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Supplementary Methods 

Fly lines 

The following mutant alleles were used: eve3 (Bloomington stock 299), twi1 (Bloomington stock 2381), sna18 

(Bloomington stock 2311), tollrm9 and tollrm10 (gift from Maria Leptin), ctaRC10 (gift from Maria Leptin), cic1 
(gift from Gerardo Jiménez), traffic jam (tj)-GAL4 (P{w[+mW.hs]=GawB}NP1624 / CyO, P{w[-]=UAS-

lacZ.UW14}UW14) (Kyoto Stock Center 104055) and UAS-fat2 RNAi (P{GD14442}v27113) (Vienna 

Drosophila Resource Center 27113) (gifts from Sally Horne-Badovinac), scabKO (generated in the 

laboratory using CRISPR by Jean-Marc Philippe), osk-Gal4, UASp-CIBN-pmGFP, and UASp-CRY2-

RhoGEF2 (gift from Stefano de Renzis). The triple mutant ;eve3, twist1, snail18; used was generated in the 

laboratory by Claudio Collinet. 

Myosin regulatory light chain (MRLC) is encoded by the gene spaghetti squash (sqh, Genebank ID: 

AY122159). Imaging of sqh was performed using sqh-sqh::GFP (on chromosomes 2 and 3, gift from Robert 
Karess). Imaging of the plasma membrane was carried out using sqh-GAP43::mScarlet (on chromosome 

2 (9736, 2R, 53B2) and 3 (9744, 3R, 89E11) made in the laboratory by Jean-Marc Philippe). The 

recombinants ;sqh-sqh::GFP,sqh-GAP43::mScarlet; and ;;sqh-sqh::GFP,sqh-GAP43::mScarlet were 

generated in the laboratory. All unique fly lines generated for this study are available from the corresponding 

authors upon reasonable request. 

Crosses for toll vl: virgin ;sqh-sqh::GFP,sqh-GAP43::mSc;tollrm9/TM6C females were crossed with ;sqh-

sqh::GFP,sqh-GAP43::mSc;tollrm10/TM6C males. Homozygous offspring were put in a cage. 

Crosses for fat2: virgin ;tj-Gal4;sqh-sqh::GFP,sqh-GAP43::mSc females were crossed with ;UAS-fat2 

RNAi;sqh-sqh::GFP,sqh-GAP43::mSc males. F1 virgins were crossed with ;UAS-fat2 RNAi;sqh-

sqh::GFP,sqh-GAP43::mSc males. Resulting progeny were put in a cage. 

Two photon image analysis 

For both membrane and myosin channels, we used ImageJ software to access images of the sagittal 

section of the embryo from relevant time points by splitting a corresponding time series movie into individual 

time frames. For extracting the apical and basal contour of the epithelium, we manually segmented a large 

number of frames to precisely define the respective apical and basal contours. The separation of the apical 

contour from the vitelline membrane is a non-trivial segmentation task, we therefore used these initially 

segmented frames to train a Deep Learning algorithm (namely a U-NET (46)) to do similar segmentation 

automatically for future movies.  

To align the embryos in space, an ellipse (Fig. 1 C dashed blue ellipse) with direction of the principal axis 

(dashed blue line) towards the posterior side, was fitted on the apical contour of the epithelium at Tcell = 0 

min (reference time when cellular front of epithelial cells passes the nucleus). The intersection (indicated 
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by green star) of the principal axis with the midline (in red) of the epithelium is defined as the “zero (s = 0)” 

reference of the arc-length coordinate. 

For myosin quantification, we developed a python script to identify the segmented apical and basal contours 

as closed polynomials. These polynomials were then discretized by 100 evenly spaced nodes, such that 
each apical node has a correspondence to the nearest basal node. For each node, a myosin-mask was 

defined by a quadrilateral with height approximately 10 pixels (determined by the thickness of the myosin 

signal) and variable width determined by the distance between the adjacent nodes. Myosin intensity at a 

given node was calculated by averaging the pixel intensities within the respective mask.  

To extract model inputs, we constructed a midline contour by a new set of nodes defined by the average of 

each pair of respective apical and basal nodes. At each midline node, we computed tissue velocity via 

particle image velocimetry (PIV, using python library openpiv), total myosin intensity (sum of the myosin 

intensity at the apical and basal nodes), active-moment (product of the difference in myosin intensity at the 
apical and basal nodes with the distance of the midline node from either the apical or the basal node) and 

curvature (spatial derivative of the angle between the adjacent pair of midline edges). 

