π

0

∫ π

0
exp
(

cos(θ̂ − θ)
σ2

Θ
+ cos(λ̂− λ)

σ2
Λ

+
cos(θ̂ − λ̂− π

2 − φ)
σ2

Φ

)
dλ̂dθ̂

+
∫ 2π

0

∫ 0

−π
exp
(

cos(θ̂ − θ)
σ2

Θ
+ cos(λ̂− λ)

σ2
Λ

+
cos(θ̂ − λ̂− 3π

2 − φ)
σ2

Φ

)
dλ̂dθ̂

]
.

[30]252

Parallel strategy with perception and response noise Here also we have a similar computation with χ = cos−1(U/V ) = 0,253

p(3)(θ|(φ, λ)) = 1
8π3I0(σ−2

Λ )I0(σ−2
Φ )I0(σ−2

Θ )

∫ 2π

0

∫ π

−π
exp
(

cos(θ̂ − θ)
σ2

Θ
+ cos(λ̂− λ)

σ2
Λ

+ cos(θ̂ − λ̂− π − φ)
σ2

Φ

)
dλ̂dθ̂. [31]254

Antipodal strategy with perception and response noise Substitute Eq. (18), Eq. (19) and Eq. (24) into Eq. (26) and simplify the
resulting integrals to arrive at

p(4)(θ|φ) = 1
4π2I0(σ−2

Φ )I0(σ−2
Θ )

∫ 2π

0
exp
(

cos(θ̂ + π − φ)
σ2

Φ
+ cos(θ̂ − θ)

σ2
Θ

)
dθ̂. [32]

Contralateral strategy with perception and response noise Substitute Eq. (18), Eq. (19) and Eq. (25) into Eq. (26) and simplify
the resulting integrals to arrive at

p(5)(θ|φ) = 1
2πI0(σ−2

Θ )

[
exp
(

cos(θ + π
2 )

σ2
Θ

)
ξ(φ) + exp

(
cos(θ − π

2 )
σ2

Θ

)
(1− ξ(φ))

]
, [33]

where255

ξ(φ) = 1
2πI0(σ−2

Φ )

∫ π

0
exp
(

cos(φ̂− φ)
σ2

Φ

)
dφ̂. [34]256

E. Interpretation of noisy strategies in the limit of large noise parameters. The noise parameters σφ, σλ, σθ in our probabilistic257

models act approximately as the standard deviations for the von Mises distributions, whereas mean values of the perception258

noise are determined from experimental measurements of the predator state and mean values of response noise are based on259

the evasion strategies θ̂ = f (n)(φ̂, ψ̂, λ̂). To interpret our probabilistic models, it is important to first understand the limiting260

behavior of a von Mises distribution: when noise is zero, the von Mises distribution converges to a Dirac-delta function at the261

mean value; when the noise level is high, the distribution resembles a circular uniform distribution, where the PDF becomes262

1/(2π) everywhere.263
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Limit of small perception and response noise At zero or small noise σΘ, σΦ, σΛ → 0, the probabilistic models in Eqs. (29)–(33)264

behave similar to their deterministic counterparts in Eqs. (21)–(25) and predict any prey response other than r̂ = r = f (n)(ŝ = s)265

with probability almost 0.266

Limit of large response noise When the response noise is large σΘ →∞, the probabilistic models predict any prey response with267

equal probability 1/(2π), irrespective of the strategy or the perception noise, thus all strategies become essentially equivalent268

to the pure-protean strategy.269

Limit of large perception noise Consider no response noise, σΘ = 0. Depending on the specific strategy, the two perception270

noise parameters σΦ and σΛ play different roles. For the contralateral strategy, high level of noise in predator angular position271

φ leads to equal probability of 0.5 in predicting ±π/2, that is, the probabilistic model becomes that of a ‘split’ pure-protean272

strategy with equal probability of turning 90◦ to the left or right of the prey. For the other four models, large noise in predator273

heading σΦ works equivalently to the response noise σΘ, due to the symmetry in Eqs. (29)–(32); that is, in the limit of large274

perception noise σΦ →∞, all four strategies become essentially equivalent to the pure-protean strategy.275

Now assume that the perception noise in φ is negligible σΦ → 0, but the perception noise in λ can be large σΛ →∞. Since276

the antipodal and contralateral strategies are independent of λ, their behavior remains the same as that of their deterministic277

counterparts. For the distance-optimal strategy with χ > 0, the noise in predator heading deviation σΛ itself does not lead278

to a pure-protean strategy, no matter how large it gets. Assuming zero noise in φ = φ̂ and θ = θ̂ and infinite noise in λ, the279

probability of any λ̂ is equal to 1/(2π). Now, given a particular value of φ and considering the perceived stimulus is sinistral280

λ̂ > 0, according to Eq. (7), the evasion direction θ would lie in the range [φ + π − χ, φ + 2π − χ] with a probability 1/π.281

The probability of an escape direction in the complementary half-plane is zero. This is clearly illustrated in fig. S9A for the282

example case φ = π/2. Similarly, given a particular value of φ and considering the perceived stimulus is dextral λ̂ < 0, the283

evasion direction θ would lie in the range [φ + χ, φ + π + χ] with a probability 1/π, as illustrated in fig. S9B. That is, the284

corresponding PDF gives twice the probability than average for the range of angles [φ+ π − χ, φ+ π + χ] centered around the285

opposite direction of the predator angular position (φ+ π), and zero probability for the range of angles [φ− χ, φ+ χ] centered286

around the predator position; see fig. S9C. That is, for a uniformly-distributed λ̂, the PDF associated with the distance-optimal287

strategy is given by288

p(θ ∈ [φ+ π− χ, φ+ π+ χ]) = 1
π
, p(θ ∈ [φ− χ, φ+ χ]) = 0, p(θ ∈ [φ+ χ, φ+ π− χ]∪ [φ+ π+ χ, φ− χ]) = 1

2π . [35]289

Note that both the range of angles for which the probability is zero and the range of angles for which the probability is 1/π290

span a sector of 2χ. For the orthogonal strategy χ = π/2, the PDF gives probability of 1/π on the half-plane opposite to the291

predator position and zero probability on the half-plane on the same side as the predator. Mathematically, the orthogonal292

strategy with large noise on λ converges to the antipodal strategy with uniform noise spanning a range of π on either φ or θ.293

5. Evaluation of Probabilistic Evasion Models with No Perception and Response Noise294

A. Theoretical predictions without noise. The joint probability p(n)(s, r) of following strategy n is given by Eq. (15) in the295

absence of perception and response noise. To obtain predictions of the evasion response given the recorded predatory stimuli, we296

use as input the distribution of the empirically-observed stimuli si, and we construct a dataset (si, r(n)
i ), where r(n)

i = f (n)(si),297

for each strategy. Each dataset forms discrete samples from the corresponding joint probability p(n)(s, r). We arrive at five298

datasets representing theoretical predictions of the prey’s evasion behavior: one dataset for each evasion strategy. Our goal in299

this section is to evaluate these predictions in comparison to experimental observations.300

