### **Supporting Information Appendix**

### Definition of the contribution of an Osteopontin-producing CD11c<sup>+</sup> microglial subset to Alzheimer's disease

Yiguo Qiu, Xianli Shen, Orly Ravid, Dana Atrakchi, Daniel Rand, Andrew E. Wight, Hye-Jung Kim, Sigal Liraz-Zaltsman, Itzik Cooper, Michal Schnaider Beeri and Harvey Cantor

Correspondence to: Harvey\_Cantor@dfci.harvard.edu

This PDF file includes:

Figures S1 – S8

Tables S1 + S2

#### Other Supplementary Materials for this manuscript include the following:

Dataset S1

Movies S1 and S2



#### Figure S1. Microglial expression of OPN in 5XFAD mice.

(A) Flow cytometric analysis of OPN expression in microglia (CD11b<sup>+</sup>), astrocytes (GFAP<sup>+</sup>) and neurons (MAP2<sup>+</sup>) obtained from 5XFAD mice (n=3) at different stages of disease development.

**(B, C)** Microglial OPN expression at the mRNA level (RT-qPCR) (n=4) and protein level (n=6) was analyzed by flow cytometry in 5XFAD mice compared with age-matched WT mice at the indicated ages during disease progression. \*\*\*\*p < 0.0001, \*\*p < 0.01 by two-way ANOVA with Bonferroni's multiple comparisons test. Data are presented as mean  $\pm$  s.e.m.



#### Figure S2. Confirmation of OPN KO in OPN-KO.5XFAD mice.

(A) PCR genotyping results of the indicated mouse strains: OPN-KO.5XFAD: 500 bp; OPN<sup>WT</sup>: 300 bp; 5XFAD transgene: 377 bp; IL-2 (internal positive control): 324 bp.

**(B)** Validation of OPN KO at the protein level in microglia of 9-mo old OPN-KO.5XFAD mice. Isotype control was used as negative control. Microglia from age-matched 5XFAD mice were used as positive controls. The contour plots were representative results from 3 independent experiments.



#### Microglial expression of canonical OPN receptors in 5XFAD mice

# Figure S3. Microglial expression of canonical OPN receptors in 5XFAD mice at different stages of disease.

Flow cytometric analysis of microglial expression of  $\alpha V\beta 3$ , CD44 and  $\alpha V\beta 5$  in 5XFAD mice at the indicated ages during disease progression. Histogram of CD44 and contour plots of  $\alpha V\beta 3$  and  $\alpha V\beta 5$  are the representative results from 3 independent experiments.

Caspase-1 activation



#### Figure S4. Validation of the specificity of Caspase-1 activation.

Intracellular Caspase-1 activity was measured by bioluminescent assay of microglia from 9-mo 5XFAD mice. Detection of the specificity of Caspase-1 activity was confirmed by a selective Caspase-1 inhibitor (Ac-YVAD-CHO, 1  $\mu$ M). Bar plots are representative results from 3 independent experiments.



Figure S5. In vitro analysis of OPN-dependent inhibition of lysosomal Aβ degradation.

**(A)** Protocol of in vitro analysis of OPN-dependent inhibition of lysosomal Aβ degradation in CD11c<sup>+</sup> microglia from 9-mo old 5XFAD and OPN-KO.5XFAD mice.

(B) CD68 expression (MFI) in CD11c<sup>+</sup> microglia from 5XFAD and OPN-KO.5XFAD mice in the presence or absence of rmOPN and anti-OPN Ab (n=3). \*\*\*p < 0.001, \*\*p < 0.01, \*\*p < 0.05 by one-way ANOVA with Bonferroni's multiple comparisons test.

(C) Mean fluorescence intensity (MFI) of FAM-A $\beta_{1-42}$  after 1 h incubation determined by flow cytometry in lysosomes of CD11c<sup>+</sup> microglia (CD11c<sup>+</sup>CD68<sup>+</sup>) were defined as A $\beta$  MFI<sub>1h</sub>. MFI of retained FAM-A $\beta$  in lysosomes of CD11c<sup>+</sup> microglia (CD11c<sup>+</sup>CD68<sup>+</sup>) 24 h after FAM-A $\beta_{1-42}$  withdrawal was determined and defined as A $\beta$  MFI<sub>24h</sub>. CD11c<sup>+</sup> microglial A $\beta$  degradation rate (n=3) was calculated as (A $\beta$  MFI<sub>1h</sub> - A $\beta$  MFI<sub>24h</sub>) / A $\beta$  MFI<sub>1h</sub>. \*\*p < 0.01, \*p < 0.05 by one-way ANOVA with Bonferroni's multiple comparisons test. All data are presented as mean ± s.e.m.



## Figure S6. Immunofluorescent staining of CD11c microglial subsets in brain cryosections of 5XFAD mice.

(A) Immunofluorescent signal of microglial CD11c expression was validated in 9-mo old 5XFAD mice. Brain cryosections incubated without anti-CD11c primary Ab or Tyramide Signal Amplification (TSA) reagent were used as negative controls. Scale bar =  $50 \mu m$ .