Lightsheet image analysis 

To analyze the 3D datasets acquired on the lightsheet microscope, we used the z-stack (with slices along 

the AP axis of the embryo) to locate the DV axis using the direction of movement of the pole cells during 

the fast phase and the location of the mesoderm invagination. We then resliced the stack perpendicular to 

the DV axis and selected the plane that cut through the center of the posterior midgut invagination. In this 

cut through of the embryo, we detected the time at which the cellularization front passed the nucleus (Tcell 

= 0), and the time at which the first point of myosin expression appeared (FirstMyoTime). We then tracked 

the pole cell movement in time (as in Fig 1D) to determine the moment at which the pole cells first exhibited 
fast movement. This frame was used as a proxy for symmetry breaking time (Tasb = 0). At Tasb = 2, 2.5 and 

3 min, we measured the extent of the myosin domain (Myo Length) and the average myosin intensity by 

tracing a freehand line through the punctate myosin expression in FIJI and extracted the average intensity 

along this line (ApMyoInt)))))))))))))). This measurement was performed three time at each of the three time points 

and the nine measurements were averaged to reduce the effect of noise. To account for the effects of 
varying imaging brightness, we normalized the average myosin intensity by the average basal myosin 

intensity at Tcell = 5 min (BasalMyoInt))))))))))))))))), giving our final measurement for myosin brightness (Avg Myo Int = 

ApMyoInt)))))))))))))	/	BasalMyoInt))))))))))))))))	).  

Supporting Text  

1 Derivation of the model equation 
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In this section we derive the model equation Eq. (3) in the main text that predicts the tangential flow in the 

embryo. In brief, this equation describes the embryo as an overdamped liquid (Fig. S3A,3B), which is driven 

by active tensions at the apical and basal surfaces of the epithelium. We use elements from the theory of 

active surfaces(1). 

1.1 Description of the Drosophila embryo as a time-dependent 1D manifold 

For simplicity, we describe the Drosophila embryo as a time-dependent 1D manifold 𝐱(𝑠, 𝑇) that follows the 

epithelial midline in a mid-sagittal section of the embryo. For given position 𝑠 and time 𝑇, 𝐱 is a position in 

2D euclidean space, which corresponds to the mid-saggital section when seen from the embryo’s right side 

(as in Fig. 1A,B in the main text). It is parameterized by a scalar 𝑠 such that the manifold is a loop and runs 

in clockwise sense with increasing 𝑠, such that it successively passes through dorsal, anterior, ventral, and 

posterior part of the embryo, respectively (as in Fig. 1C in the main text). 

Based on the manifold 𝐱(𝑠, 𝑇), we introduce for given 𝑠 and 𝑇 the tangent vector 𝐞 and length 𝑒, unit normal 

vector pointing outside 𝐧, and local curvature 𝑐 following standard definitions: 

𝐞 = ∂<𝐱 

𝑒 = |𝐞| 

𝐧 =
1
𝑒 𝛆 ⋅ 𝐞 S1 

𝑐 = −
1
𝑒C
(∂<𝐞) ⋅ 𝐧 

Here, the tensor 𝛆 is the generator of counter-clockwise rotations 

𝛆 = D0 −1
1 0 F 

and ⋅ denotes the inner product. 

Apical and basal surfaces of the embryo are then, respectively: 

𝐱
G
H(𝑠, 𝑇) = 𝐱(𝑠, 𝑇) ±

ℎ
2 𝐧

(𝑠, 𝑇), S2 

where the superscripts 𝑎 and 𝑏 correspond to apical and basal surface, and to the signs + and − on the 

right-hand side, respectively. The variable ℎ denotes the epithelial height. The corresponding tangential 

vectors are: 

𝐞
G
H = ∂<𝐱

G
H = O1 ±

ℎ𝑐
2
P𝐞. S3 



 

5 

 

In the second step, we inserted Eqs. S2 and used the relation ∂<𝐧 = 𝑐𝐞. Moreover, we ignored spatial 

variations in epithelial height ℎ here (Fig. S3C).  