B. Comparison to experimental observations using the Kullback-Leibler (K-L) Divergence. We use the Kullback-Leibler diver-301

gence DKL to quantify the goodness of fit between model prediction and experimental data. Namely, DKL measures the302

difference between the predicted probability distribution p(n)(s, r) and the experimental probability distribution po(s, r). The303

expression of the Kullback-Leibler divergence DKL for two l-dimensional continuous distributions po(x) and p(n)(x), where304

x ≡ (s, r) ∈ Rl, is given by305

DKL(po||p(n)) =
∫
Rl
po(x) log po(x)

p(n)(x)dx ≥ 0. [36]306

The K-L divergence is not a distance metric because it is not symmetric, namely, DKL(po||p(n)) 6= DKL(p(n)||po). An evaluation307

of the K-L divergence from the expression in Eq. (36) is not directly feasible because we have no access to analytic expressions308

of po(x) and p(n)(x). Instead, we have representative samples of these distributions for each predator speed V . We thus resort309

to numerical estimates of the K-L divergence.310

C. Numerical estimates of the K-L divergence. To estimate the K-L divergence directly from samples, we implemented the311

numerical estimator proposed in (13). Given a dataset with N data points, we let xexp
i = {φi, λi, θi}, where i = 1, 2...N , denote312

the samples from the experiment, and xmodel(n)
i = {φi, λi, θ(n)

i }, where i = 1, 2...N , denote the corresponding predictions from313

evasion model n. The discrete estimate of the K-L divergence is given by314

D̂KL(po||p(n)) = 3
N

N∑
i=1

log k
th minm ||xexp

i − xmodel(n)
m ||

kth minm 6=i ||xexp
i − xexp

m ||
+ log N

N − 1 , [37]315
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where kth min means the kth smallest value of the argument and k is a discretization parameter to be tuned.316

The parameter k shows up because the estimator follows the concept of k-nearest-neighbor for density estimate. In density317

estimation the choice of k is related to the sample size N . Conceptually, it is guaranteed that, given a sufficiently large318

sample size, the estimate converges to the actual value of the K-L divergence with k = 1 (13). Practically, the choice of k319

is problem-dependent: a smaller k means that noise has a higher influence on the results while a larger k requires larger320

sample size for the estimate to converge to the accurate value. Here, we tested the effect of different k by computing the K-L321

divergence estimate from the predictions of distance-optimal strategy to all four experimental datasets. For k = 1, the noise322

had an observable influence on the result. Through trial-and-error, we found that k = 5 worked well. Hereafter, we set k = 5323

for all calculation of the estimates.324

In fig. S10 we demonstrate the method in Eq. (37) for estimating the K-L divergence to assess the antipodal strategy325

using the fast-predator dataset V = 20 cm·s−1 and Nfast = 215. For clarity of exposition, we omitted the variable λ from326

the graphical demonstration in fig. S10, but λ is included in the numerical estimation of the K-L divergence. In fig. S10A,327

we plot the density of occurrence of a joint θ and φ as a bivariate histogram: the histrogram on the left is constructed from328

experimental data, and the histogram on the right is constructed based on the predictions (φi, θ(4)
i = f (4)(φi)), i = 1, . . . , Nfast,329

of the antipodal strategy. In fig. S10B, the experimental data points (φi, θi) are plotted on the (φ, θ) plane as circles and330

the predictions (φi, θ(4)
i ) from the antipodal strategy are plotted as blue diamonds. Considering an experimental data point,331

say the data point highlighted in green in the zoomed-in view, our algorithm identifies the five nearest neighbors from the332

experimental dataset and the five nearest neighbors from the predicted results, marked in gray and black, respectively. The333

distances between the green circle and its fifth neighbors from both groups give us the values of 5th minm ||xexp
i − xmodel(n)

m ||334

and 5th minm 6=i ||xexp
i − xexp

m || in Eq. (37).335

Following the same process demonstrated here, we applied the K-L divergence estimation to all four datasets with predictions336

from all five evasion strategies without noise, and arrived at the twenty estimate values shown in fig.3A of the main document.337

It is important to note that the values of the K-L divergence estimate obtained from different datasets are not comparable to338

one another due to the difference in sample size. Only within one dataset the results from different strategies can be compared339

and ranked; see main document.340

6. Evaluation of Probabilistic Evasion Models with Perception and Response Noise341

In section 4, we derived five expressions for the conditional probability p(n)(θ|(φ, λ), for n = 1, . . . , 5, listed in Eqs. (29–33). In342

each case, perception and response noise are accounted for using the von Mises distributions in Eq. (18) and Eq. (19), thus343

introducing three unknown noise parameters σ = {σΦ, σΛ, σΘ} that describe the dispersion in perceived stimulus around the344

actual state of the predator and the dispersion in actual response around the desired response. Our goal in this section is to345

find optimal values for σ = {σΦ, σΛ, σΘ} given experimental data, then to rank the optimized probabilistic models based on346

their parsimony and closeness to experimental observations.347

A. Optimization of noise parameters. We used maximum likelihood estimation to optimize each stochastic strategy based on348

the experimental data. The likelihood function for a candidate model n can be written as (14)349

L(σ|(θ, φ, λ);n) =
∏
i

p(n)(θi, φi, λi; σ). [38]350

Here i is the index of data point. We seek to calculate the set of noise parameters σ = {σΦ, σΛ, σΘ} that maximizes the total351

likelihood, or equivalently, the sum of its logarithm352

σ∗ = arg max
σ

lnL(σ|(θ, φ, λ);n). [39]353

Since the distribution po(s) of predator states does not depend on the noise parameters, we can thus ignore this part from the354

expression for the joint probability p(n)(s, r) = p(n)(r|s)po(s) and simplify the optimization problem to maximize the noise355

parameters using the modified likelihood function356

L(σ|(θ|(φ, λ));n) =
∏
i

p(n)(θi|(φi, λi); σ). [40]357

The equivalence between the original and simplified maximization objectives is straightforward,358

σ∗ = arg max
σ

∑
i

ln p(n)(θi, φi, λi; σ),

= arg max
σ

∑
i

[
ln p(n)(θi|(φi, λi); σ) + ln po(φi, λi)

]
,

= arg max
σ

∑
i

ln p(n)(θi|(φi, λi); σ).

[41]359
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This optimization problem can be rewritten in terms of the negative log-likelihood function360

NLL = − lnL(σ|(θ|(φ, λ));n) = −
∑
i

ln p(n)(θi|(φi, λi); σ), [42]361

such that the task of calculating σ∗ = {σ∗Φ, σ∗Λ, σ∗Θ} becomes that of minimizing the NLL,362

σ∗ = arg min
σ

NLL. [43]363

We used fmincon function in MATLAB to numerically find the optimal noise parameters and the likelihood of the optimized364

probabilistic models. Specifically, for each dataset (slow, mid, fast, and all combined), we computed σ∗ for each evasion365

strategy within the range of (0, π).366

We illustrate the optimization process in fig. S11 for all five evasion strategies. In fig. S11A, using the combined dataset for367

all predator speeds, we varied the noise parameters in perception and motor response and we plotted the corresponding values368

of NLL (Eq. (42)) as a colormap on the (σΛ, σΘ) or (σΦ, σΘ) plane. Because of the symmetry in Eq. (29)–Eq. (31) where σΦ369

and σΘ have the same impact on the likelihood for the distance-optimal, orthogonal, and parallel strategies, we show σΘ and σΦ370

on the same axis. We verified that imposing this condition has a negligible effect on the optimized parameters and likelihoods,371

whilst improves the optimization speed and stability. For every probabilistic evasion model, we select the combination of noise372

parameters that results in the lowest NLL (the darkest spot in the colormap) as the optimal noise parameters for that model;373

meanwhile, the lowest NLL value is used to represent the performance of the strategy given the dataset.374