**(B)** Representative immunofluorescent staining of CD11c<sup>+</sup>OPN<sup>+</sup> microglia (CD11c<sup>+</sup>OPN<sup>+</sup>Iba-1<sup>+</sup>, yellow arrow) and CD11c<sup>+</sup>OPN<sup>-</sup> microglia (CD11c<sup>+</sup>Iba-1<sup>+</sup>, cyan arrow) in brain sections of 9-mo old 5XFAD mice. Scale bar =  $25 \mu m$ .

Macrophage (CD11b+CD45hi) 12 SSC 0 SSC Gated on single/live cells CCR2 Tmem119 CD11b+CD45hi Microglia (CD11b+CD45low) 7.5 **CD45** 12 SSC 87 CD11b+CD45<sup>low</sup> 87.2 SSC SSC 0 ► CD11b CD11b ♠ CD45<sup>-</sup> cells (negative control) CCR2 Tmem119 CD11c expression microglia FMO 74.1 SSC SSC 0.39 24.5 0 SSC SSC ► CD11c CD45 CD11c CD11c

#### Figure S7. Validation of microglial CD11c expression in 5XFAD mice by flow cytometry.

Flow cytometric analysis of microglial CD11c expression in 9-mo old 5XFAD mice. CD11b<sup>+</sup> cells were gated on single/live cells. Microglia are identified as CD11b<sup>+</sup> CD45<sup>low</sup> Tmem119<sup>+</sup>CCR2<sup>-</sup> cells and macrophage are identified as CD11b<sup>+</sup>CD45<sup>hi</sup> Tmem119<sup>-</sup>CCR2<sup>+</sup> cells. The specificity of CD11c staining was confirmed using FMO negative control. Brain CD45<sup>-</sup> cells containing primarily non-immune cells that do not express CD11c were included as negative controls.



#### Figure S8. Binding specificity and in vitro function of anti-OPN mAb (MPIIIB10).

**(A)** The binding specificity of anti-OPN mAb (clone: MPIIIB10, isotype: mouse IgG1) to rmOPN was determined by competitive ELISA immunoassay. Plates coated with 2 μg/ml rmOPN (R&D) were preincubated with another anti-OPN Ab (clone: AF808, goat IgG) or its isotype goat IgG at graded concentrations followed by incubation with 200 nM anti-OPN mAb (MPIIIB10).

**(B)** Microglia isolated from 9-mo old 5XFAD mice were incubated at increasing concentrations (5, 10, 20  $\mu$ g/ml) of anti-OPN mAb (MPIIIB10) or an isotype-matched (mouse IgG1) control for 24 hours followed by flow cytometric analysis of TNF- $\alpha$  production by CD11c<sup>+</sup> microglia (n=3). \*\*\*\*p < 0.0001, ns: not significant by one-way ANOVA with Bonferroni's multiple comparisons test. Data are presented as mean  $\pm$  s.e.m.

#### See Excel file

## Dataset S1. Differentially expressed genes (DEGs) of CD11c<sup>+</sup> microglia from 9-mo old OPN-KO.5XFAD and 5XFAD mice.

A full list of differentially expressed genes (DEGs) in CD11c<sup>+</sup> microglia from 9-mo old OPN-KO.5XFAD mice compared with 5XFAD mice identifies 2,985 DEGs. Gene expression was considered upregulated if log<sub>2</sub>FC >1 or downregulated if log<sub>2</sub>FC <-1. DEGs were considered significant with an FDR-adjusted p value < 0.05.

|                | N for ELISA | N for IF | Age (years ± SD) | Sex (F/M) | PMI (min ± SD) |
|----------------|-------------|----------|------------------|-----------|----------------|
| Normal (CDR=0) | 11          | 5        | 81.1 ± 9.6       | 6/5       | 787 ± 425      |
| MCI (CDR=0.5)  | 10          | 9        | 82.6 ± 9.4       | 6/5       | 730 ± 425      |
| AD (CDR>1)     | 11          | 8        | 82.7 ± 9.5       | 7/5       | 533 ± 237      |
|                |             |          |                  |           |                |

Table S1. Summary of human samples included in the study.