1.2 Force and torque balance 

To define the tension 𝐭 at some position 𝑠 of the embryo, we consider an imaginary interface at 𝑠 that is 

orthogonal to the manifold 𝐱(𝑠, 𝑇). Then, 𝐭 is defined as the force that the part of the embryo behind this 

interface (larger 𝑠) exerts on the part of the embryo in front of this interface (smaller 𝑠). Note that 𝐭 is the 

total interaction force between these two tissue parts, i.e. it generally contains contributions of both passive 

and active origin. We denote tangential and normal components of 𝐭 by: 

𝑡 =
1
𝑒 𝐞 ⋅ 𝐭 

𝑡U = 𝐧 ⋅ 𝐭. S4

Analogously, we define the moment 𝑚 at position 𝑠 as the torque that the portion of the embryo behind the 

interface at 𝑠 exerts on the portion of the embryo in front of the interface. The variable 𝑚 corresponds 

thereby to the torque component perpendicular to the mid-sagittal plane (from right to left side of the 

embryo). We do not consider any other torque component in our 1D model here. Like the tension 𝐭, also 

the moment 𝑚 generally contains contributions of both passive and active origin. 

We consider three kinds of external forces that are applied on the embryo: (i) a force density 𝑓G describing 

friction with the vitelline membrane, which acts tangentially on the apical surface, (ii) a normal force density 

−𝑝G acting on the apical surface, which corresponds to the normal force by the vitelline membrane (where 

the embryo touches the vitelline membrane) or the pressure in the perivitelline space (where the embryo 

does not touch the vitelline membrane), and (iii) a normal force density 𝑝H that corresponds to the yolk 

pressure. We ignore here a tangential force on the basal surface by yolk viscosity (see Sec 3.2). Ignoring 

inertia, force and torque balance in terms of 𝑡, 𝑡U, and 𝑚 are then (appendix A): 

𝑡Z + 𝑐𝑡U = 	−O1 +
ℎ𝑐
2
P𝑓G								(tangential	force) S5 

𝑡UZ − 𝑐𝑡 = 	−∆𝑝 +	 𝑝̅ℎ𝑐								(normal	force) S6 

𝑚Z − 𝑡U =	−
ℎ
2
O1 +

ℎ𝑐
2
P𝑓G								(torque) S7 

where the prime denotes the arc-length derivative, 𝑞′ : = (∂<𝑞)/𝑒 for any 𝑞, 𝛥𝑝 = 𝑝H − 𝑝G is the pressure 

difference across the epithelium and 𝑝‾ = (𝑝G + 𝑝H)/2 is the average pressure. 

To obtain our model equation, Eq. (3) in the main text, force and torque balance need to be complemented 

by constitutive relations, which link embryonic tensions and moments to deformation, deformation rates, 
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and active apical and basal tensions. To derive these, we follow a virtual work approach. This allows us to 

properly take active apical and basal tensions into account. 

1.3 Virtual work 

We consider virtual displacements 𝛿𝐱(𝑠, 𝑇) of the embryo from 𝐱(𝑠, 𝑇) to 𝐱′(𝑠, 𝑇) = 𝐱(𝑠, 𝑇) + 𝛿𝐱(𝑠, 𝑇). These 

virtual displacements induce virtual mechanical work exerted by active apical and basal tensions 𝛿𝑊pqr, 

work by externally applied forces and torques 𝛿𝑊str, a change of an effective bending energy 𝛿𝑈vswx, and 

dissipated heat 𝛿𝑊xyzz. Without inertia, we have: 

𝛿𝑊pqr + 𝛿𝑊str = 𝛿𝑈vswx + 𝛿𝑊xyzz. S8 

We now derive expressions for each of these contributions. 

1.3.1 Mechanical work by active apical and basal tensions, 𝜹𝑾𝐚𝐜𝐭 

The mechanical work by active apical and basal tensions is: 

𝛿𝑊pqr = −∮ 𝑡G��G 𝛿𝑒G

𝑒G  𝑒
Gd𝑠 − ∮ 𝑡G��H 𝛿𝑒H

𝑒H  𝑒
Hd𝑠 = −∮ 𝑡G��G 𝛿𝑒G d𝑠 − ∮ 𝑡G��H 𝛿𝑒H d𝑠. S9 

Here, 𝑡G��G  and 𝑡G��H  are apical and basal active tensions, respectively, 𝛿𝑒G/𝑒G and 𝛿𝑒H/𝑒H are local strain in 

apical and basal surfaces, and 𝑒Gd𝑠 and 𝑒Hd𝑠 are infinitesimal apical and basal length elements. From 

Eqs. S3 follows: 

𝛿𝑒G/H = O1 ±
ℎ𝑐
2
P𝛿𝑒 ±

ℎ
2 𝑒𝛿𝑐.