In fig. S11B, we show the optimized noise parameters obtained from the optimization procedure using fmincon in MATLAB.375

The evaluation results presented in Fig. 3 of the main text are based on this optimization procedure. We used the open-loop376

evaluation in fig. S11A to double-check our optimization procedure and to verify that our MATLAB code converges to the377

correct optima. We found excellent agreement, up to machine precision, between the results of the open-loop approach378

in fig. S11A and the optimization routine in fig. S11B.379

B. Akaike Information Criterion. For model selection, we used the Akaike Information Criterion (AIC) to rank the optimized380

models and seek a parsimonious model for the experimental data. The AIC score is defined as (15)381

AIC = 2K − 2 logL(σ|(θ|(φ, λ));n). [44]382

It considers both the goodness of fit represented by the likelihood function, and the complexity of the model. Here, M denotes383

the number of estimated parameters used in the model. The criterion favors a simpler model if two models have the same384

ability to explain the data.385

In our models, the coefficient for each perception variable is pre-defined and the noise parameters σ = {σΦ, σΛ, σΘ} are386

estimated using maximum likelihood estimation, so we have K = 3 for distance-optimal strategy, orthogonal strategy and387

parallel strategy, and K = 2 for antipodal strategy and contralateral strategy.388

C. Bootstrapping. To ensure accuracy and assess the variability in the result, we used the bootstrapping method in evaluating389

the probabilistic models. Starting from one dataset and one evasion model, say the dataset for the fast predator and antipodal390

strategy, we constructed 200 different datasets of equal size to the original dataset by random sampling with repetition. For391

each newly constructed dataset, we solved for the optimal noise parameters σ∗ = {σ∗Φ, σ∗Λ, σ∗Θ} by following the same maximum392

likelihood estimation process introduced above. Then we calculated 200 corresponding AIC scores and used the mean and the393

standard deviation to show the performance of the antipodal model on the fast predator dataset. We repeated this process for394

all five evasion strategies and all four datasets, thus solving a total of 200× 5× 4 = 4, 000 optimization problems.395

D. Model performance based on AIC. For the purpose of ranking the probabilistic models by the order of their fit to experimental396

data, we use the AIC scores and report the difference ∆AIC = AIC−AICmin between the average AIC and minimum AIC397

among all models for the same dataset. Evaluation results are shown in Fig. 4B and Fig. 6B of the main text.398

In addition, we quantitatively interpret ∆AIC by computing the quantity exp(−∆AIC/2), which lies in the interval [0, 1]399

because ∆AIC is non-negative. This quantity represents the relative strength of evidence for each model. Empirically, ∆AIC400

less than 2 suggests the model is comparable to the best model, and ∆AIC over 10 suggests the model can be omitted from401

further consideration (16). In fig. S12, we plot exp(−∆AIC/2) as a function of ∆AIC (black lines), and plot the ∆AICs for each402

evasion model in each dataset from Fig. 4B of the main text. Instead of considering one ∆AICs as commonly done, We retain403

the entire distribution of AIC scores obtained based on bootstrapping. Focusing only on the mean value of each distribution,404

all models, save the orthogonal strategy, have ∆AIC & 10 in all four datasets. This indicates that the orthogonal strategy405

consistently explains the experimental data substantially better than all the other models. Examining the entire distribution of406

AIC scores, the AIC scores of the distance-optimal strategy always overlaps with the AIC scores of the orthogonal strategy407

within one standard deviation. The AIC scores of antipodal strategy also overlaps with the orthogonal strategy in all but the408

fast dataset. The AIC scores of parallel strategy and contralateral strategy are always substantially higher than the AIC scores409

of the orthogonal strategy in all datasets, showing that they clearly are not supported by the experimental data. Therefore, we410

exclude the parallel and contralateral strategies from further analysis and do not show their results in fig. 6B of the main text,411

where we incorporate the physical constraint in turning.412
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E. Levels of perception and motor noise can be used to further discriminate between evasion models. From a biological413

perspective: if a sensory cue is too noisy, it is not wise to make evasion decisions based on that sensory cue; it is better to rely414

on robust sensory cues. In turn, an evasion strategy is reasonable if the predicted mean of prey response θ̂ is close to the most415

likely value of θ given the predator state (φ, λ), such that the response noise σΘ merely adds dispersion to the model prediction416

θ̂. Mathematically, if a noise parameter needs to be very large to best fit the data, it probably indicates that the corresponding417

strategy is not a reasonable evasion strategy.418

In most evasion models, a clear global minimum at moderate noise levels seems to exist (fig. S11). However, in the419

distance-optimal strategy, the NLL changes slowly along the σΛ axis and the optimal noise σ∗Λ occasionally converges to π,420

implying that the optimal noise level in λ is not unique. Based on the above discussion, this suggests the predator heading421

deviation λ is not very helpful. In comparison, the NLL always converges to one minimum at relatively small σ∗Λ for the422

orthogonal strategy, suggesting that λ plays a more reliable role in the orthogonal strategy.423

7. Further Analysis of the Distance-Optimal Strategy424

The distance-optimal strategy has an important parameter χ = cos−1(U/V ) that depends on the ratio between prey speed U425

and predator speed V and that takes values between 0◦ and 90◦ (fig. S13). In the case of a very fast predator U/V → 0, we426

have χ = 90◦ and the distance-optimal strategy converges to the orthogonal strategy. At the other extreme, when the prey is427

faster than the predator, the distance-optimal strategy converges to the parallel strategy.428

One challenge in the assessment of distance-optimal strategy is that we do not know whether prey sense the speed ratio U/V429

in real time and adjust the angle χ accordingly, or whether the prey responds with a prior knowledge of χ that is hardwired in430

the prey. The predator speed was controlled at three constant values V = 2, 11, 20 cm s−1, whereas the zebrafish larvae used in431

all experiments were almost identical, implying that the speed ratio U/V could vary drastically between evasion instances: for432

the fast predator, it could be up to 10 fold that of the slow predator. If the prey were to sense and use the real-time speed433

ratio to implement the distance-optimal strategy, we would expect the best performance of the distance optimal strategy to434

be at different value of χ depending on the dataset (slow, mid, or fast predator). In this section, we test this proposition by435

treating χ as a model parameter and evaluating the performance of the distance optimal strategy as a function of χ ∈ [0, 90◦].436

A. Side note. Another major consideration in evaluating the distance optimal strategy is that the actual speed ratio U/V is437

ambiguous during the C-start response: the prey starts from almost zero speed and abruptly accelerates while its orientation438

also changes rapidly. This is different from the assumption adopted in mathematically deriving the distance-optimal model (10),439

where the two involved parties (predator and prey) swim at constant speed and constant orientation. Although in general, the440

predator has a higher free-swimming speed, the prey can reach an exceptionally high instantaneous speed during the short time441

of a C-start response (17), and it is unclear which speed should be used in optimizing the minimal distance in Eq. (7). In the442

evaluation presented in fig. 3 of the main text, we chose U/V = 1/2 and χ = 60◦.443