PMI, Post-mortem Interval (min); CDR, Clinical Dementia Rating; IF, Immunofluorescence staining

Samples matched for age and sex were analyzed for OPN levels as measured by ELISA of frozen samples followed by immunofluorescence staining for Iba-1/CD11c/OPN (fixed, paraffin embedded sections).

|        | Subject |     |        | PMI   |     | Used for | Used   | Plaque              |                            |
|--------|---------|-----|--------|-------|-----|----------|--------|---------------------|----------------------------|
|        | number  | Age | Sex    | (min) | CDR | ELISA    | for IF | rating <sup>1</sup> | Tangle rating <sup>1</sup> |
| Normal | 23983   | 79  | Male   | 964   | 0   | +        |        | 1                   | 0                          |
|        | 36472   | 89  | Female | 353   | 0   | +        |        | 1                   | 0                          |
|        | 57242   | 85  | Female | 320   | 0   | +        | +      | 1                   | 0                          |
|        | 61911   | 95  | Female | 456   | 0   | +        |        | 0                   | 0                          |
|        | 80875   | 83  | Male   | 834   | 0   | +        |        | 1                   | 0                          |
|        | 201539  | 85  | Male   | 488   | 0   | +        |        | 3                   | 1                          |
|        | 395695  | 91  | Female | 290   | 0   | +        | +      | 0                   | 0                          |
|        | 503571  | 81  | Female | 1364  | 0   | +        |        | 0                   | 0                          |
|        | 576228  | 72  | Male   | 986   | 0   | +        | +      | 0                   | 0                          |
|        | 808460  | 66  | Male   | 1390  | 0   | +        | +      | 0                   | 0                          |
|        | 921781  | 66  | Female | 1211  | 0   | +        | +      | 0                   | 0                          |
| MCI    | 13090   | 71  | Male   | 1285  | 0.5 | +        | +      | 1                   | 0                          |
|        | 24420   | 83  | Male   | 740   | 0.5 | +        |        | 0                   | 0                          |
|        | 27409   | 68  | Female | 1155  | 0.5 | +        | +      | 0                   | 0                          |
|        | 38519   | 92  | Female | 225   | 0.5 | +        | +      | 3                   | 3                          |
|        | 46426   | 68  | Male   | 225   | 0.5 | +        |        | 0                   | 0                          |
|        | 83284   | 89  | Female | 495   | 0.5 | +        | +      | 0                   | 0                          |
|        | 271140  | 89  | Male   | 776   | 0.5 | +        | +      | 1                   | 0                          |
|        | 582757  | 87  | Male   | 925   | 0.5 | +        | +      | 0                   | 0                          |
|        | 604571  | 93  | Female | 248   | 0.5 | +        | +      | 1                   | 0                          |
|        | 754833  | 82  | Female | 553   | 0.5 | +        | +      | 5                   | 3                          |
|        | 852223  | 87  | Female | 1398  | 0.5 |          | +      | 3                   | 1                          |
| AD     | 5323    | 91  | Female | 420   | 2   | +        |        | 5                   | 5                          |
|        | 29188   | 91  | Female | 285   | 2   | +        | +      | 3                   | 1                          |
|        | 1100    | 84  | Female | 480   | 3   | +        |        | 3                   | 1                          |
|        | 64891   | 68  | Male   | 1075  | 3   | +        | +      | 5                   | 5                          |
|        | 74931   | 79  | Female | 390   | 3   | +        | +      | 5                   | 5                          |
|        | 354049  | 85  | Male   | 392   | 3   | +        | +      | 5                   | 1                          |
|        | 639732  | 69  | Female | 500   | 3   | +        | +      | 5                   | 5                          |
|        | 762124  | 72  | Male   | 375   | 3   |          | +      | 3                   | 5                          |
|        | 782872  | 99  | Female | 360   | 3   | +        |        | 1                   | 0                          |
|        | 31742   | 87  | Female | 885   | 4   | +        | +      | 5                   | 5                          |
|        | 39413   | 87  | Male   | 540   | 5   | +        | +      | 5                   | 5                          |
|        | 524179  | 80  | Male   | 688   | 5   | +        |        | 5                   | 5                          |

#### Table S2. Characterization of frozen and fixed human samples.

<sup>1</sup>Determined postmortem by a neuropathologist before storage of samples in the Mount Sinai brain bank. PMI: Post-mortem Interval (min); CDR: Clinical Dementia Rating; IF: Immunofluorescence staining

#### Table S3. Characterization of frozen and fixed human samples.

Detailed characterization of all human samples included in the study.

#### See MP4 file

### Movie S1. Confocal 3D images of human brain section stained for CD11c<sup>+</sup>OPN<sup>+</sup>Iba-1<sup>+</sup> microglia from a normal control.

Microglia shown in the images were stained for Iba1 (red), CD11c (green) and OPN (cyan). 3D images consist of 34 Z stacks, each slice 0.29  $\mu$ m thick accumulating to a total of 9.85  $\mu$ m in depth for the entire image. The image was acquired at a magnification of ×63 with a zoom in effect.

#### See MP4 file

## Movie S2. Confocal 3D images of human brain section stained for CD11c<sup>+</sup>OPN<sup>+</sup>Iba-1<sup>+</sup> microglia from an AD patient.

Microglia represented in the images were stained for Iba1 (red), CD11c (green) and OPN (cyan). The 3D image consists of 29 Z stacks, each slice 0.29  $\mu$ m thick accumulating to a total of 8.36  $\mu$ m in depth for the entire image. The image was acquired at a magnification of ×63 with a zoom in effect.