 

Insertion into Eq. S9 yields: 

𝛿𝑊pqr = −∮ �(𝑡G�� + 𝑐𝑚G��)
𝛿𝑒
𝑒 + 𝑚G��𝛿𝑐�  𝑒d𝑠, S10 

where we introduced (total) active tension 𝑡G�� and active moment 𝑚G�� as: 

𝑡G�� = 𝑡G��G + 𝑡G��H S11 

𝑚G�� =
ℎ
2
(𝑡G��G − 𝑡G��H ). S12 

1.3.2 Mechanical work by external forces and torques, 𝛅𝐖𝐞𝐱𝐭 

The external forces introduced in Sec 1.2 exert the following mechanical work on the embryo: 

𝛿𝑊str = ∮ [𝑓G𝛿𝑥�G − 𝑝G𝛿𝑥UG] 𝑒Gd𝑠 + ∮ 𝑝H𝛿𝑥UH 𝑒Hd𝑠, S13 
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where 𝛿𝑥�G : = 𝛿𝐱G ⋅ 𝐞/𝑒 and 𝛿𝑥U
G/H : = 𝛿𝐱G/H ⋅ 𝐧 are tangential and normal component of the virtual 

displacements of apical and basal surface, respectively. 

Using local force and torque balance, Eqs. S5–S7, this virtual work can also be expressed in terms of 

tangential tensions 𝑡 and moments 𝑚 only (appendix B): 

𝛿𝑊str = ∮ �(𝑡 + 𝑐𝑚)
𝛿𝑒
𝑒 +𝑚𝛿𝑐�  𝑒d𝑠. S14 

1.3.3 Effective bending energy, 𝑼𝐛𝐞𝐧𝐝 

With an effective bending rigidity 𝜅, the total effective bending energy of the embryo is 

𝑈vswx = ∮
1
2𝜅𝑐

C 𝑒d𝑠. 

Its variation as a consequence of the virtual displacements 𝛿𝐱 is: 

𝛿𝑈vswx = ∮ �
1
2𝜅𝑐

C 𝛿𝑒
𝑒 + 𝜅𝑐𝛿𝑐�  𝑒d𝑠. S15 

Here, we assumed that the local bending rigidity 𝜅 does not change when the tissue is strained. 

1.3.4 Dissipated heat, 𝜹𝑾𝐝𝐢𝐬𝐬 

In our model, we assume that dissipation within the embryo occurs only due to viscous friction in tangential 

direction: 

𝛿𝑊xyzz = ∮ 𝜂𝑢�
𝛿𝑒
𝑒  𝑒d𝑠. S16 

Here, 𝜂 is an effective 1D tissue viscosity, and 𝑢� is the tangential strain rate. This tangential strain rate is 

related to the tangential and normal velocity components v and vU as(1): 

𝑢� = v′ + 𝑐vU. 

Fig. S3A,3B shows that the contribution by the normal motion is negligible in our case, so: 

𝑢� ≃ vZ. S17 

1.4 Constitutive relations 

Inserting all contributions, Eqs. S10, S16, S15 and S16 with Eq. S17, into Eq. S8 and comparing the 

coefficients in front of 𝛿𝑐, we obtain: 

𝑚 = 𝜅𝑐 +𝑚G��. S18 

Comparing the coefficients in front of 𝛿𝑒, we obtain: 
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𝑡 + 𝑐𝑚 =
1
2𝜅𝑐

C + 𝜂v′ + 𝑡G�� + 𝑐𝑚G��. 

Inserting S18, we find: 

𝑡 = 𝜂vZ + 𝑡G�� −
1
2𝜅𝑐

C. S19 

The last term can be interpreted as an affinity of the tissue for regions with a low curvature to reduce its 

bending energy. 

1.5 Model equation 

To obtain our model equation, we combine tangential force balance, Eq. S5, with torque balance, Eq. S7: 

𝑡′ + 𝑐𝑚′ = −O1 +
ℎ𝑐
2
P
C

𝑓G. 