B. Performance of optimized strategy as a function of speed ratio between predator and prey. We evaluated the distance-444

optimal strategy for each of the four datasets (slow, mid, fast and all data combined) as a function of χ ∈ [0, 90◦]. In fig. S14445

we show the change in evaluation results of distance-optimal strategy as we increase χ incrementally by 5◦ from 0◦ to 90◦.446

Specifically, in fig. S14A, we show the K-L divergence estimate for the probabilistic models without noise and in fig. S14B,447

we give the NLL values for the model with optimized noise, where for each value of χ, we performed the optimization 200448

times for each dataset, using the bootstrapping described in section C. That is, we performed a total of 19× 200× 4 = 15, 200449

optimizations.450

If the prey were to sense and use the real-time speed ratio to implement the distance-optimal strategy, we would expect the451

lowest K-L divergence estimate and NLL to appear at different values of χ in different datasets. Instead, in fig. S14A we see452

the K-L divergence estimates decrease as χ increases and reach the minimum near χ = 75◦ for all four datasets, and they453

stay relatively low as χ increases further to 90◦. In fig. S14B, we see a similar trend that the NLLs for all datasets drop as χ454

increases until they reach a minimum at or close to χ = 90◦. These results suggest that prey do not calculate the angle χ by455

sensing the real-time predator speed.456

C. Re-examining optimal noise levels as a function of speed ratio between predator and prey. The same conclusion can be457

strengthened by examining the values of the optimized noise parameters. At χ near zero, the optimizer avoids large values of458

σΛ because they cause the distance-optimal strategy to reduce to the pure-protean strategy, for which NLL= −N ln(1/2π) =459

1.8379N (where N is the sample size). Thus, the optimizer is challenged to find noise values for which NLL ≤ 1.8379N .460

As χ increases, the distance-optimal strategy resembles a variant of the antipodal strategy, which has lower NLLs than the461

pure-protean strategy even at large σΛ. In the range 20◦ . χ . 75◦, the optimizer often chooses the largest possible value of462

σ∗Λ → π to produce the optimized NLLs. Taken together, the larger values of NLL at χ . 20◦ and the large values of optimal463

σΛ in the range 20◦ . χ . 75◦ indicate that λ is not an effective sensory cue for χ . 75◦. As χ gets closer to 90◦, lower values464

of σΛ lead to lower NLL values (see fig. S14B). Therefore, the prey is unlikely to use the distance-optimal strategy at small465

values of χ; this strategy is best used for χ→ 90◦, thus favoring the orthogonal strategy.466
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8. Fish Evasion Mechanics: C-start Maneuver467

Larval zebrafish execute a “C-start” or “fast start” to reorient themselves rapidly in response to predators (18). The prey468

bends its body into a “C” shape from a straight configuration within the order of 10ms (17). Computational work found that469

pressure-driven action-reaction forces are dominant in C-start maneuvers, whereas vorticity generated during this short process470

has negligible effects on fish motion (19). Thus, to investigate the evasion mechanics, we adopt a simplified 3-link fish model in471

potential flow (20, 21) which ignores the effects of viscosity and vortex shedding, but accounts for reactive hydrodynamic forces472

through the added mass effect.473

A. Fish kinematics. To describe planar motions of the three-link fish, we let x = (x, y) denote the position of the center of474

mass G of the middle link, and β denote the orientation of the fish relative to a fixed inertial frame, here taken to be the angle475

between the x-axis and the major axis of symmetry of the middle link. Let α1 and α2 be the rotation angles of the front link476

relative to the middle link and the middle link relative to the rear link; that is to say, (α1, α2) represents the shape of the477

three-link fish.478

It is convenient for the following development to introduce a body-fixed frame (b1,b2), attached at G and co-rotating479

with the middle link. This body-fixed frame is related to the inertial frame (e1, e2) via a rigid-body rotation such that480

e1 = cosβb1 − sin βb2 and e2 = sin βb1 + cosβb2. The velocity (ẋ, ẏ) of the center of mass of the middle link, when expressed481

in the body-fixed frame, is given by482

v = v1b1 + v2b2 = (ẋ cosβ + ẏ sin β)b1 + (−ẋ sin β + ẏ cosβ)b2 [45]483

Assuming all three links are made of identical ellipsoids of major axis a, and minor axes b = 0.2a, c = a, the velocities of484

the centers of mass G1 and G2 of the front and rear link, expressed in the body-fixed frame of the middle link, are given by485

(i = 1, 2, denote the front and rear links, respectively)486

vi = (v1 ∓ aα̇i sinαi)b1 + (v2 ± aβ̇ + aα̇i cosαi)b2. [46]487

The angular velocities of the middle, front, and rear links are given by β̇, β̇ + α̇1, and β̇ − α̇2 respectively.488

B. Kinetic energy of the three-link fish. The kinetic energy of the fish is given by489

Tprey = 1
2msv · v + 1

2Jsβ̇
2 + 1

2
∑
i=1,2

[
msvi · vi + Js(β̇ ± α̇i)2] [47]490

where ms = 4
3abcρs and Js = 1

5 (a2 + b2)ms are the mass and moment of inertia of each solid link with ρs the density of the491

links.492

C. Kinetic energy of the fluid. The three-link fish is submerged in an unbounded domain of incompressible and irrotational493

fluid, such that the fluid velocity u = ∇Φ can be expressed as the gradient of a potential function Φ. It is a standard result494

in potential flow theory that the kinetic energy of the fluid can be expressed in terms of the variables of the submerged495

solid (20–22). In the case of a single ellipsoid, the kinetic energy of the fluid is given by Tfluid = [(m1av
2
1 +m2av

2
2) + Jβ̇2]/2,496

where m1a, m2a and Ja are the added mass and the added moment of inertia due to the presence of the fluid, expressed in a497

body-fixed frame that coincides with the major and minor axes of the ellipsoid. The added mass and moment depend on the498

geometric shape a, b, c of the submerged ellipsoid and the fluid density ρf (23). For a non-spherical body, the added masses499

m1a, m2a depend on the direction of motion: the added mass is larger when moving in the direction of the minor axis of500

symmetry of the ellipsoid, that is to say, in the transverse direction; hence m1 ≤ m2. For the three-link fish, the kinetic energy501

of the fluid is of the form502

Tfluid =1
2m1av

2
1 + 1

2m2av
2
2 + 1

2Jaβ̇
2 + 1

2
∑
i

Ja
(
β̇ ± αi

)2
+ 1

2
∑
i

m1a
(
v1 cosαi ± v2 sinαi + aβ̇ sinαi

)2
+ 1

2
∑
i

m2a
(
∓v1 sinαi + v2 cosαi ± aβ̇ cosαi ± aβ̇ + aα̇i

)2
.

[48]503

D. Kinetic energy of the fish-fluid system. The kinetic energy of the fish-fluid system is obtained by taking the sum of Eq. (47)504

and Eq. (48), which can be expressed in matrix form as follows:505

T = Tprey + Tfluid = 1
2


v1
v2

β̇
α̇1
α̇2


T  Ilock Icouple

IT
couple Ishape




v1
v2

β̇
α̇1
α̇2

 , [49]506
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Here, Ishape is a 2× 2 matrix associated with shape deformation,507

Ishape =
[
J +m2a

2 0
0 J +m2a

2

]
. [50]508

where m1 = ms +m1a, m2 = ms +m2a, and J = Js + Ja. Icouple is a 3× 2 matrix that couples rigid body motion with shape509

deformation,510

Icouple =

[ −m2a sinα1 m2a sinα2
m2a cosα1 m2a cosα2

J +m2a
2(1 + cosα1) −J −m2a

2(1 + cosα2)

]
. [51]511

Finally, Ilock is a 3× 3 locked mass matrix, function of α1 and α2,512

Ilock =

 M D

DT J

 , [52]513

where M is a 2× 2 mass matrix given by514

M =
[
m1
(
1 +

∑
i
cos2 αi

)
+m2

∑
i
sin2 αi

1
2 (m1 −m2)(sin 2α1 − sin 2α2)

1
2 (m1 −m2)(sin 2α1 − sin 2α2) m2

(
1 +

∑
i
cos2 αi

)
+m1

∑
i
sin2 αi

]
, [53]515

J is a moment-of-inertia scalar given by516

J = 3J +m1a
2
∑
i

sin2 αi +m2a
2
∑
i

(1 + cosαi)2 , [54]517

and D couples the translational and rotational motion of the fish. For a single ellipsoid, D is identically zero. For the three-link518

fish, it is given by519

D =
[

1
2 (m1 −m2)a

∑
i
sin 2αi −m2a

∑
i
sinαi

1
2 (m1 −m2)a(cos 2α2 − cos 2α1) +m2a(cosα1 − cosα2)

]
. [55]520

E. Local connection matrix. We define a local connection matrix A = −I−1
lockIcouple, where the entries Axi, Ayi, Ai (i = 1, 2) of521

the connection matrix A are nonlinear functions of α1, α2, (see (20, 21, 24, 25))522

A = −I−1
lockIcouple =

[
Ax1 Ax2
Ay1 Ay2
A1 A2

]
. [56]523

The local connection matrix A is a function of the variables (α1, α2) that define the shape of the three-link fish. Specifically,524

A defines three vector fields Ax ≡ (Ax1, Ax2), Ay ≡ (Ay1, Ay2), and A ≡ (A1, A2) over the shape space (α1, α2) as shown in525

fig. S15(A).526

F. Equations of motion. In the absence of external forces and torques, the equations of motion of the fish are obtained from the527

conservation of linear and angular momentum. Starting from rest, at zero total momentum, one gets528 [ cosβ sin β 0
− sin β cosβ 0

0 0 1

] ẋ
ẏ

β̇

 =

[
Ax1 Ax2
Ay1 Ay2
A1 A2

][
α̇1
α̇2

]
. [57]529

Eq. (57) provides a set of first-order differential equations that can be integrated numerically to obtain the state (x, y, β) for530

prescribed cyclic shape changes in the (α1, α2) plane. Translations motions (x, y) and rotational motions β of the fish are531

dictated by the connection matrix A. Translations are coupled to rotations via A.532

Rotations β, are directly proportional to the line integral of the vector field A = (A1, A2). Considering cyclic shape changes533

in the (α1, α2) plane and using Green’s Theorem, we get, considering the last row of Eq. (57),534

β(T )− β(0) =
∮
C

dβ =
∮
C

(A1dα1 +A2dα2) =
∫∫

S

curl2(A)dα1dα2 =
∫∫

S

(
∂A2

∂α1
− ∂A1

∂α2

)
dα1dα2. [58]535

Here, T is the time required to go around the closed trajectory in the shape space once; note that a re-scaling of time does not536

affect how the motion of the fish depends on (α1, α2), only the speed at which the fish completes these cyclic shape changes.537
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G. Turning versus swimming gaits. In fig. S15A, we show the three scalar fields defined by curl2Ax, curl2Ay, and curl2A,538

where the normalized curls are visualized as a colormap (from blue to orange) over the (α1, α2) plane. The scalar fields curl2Ax,539

curl2Ay, and curl2A are informative of the net motions (x, y, β) of the fish, but whereas rotations β are directly proportional540

to the area integral of curl2A, translational motions (x, y) are not directly proportional to the area integrals of curl2Ax and541

curl2Ay, due to their coupling with rotations β, as evident from Eq. (57).542

To illustrate the utility of the scalar fields curl2Ax, curl2Ay, and curl2A shown in fig. S15A, we show two examples of cyclic543

shape changes depicted in black and red. Mathematically, these trajectories are closed circles of radius A such that544

Turning gait: α1(t) = 1√
2

[
A
(

1− cos 2πt
T

)
+A sin 2πt

T

]
, α2(t) = 1√

2

[
A
(

1− cos 2πt
T

)
−A sin 2πt

T

]
,

Swimming gait: α1(t) = 1√
2

[
A cos 2πt

T
−A sin 2πt

T

]
, α2(t) = 1√

2

[
A cos 2πt

T
+A sin 2πt

T

]
.

[59]545

For both examples, we chose A = π/3. For the shape deformations following the red trajectory, the corresponding maximum546

bending angle is given by αmax =
√

2A. At t = 0, the fish is straight and α1 = α2 = 0 (point T1 in fig. S15A). For 0 < t < T/2,547

the fish bends its body to one side; α1 increases first and α2 catches up till they meet at the same value α1 = α2, where their548

sum is maximal (point T2 in fig. S15A). For T/2 < t < T , the fish unfurls its body; α1 and α2 decrease back to zero. At t = T ,549

the fish recovers to a straight line (point T4 in fig. S15A). In the swimming (black curve in fig. S15A), the three-link fish starts550

in a deformed shape (point S1 in in fig. S15A) and undulates its body cyclically to both sides.551

For each trajectory, we numerically integrate Eq. (57) to obtain the translational motion x(t) and y(t) and orientation552

β(t) of the fish model. Note that β(t) can be solved analytically following the expression in Eq. (58) and substituted back553

into Eq. (57) to numerically solve for x(t) and y(t). A fish changing its shape following the black curve in fig. S15A will554

undergo zero net rotations and zero net displacement in the y-direction, but it will swim forward in the x-direction as shown555

in fig. S15B. A fish following the red line in fig. S15A will undergo a positive net rotation and a negligible displacement in both556

the x- and y-directions as shown in fig. S15C. We emphasize that time is inconsequential in these motions: a re-scaling of time557

neither affects the fish shape deformations (α1, α2) nor its locomotion (x, y, β), only the speed at which the fish follows these558

trajectories.559

9. Comparison of C-start Model to Experimental Data560

A. Experimental measurements of C-start kinematics. In (26), the authors measured the excursions of the fish body during an561

evasive response. They divided the fish body into 4 sections of equal length and recorded the orientation of each section relative562

the initial orientation of the fish as a function of time. To use these experimental measurements in our 3-link fish model, we563

averaged the excursion of the middle two sections and considered that to be the change in orientation θ. We computed the564

difference in excursion between the first section and θ and the difference in excursion between θ and the last section, and we565

considered these differences to be the shape angles α1, α2 in the three-link model. The shape trajectory (α1, α2) based on the566

experimental measurements is shown in S15A in grey dots. The values of θ from experimental measurements is shown in Fig. 4567

of the main text.568

B. Comparison between experimental measurements and three-link fish model. We fitted the experimental data (α1, α2) with569

a third-order Fourier series; results shown in light blue line in S15A. We then used this fitted trajectory (α1, α2) as input to570

the 3-link fish model in Eq. (58) and compared the results obtained from the three-link model to the experimental values of θ;571

results are shown in Fig. 4 of the main text.572

Remarkably, the experimentally-constructed shape motion (α1, α2) (light blue line in fig. S15A) resembles the model-based573

shape trajectories (red and black circles in fig. S15A) if we start from the origin, follow the red line, then join the black line at574

the location where the red and black trajectories intersect, indicated by a green star in S15A.575