Inserting the constitutive relations for 𝑡 and 𝑚, Eqs. S19 and S18, we obtain: 

𝜂v� + 𝑡G��Z + 𝑐𝑚G��
Z = −O1 +

ℎ𝑐
2
P
C

𝑓G. S20 

Here, we assumed homogeneous tissue viscosity 𝜂 and bending rigidity 𝜅. 

Note that using 𝑡G�� and 𝑚G�� from Eqs. S11 and S12 just as ad-hoc expressions for active tension and 

active torque in a formalism such as in Ref. (1) can lead to the wrong equation. The deeper reason for this 
is that the active tension in Ref. (1) corresponds to the virtual work performed by linear strain for constant 

curvature, which corresponds to 𝑡G�� + 𝑐𝑚G�� (compare Eq. S10), while 𝑡G�� is the virtual work performed by 

linear strain for zero curvature. 

We set the external force acting tangentially at the apical surface to be a simple substrate friction with the 

vitelline membrane: 

𝑓G = −𝛾v. 

Insertion in Eq. S20 yields: 

𝜂v� + 𝑡G��Z + 𝑐𝑚G��
Z = O1 +

ℎ𝑐
2
P
C

𝛾v. S21 

The prefactor in front of the substrate friction comes from two effects that add each the same factor of 
(1 + ℎ𝑐/2). First, the friction force 𝑓G is a force per length, and it acts on the apical surface, which is by a 

factor of (1 + ℎ𝑐/2) longer than the midline (see also S5). Second, since the friction force acts on the apical 

surface instead of the midline, it locally exerts a torque on the embryo (see also S7), which enters the 

tangential force balance when eliminating the normal tension 𝑡U. 
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In our system, we find that ℎ𝑐 is smaller than 1, even though it can reach ≈ 0.4 at the poles (Fig. S3D). 

However, at the poles, the epithelium is often further apart from the eggshell, without any noticeable impact 

on the flow. For simplicity, we thus absorb the factors (1 + ℎ𝑐/2) on the right  

hand side of Eq. S21 into a homogeneous friction coefficient 𝛾. Rearranging the terms, we thus have: 

𝜂v� − 𝛾v = −𝑡G��Z − 𝑐𝑚G��
Z . S22 

This is equation (3) in the main text (in Fig. 5D). Equation (1) (in Fig. 3A) follows from leaving away the last 

term on the right-hand side in Eq. S22, and equation (2) (Fig. 4A) results from including a locally increased 

friction g. 

2 Emergence of polarized flow 

To illustrate the fundamental mechanism driving polarized flow in our model (Fig. 5A-C in the main text), 

we focus on the simplified situation where the pressure difference 𝛥𝑝 is large enough to prevent any 

invagination. In other words, the embryo midline follows a time-independent curve 𝐱��(𝑠) prescribed by the 

vitelline membrane. If we additionally assume for simplicity that the embryo is incompressible and 𝑠 is an 

arc-length coordinate, we have: 

𝐱(𝑠, 𝑇) = 𝐱���𝑠 + 𝑠�(𝑇)�. 

In other words, the configuration of the embryo can be entirely described by the time dependence of 𝑠�(𝑇), 

which describes how the embryo shifts around within the vitelline membrane. Note that the assumption of 

incompressibility is restricted to this section only; we assume the embryo to be viscous in the rest of our 

manuscript (except for section 4.4, where we discuss the case of an elastic behavior).  

In this case, the interaction between active moment 𝑚G�� and curvature of the vitelline membrane creates 

an effective force 𝐹G�� that tends to move the whole epithelium in clockwise direction. To see this, we note 

that such a force corresponds to a virtual work 𝛿𝑊pqr = 𝐹G��𝛿𝑠�. Since the embryo experiences no strain in 

tangential direction, the virtual mechanical work by apical and basal tensions, Eq. S10, is: 

𝛿𝑊pqr = −∮𝑚G��(𝑠)𝛿𝑐(𝑠) d𝑠, 

where 𝑒 = 1 since 𝑠 is arc length variable here. Using 𝛿𝑐(𝑠) = 𝑐��′(𝑠 + 𝑠�)𝛿𝑠�, where 𝑐�� is the local 

curvature corresponding to 𝐱��, we get: 

𝛿𝑊pqr = −𝛿𝑠�∮ 𝑚G��(𝑠)𝑐��′(𝑠 + 𝑠�) d𝑠. 