We numerically integrated Eq. (57) using the synthetic shape motion (with α1 and α2 tracing the red then black trajectories576

in S15A) and the experimentally-obtained C-start maneuver (with α1 and α2 tracing the light blue trajectory in S15A). Note577

that for the synthetic shape changes (tracing the red then black lines in fig. S15A), we chose the time scale to match the time578

scale in the experimentally-observed C-start (blue line in fig. S15A). The fish first turns then begins to swim forward in a579

post C-start direction. Snapshots of the fish body shape are shown in fig. S15D and time evolution of x, y, and β are shown580

in fig. S15E; the displacements x and y are shown in solid and dashed lines in the top panel of S15E, with no corresponding581

experimental data available for comparison, while the rotational motion β is shown in the bottom panel of fig. S15E. The582

experimentally-obtained change in heading θ (grey dots) is superimposed for comparison. Remarkably, the rotational motion583

obtained based on the three-link fish model accurately matches the body rotation observed experimentally in the C-start584

response.585

C. Mechanical constraints on prey reorientation. Inspired by the fact that the synthetic turning gait (red curve in fig. S15A)586

accurately predicts the rotational response observed experimentally during a C-start maneuver, we use the three-link model to587

probe the mechanical constraints on the reorientation angle θ = β(T )− β(0) during evasion. To this end, we construct a family588

of elliptic trajectories in the shape space α1, α2 that are adapted from Eq. (59) to produce net rotations,589

α1(t) = 1√
2

[
A
(

1− cos 2πt
T

)
+B sin 2πt

T

]
, α2(t) = 1√

2

[
A
(

1− cos 2πt
T

)
−B sin 2πt

T

]
. [60]590
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The corresponding maximum bending angle is given by αmax =
√

2A. We varies αmax from 0 to 180◦. For each αmax, we591

solved for the value of B that maximizes the response angle θ. Examples of the optimized trajectories are given in fig. S16A592

and B. In fig. S16A, we show curl2A for a three-link fish of negligible mass, whereas in fig. S16B, we show curl2A for a593

neutrally-buoyant three-link fish. The difference between fig. S16A and B stems from how A in Eq. (56), consequently A,594

changes with fish body density ρ. The optimized trajectories enclose as much as possible of the orange regions where curl2A is595

strictly positive. The net reorientation θ resulting from tracing each of cycle of shape deformations is shown in fig. S16C as a596

function of the maximum bending angle αmax, thus establishing a mapping from the maximum bending angle αmax to the597

response angle θ. We find that even at αmax = 180◦, where the fish model is fully folded, the fish cannot accomplish a 180◦598

turn. This is a reflection of the mechanical constraints imposed by the mechanics of the fish and fish-fluid interactions on the599

turning angle θ. At αmax = 120◦ which is the largest experimentally-observed value of bending angle in (27), the turning angle600

θ is barely 100◦.601

D. Effort in performing cyclic shape deformations. We assume the total time T to trace each of the shape trajectories in fig. S16A602

and fig. S16B is constant, and we evaluate the total energy associated with these shape deformations603

E =
∫ T

0
Tshape(t)dt = 1

2(J +m2a
2)
∫ T

0
(α̇2

1(t) + α̇2
2(t))dt. [61]604

In fig. S17, we show the energy associated as a function of the response angle θ for the family of shape changes α1(t), α2(t)605

in Eq. (60) parameterized by A.606

E. Statistical evidence of the physical constraint in C-start response.. Now that we have established that the C-start mechanics607

fish imposes constraints and limits on large turning motions, we look at our experimental dataset again to probe the scarcity of608

large prey response. In fig. S17A, we show the frequencies of the magnitude |θ| of prey responses recorded experimentally and609

of those predicted by the distance-optimal strategy and the orthogonal strategy without noise. We calculate a ‘prediction error’610

by subtracting the frequencies of the experimental data from the predicted frequencies (fig. S17B). Superimposed on this plot,611

we show the actuation effort computed following Eq. (61). Apart one exception point in the distance-optimal strategy, both612

strategies predict higher frequencies of evasion angles θ that exceed 100◦ and lower frequencies of evasion angles below 100◦613

than observed experimentally. For the orthogonal strategy, the prediction error rises sharply around 100◦, where the actuation614

effort increase sharply and non-linearly. These discrepancies between model predictions and experimental data further support615

our findings based on the physics model that zebrafish larvae undergoing a C-start evasion response have difficulty performing616

turns that are larger than 100◦.617
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Fig. S1. Experimental measurement of evasion behavior in zebrafish larvae. (A) Experiment setup. The preys were initially motionless in the water tank. The robot
predator was controlled to approach the preys at a certain speed and two cameras were used to record the evasion response. (B) Locations of the fish center-of-mass and fish
head were measured right before and after the evasion response in the predator’s frame of reference. The measurements were then processed to derive the perceived predator
state φ, ψ, λ in the prey’s frame of reference, as well as the prey response θ. (C) Categories of stimuli considered in the candidate strategies based on the sign of φ or λ.
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Fig. S2. Univariate histograms of experimental data. (A)-(D) Predator state at the onset of evasion. (E) Prey response, i.e., change in orientation during evasion. Three left
columns show three datasets organized by predator speed; last column shows all data combined. In each histogram, the mean value is marked by blue line. For the angular
variables φ, ψ, λ, we computed circular means using the Matlab Circular Statistics Toolbox (4, 28) and defined the proper range of angles based on the means.

Yusheng Jiao1, Brendan Colvert2, Yi Man1, Matthew McHenry3, Eva Kanso118 19 of 35



slow predator mid-speed predator fast predator

p
ro

b
ab

il
it
y
 d

en
si

ty

0

max

p
re

y
 r

es
p
on

se
 θ

reactive distance d [m] reactive distance d [m] reactive distance d [m]

180◦

−180◦

0◦

0 0.060.03

all data

reactive distance d [m]

0 0.060.030 0.060.030 0.060.03

Fig. S3. Bivariate histograms between reactive distance d and prey response θ at evasion. The intensity of gray represents the data occurrence density. From left to
right, the linear-circular correlation coefficient is C = 0.04809, 0.09034, 0.07005, 0.06974 and the p-value is p = 0.7481, 0.3864, 0.5901, 0.1827. That is, there is no
significant correlation between the prey’s escape direction θ and the reaction distance d at the onset of evasion.
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Fig. S4. Bivariate histograms between predator’s angular position φ and relative heading λ at the onset of evasion. We notice two trends: First, the data density is
low in the center of each histogram (φ ≈ 180◦, λ ≈ 0). This is when the predator appears in the ‘blind zone’ of the zebrafish larvae vision and flow sensing modalities; see
fig. S1C. However, even for φ equal or close to 180◦, evasion is triggered for larger values of the predator’s heading deviation λ at all predator speeds. Second, at slow
predator speed, there is a weak correlation between the magnitude of the two measurements of predator’s angular position φ and relative heading λ, as evidenced by the
circular correlation coefficient is C = −0.2571,−0.1278,−0.0736 and the p-value p = 0.0000, 0.0346, 0.2472 for slow, mid-speed, and fast predators, respectively.
That is, at slow predator speed, the prey is more likely to escape when the predator is heading towards the front side of prey (λ > 0 for 0◦ < φ < 180◦ and λ < 0
for 180◦ < φ < 360◦), as opposed to when the predator is heading towards the back of from the prey. This correlation gets weaker for faster predator. Here, and in all
subsequent statistical analysis, the circular correlation coefficients were calculated using the MATLAB Circular Statistics Toolbox (4, 28).
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Fig. S5. Bivariate histograms between predator angular position φ and prey response θ. The intensity of gray represents the data occurrence density. From left to right,
the circular-circular correlation coefficient is C = 0.3890, 0.5330, 0.5097, 0.4870, and the p-value is p = 0.0000, 0.0000, 0.0000, 0.0000. That is there is significant
linear correction between φ and θ. The circular regression gives, from left to right, θ = 0.5290φ− 79◦ for slow predator, θ = 0.4057φ− 104◦ for mid-speed predator,
θ = 0.6537φ− 122◦ for fast predator, and θ = 0.5513φ− 105◦ for combined data; regression lines are superimposed in red.
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Fig. S6. Bivariate histograms between predator heading ψ and prey response θ and between predator relative heading λ and prey response θ. (A) From left to
right, the circular-circular correlation coefficient is C = 0.13429, 0.28031, 0.21852, 0.24764 and the p-value is p = 0.025880.00000.0009, 0.0000. There is consistent
but not strong positive correlation between ψ and θ. The circular regression gives, from left to right, θ = 0.0967ψ − 9◦ for slow predator, θ = 0.1975ψ − 4◦ for
mid-speed predator, θ = 0.2852ψ − 5◦ for fast predator, and θ = 0.1975ψ − 7◦ for combined data; regression lines are superimposed in red. The variance unexplained
by linear regression is large. (B) Bivariate histograms between predator heading deviation λ and prey response θ. From left to right, the circular-circular correlation
coefficient is C = −0.2009,−0.1377,−0.0762,−0.1419, and the p-value is p = 0.0016, 0.0333, 0.2474, 0.0001. The circular regression gives, from left to right,
θ = −0.2671λ− 3◦ for slow predator, θ = 0.1709λ− 4◦ for mid-speed predator, θ = −0.3061λ+ 2◦ for fast predator, and θ = −0.2038λ− 4◦ for combined data;
regression lines are superimposed in red. That is, there is consistent but weak negative correlation between λ and θ. The weak negative correlation is largely due to the
relationship λ = ψ − φ− π the with predator angular position φ.
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Fig. S7. Bivariate histograms between predator heading ψ and prey response θ organized based on predator relative heading λ. Dataset is split based on the sign of
relative heading λ: In each case, sinistral stimulus for λ > 0 and dextral stimulus for λ < 0, the joint distribution of predator heading ψ and prey response θ is plotted. From left
to right, for λ > 0, the circular-circular correlation coefficient is C = 0.4147, 0.5626, 0.5731, 0.5129, and the p-value is p = 0.0000, 0.0000, 0.0000, 0.0000 for λ > 0;
whereas for λ < 0, C = 0.1959, 0.4857, 0.5377, 0.4537 and p = 0.03423, 0.0000, 0.0000, 0.0000. The circular regression gives, for λ > 0, θ = 0.3520ψ − 34◦

for slow predator, θ = 0.6812ψ − 57◦ for mid-speed predator, θ = 0.8876ψ − 74◦ for fast predator, and θ = 0.5899ψ − 50◦ for combined data, whereas for λ < 0,
θ = 0.0721ψ + 10◦ for slow predator, θ = 0.4361 + 27◦ for mid-speed predator, θ = 0.7406ψ + 55◦ for fast predator, and θ = 0.4970ψ + 32◦ for combined data;
regression lines are superimposed in red. Compared to the bivariate histograms in fig. S6(A), in each case, there is more significant correlation between ψ and θ, with the
exception of the slow predator dataset when λ < 0.
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Fig. S8. Probabilistic interpretation of experimental data and probabilistic formulation of theoretical evasion models (A) Predator state po(s) and joint distribution
po(s, r) of predator state and prey response at evasion are accessible experimentally, however, the conditional probability po(r|s) of an evasion response given a predatory
stimulus is not readily accessible and remains unknown. (B) Theoretical evasion models r(n) = f (n)(s) that map predatory stimulus s into evasion response r can be
expressed in probabilistic form; the experimentally-observed distribution of predatory stimuli po(s) can be used as input to generate theoretical predictions of the joint
distribution p(n)(s, r) for each theoretical model n. (C) Perception and response noise are accounted for in the probabilistic modeling of evasion.
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Fig. S9. Limiting behavior of distance-optimal strategy when predator heading deviation λ is very noisy σΛ → ∞. High level of noise means uniformly random
perception of λ, but it alone does not cause random prediction in prey response θ. The predicted response is distributed away from the predator based on predator angular
position φ and parameter χ. (A) probability distribution of predicted prey response in the case of sinistral stimuli λ̂ > 0. The prediction is equally distributed in the purple half
circle. (B) probability distribution of predicted prey response in the case of dextral stimuli λ̂ < 0. The prediction is equally distributed in the brown half circle. (C) the overall
probability distribution of predicted prey response with large noise in predator heading. The probability distribution density p(θ) is calculated by the law of total probability.
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Fig. S11. Optimization of the noise parameters. (A) Values of the NLL (negative log-likelihood) over the noise parameter space of each evasion model using all data from all
699 evasion instances. The color indicates the relative NLL compared the minimum NLL. The darkest point gives the optimal noise parameters that best fit the experimental
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Fig. S12. Interpretation of AIC differences. The quantity exp(−∆AIC/2) (black lines) can be interpreted as the relative likelihood, or the probability that the model
minimizes information loss relative to the best-ranking model. The mean values and the range of one standard deviation of AICs for the noisy strategy models (same as Fig.4B
of the main text) are highlighted along the horizontal axis. The two empirical thresholds ∆AIC = 2 and ∆AIC = 10 are marked by gray vertical lines. Compared to the
orthogonal strategy, the probability that other models minimize information loss is almost nil. Considering the distribution of AICs, the distance-optimal strategy and the antipodal
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Fig. S13. Comparison between distance-optimal, orthogonal and parallel strategies.. (A) The distance-optimal strategy by Weihs and Webb (10) maximizes the minimum
distance between the predator and the prey during the evasion. The angle χ is determined by the speed ratio between the prey and the predator U/V . In the orthogonal
strategy, the prey always heads at 90◦ angle away from the predator’s heading direction. In the parallel strategy, the prey moves in the same direction as the predator. (B) The
relationship between χ and the speed ratio U/V . The distance-optimal strategy converges to the orthogonal strategy χ = 90◦ when U/V → 0 (fast predator) and to the
parallel strategy χ = 0◦ when U/V ≥ 1 (slow predator).
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K-L divergence estimate for the distance-optimal strategy compared to experimental data, using k = 5. We vary the value of χ from 0◦ to 90◦ for each dataset. (B) The
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Fig. S15. Simulation of C-start response with the three-link fish model. (A) The scalar fields formed from the geometric mechanics analysis. The magnitude has been
normalized to be within the range of [−1, 1]. The net motion of the three-link fish from following a closed trajectory on the plane can be inferred from the color enclosed by the
trajectory. Examples of trajectories that produce swimming gait and turning gait are given by the black and the red circles, respectively. The grey dots show the trajectory of a
C-start response extracted from experiment. This trajectory is then fitted by third-order Fourier series, shown in light blue. (B) Snapshots of the turning gait following the red
circular trajectory in A. The corresponding locations on the deformation trajectory are marked by numbers 1,2,3,4 in red. (C) Snapshots of the swimming gait following the black
circular trajectory in A for multiple times. The corresponding locations on the deformation trajectory for the four snapshots are marked by numbers 1,2,3,4 in black. Snapshots of
the turning plus swimming by following the red circle first and then joining the black circle at the green star, alongside the snapshots of the C-start motion by following the
light blue trajectory in A. (E) (above) The net displacement (x, y) of three-link fish generated from the prescribed turning-plus-swimming motion and from the fitted C-start
motion (D). (below) The rotation in the center link generated from the prescribed turning-plus-swimming motion, from the fitted C-start motion, and the rotation measured from
experiment (26).
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Fig. S16. Predicting prey response from its bending angle. A family of elliptic trajectories are parameterized by the max bending angle αmax. The other axis length is
selected by maximizing the turn angle achieved in one cycle. (A) A few representative trajectories are shown for the massless three-link fish model. The black and red dots
mark the point where the fish curls to a ‘C’ shape and where the max bending angle αmax is defined. The distance between the two dashed lines gives αmax for the trajectory
marked by the red dot. (B) Representative trajectories with same max bending angles for the neutrally buoyant three-link fish model. (C) The constructed mapping from max
bending angle αmax to prey response θ for models with different mass parameters.The head and tail of fish model start crossing each other when αmax exceeds 120◦, where
the predicted prey response reaches around 100◦ depending on the mass parameter.
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Table S2. Results from statistical analysis of experimental data

Univariate analysis

Variable
Slow predator Mid-speed predator Fast predator Combined

mean std mean std mean std mean std
reactive distance d 0.02434 0.00934 0.02685 0.01232 0.02470 0.01115 0.02529 0.01100
predator angular position φ 4.4742◦ 62.3731◦ 3.2134◦ 64.7275◦ 1.8999◦ 73.9732◦ 5.0989◦ 67.2255◦

predator heading ψ 5.2485◦ 64.1633◦ 4.4574◦ 71.5149◦ 0.17955◦ 75.8059◦ 0.76637◦ 71.1338◦

predator heading deviation λ 0.43071◦ 51.7531◦ 4.663◦ 52.333◦ 0.83638◦ 48.5776◦ 4.3195◦ 51.2418◦

prey response θ 4.8889◦ 54.1421◦ 3.1013◦ 56.9645V 5.3878◦ 65.2675◦ 0.31316◦ 58.7074◦

* The mean and the std above refer to circular mean and circular standard deviation for all variables except reactive distance d.

Bivariate analysis between predator state and prey response θ

Predator state
Slow predator Mid-speed predator Fast predator Combined

Correlation LR Correlation LR Correlation LR Correlation LR
coef. C p-value slope coef. C p-value slope coef. C p-value slope coef. C p-value slope

reactive distance d 0.0481 0.7481 0.0903 0.3864 0.0701 0.5901 0.0697 0.1827
angular position φ 0.3890 0.0000 0.406 0.5330 0.0000 0.529 0.5097 0.0000 0.654 0.4870 0.0000 0.551
heading ψ 0.1343 0.0259 0.097 0.2803 0.0000 0.198 0.2185 0.0009 0.285 0.2476 0.0000 0.198
heading deviation λ -0.2009 0.0016 -0.267 -0.1377 0.0333 -0.171 -0.0762 0.2474 -0.306 -0.1419 0.0001 -0.204
heading ψ|λ>0 0.4147 0.0000 0.352 0.5626 0.0000 0.681 0.5731 0.0000 0.888 0.5129 0.0000 0.590
heading ψ|λ<0 0.1959 0.03423 0.072 0.4857 0.0000 0.436 0.5377 0.0000 0.741 0.4537 0.0000 0.497
* The correlation above refers to circular-linear correlation between d and θ and circular-circular correlation for the other rows.
* The LR slope above denotes the slope coefficient of the linear regression between two circular variables.

Yusheng Jiao1, Brendan Colvert2, Yi Man1, Matthew McHenry3, Eva Kanso134 35 of 35


	Data Collection and Data Processing Protocols
	Experimental set-up
	Processing of video recordings
	Transformation to prey-centric frame of reference
	Statistical analysis
	Summary of insights based on statistical analysis

	Theoretical Evasion Strategies
	Evasion Strategies

	Probabilistic Modeling of Evasion
	Probabilistic interpretation of experimental data
	Stimulus and response without and with noise
	Conditional probability based on theoretical evasion strategies
	Probabilistic evasion strategies without noise
	Probabilistic evasion strategies with noise

	Explicit Expressions of Probabilistic Evasion Strategies With Perception and Response Noise
	Perception noise
	Response noise
	Conditional probability based on theoretical evasion strategies
	Probabilistic evasion models with perception and response noise
	Interpretation of noisy strategies in the limit of large noise parameters

	Evaluation of Probabilistic Evasion Models with No Perception and Response Noise
	Theoretical predictions without noise
	Comparison to experimental observations using the Kullback-Leibler (K-L) Divergence
	Numerical estimates of the K-L divergence

	Evaluation of Probabilistic Evasion Models with Perception and Response Noise
	Optimization of noise parameters
	Akaike Information Criterion
	Bootstrapping
	Model performance based on AIC
	Levels of perception and motor noise can be used to further discriminate between evasion models

	Further Analysis of the Distance-Optimal Strategy
	Side note
	Performance of optimized strategy as a function of speed ratio between predator and prey
	Re-examining optimal noise levels as a function of speed ratio between predator and prey

	Fish Evasion Mechanics: C-start Maneuver
	Fish kinematics
	Kinetic energy of the three-link fish
	Kinetic energy of the fluid
	Kinetic energy of the fish-fluid system
	Local connection matrix
	Equations of motion
	Turning versus swimming gaits

	Comparison of C-start Model to Experimental Data
	Experimental measurements of C-start kinematics
	Comparison between experimental measurements and three-link fish model
	Mechanical constraints on prey reorientation
	Effort in performing cyclic shape deformations
	Statistical evidence of the physical constraint in C-start response.