We thus obtain for 𝐹G��: 

𝐹G�� = −∮𝑚G��(𝑠)𝑐��′(𝑠 + 𝑠�) d𝑠. 

Or, using a partial integration: 



 

10 

 

𝐹G�� = ∮𝑚G��
Z  (𝑠)𝑐��(𝑠 + 𝑠�)d𝑠. S23 

Note that this corresponds to the integral of the left-hand side of the tangential force balance equation, 

Eq. S20. 

3 Orders of magnitude 

3.1 Speed of polarized flow 

To compute the speed of the polarized flow, we use the scenario discussed in Sec 2, i.e. the pressure is 

large enough for the embryo to be entirely in contact with the embryo, and the embryo is incompressible in 

tangential direction. Moreover, we consider here a sagittal section with lateral width 𝛥𝑧, centered around 

the mid-sagittal plane. 

To obtain a rough order of magnitude for the velocity of the polarized flow, we consider an active moment 

profile of 𝑚G��(𝑠) = 𝑚G��
¡  for 𝑠 ∈ [𝑠£, 𝑠C], and otherwise 𝑚G��(𝑠) = 0. Then we obtain for the effective force 

𝐹G�� driving the polarized flow, using Eq. S23: 

𝐹G�� = 𝑚G��
¡ 𝛥𝑐, 

where 𝛥𝑐 = 𝑐£ − 𝑐C with 𝑐£ : = 𝑐(𝑠£ + 𝑠�) and 𝑐C : = 𝑐(𝑠C + 𝑠�). The active moment results in our system from 

an active tension 𝑡G��¡  that appears apically, and with Eq. S12: 

𝐹G�� = 𝑡G��¡ ℎ𝛥𝑐
2 . 

We equate this force with a friction force 𝐹�¤� = 𝛼𝛥𝑧𝐿v‾ against the vitelline membrane, where 𝐿 is the total 

length of the embryo and 𝛼 = 𝛾/𝛥𝑧 is the friction coefficient between embryo and vitelline membrane. We 

thus obtain for the average tangential speed v‾: 

v‾ =
𝑡G��¡

𝛥𝑧𝐿𝛼 
ℎ𝛥𝑐
2 . 

With 𝑡G��¡ /𝛥𝑧 ∼ 30	pN ⋅ μm¨£ (tension of myosin-enriched cell-cell interface in the embryo ∼ 300	pN (2) and 

cell size ∼ 10	μm), 𝐿 ≈ 10©	μm, and ℎ𝛥𝑐 ∼ 0.3 (Fig. S3D), and a friction right after cellularization of 𝛼 ≈

3	pN ⋅ s ⋅ μm¨© (3), we obtain 

v‾ ∼ 0.1	μm ⋅min¨£. 

This suggests that a curvature-to-active-moment coupling would be sufficient to drive the flow with average 

speed v‾ ∼ 1	μm ⋅min¨£ when the friction with the egg shell decreases by around an order of magnitude, 

consistent with our quantitative fits. 

3.2 Effect of yolk viscosity 
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In our modeling we have neglected the yolk viscosity, because its effect can be neglected as compared to 

the friction of the embryo with the vitelline membrane. The friction coefficient between embryo and vitelline 

membrane right after cellularization has been determined to be 𝛼 ≈ 2…3	pN ⋅ s ⋅ μm¨© (3). 

To compare this to the mechanical effect of the yolk viscosity on the embryo, we consider a situation where 

a velocity difference of 𝛥v between dorsal and ventral part of the embryo create a simple shear flow with 

shear rate 𝛥v/𝐻 in the yolk, where 𝐻 ≈ 50	μm is the distance between basal surfaces of dorsal and ventral 

parts of the embryo. This shear flow leads to a friction force density of 𝑓¬ = 𝜂¬𝛥v/𝐻, where the yolk viscosity 

was measured to be 𝜂¬ ≈ 1	Pa ⋅ s (4). The yolk thus exerts a friction force density of maximally 𝑓¬/𝛥𝑣 ≈

0.02	pN ⋅ s ⋅ μm¨©. This is two orders of magnitude smaller than the friction forces between embryo and 

vitelline membrane right after cellularization. 

4 Model fitting and prediction 

4.1 Retrograde flow 

To discuss retrograde flow, we first note that equation (2) in Fig. 4A of the main text results from Eq. S22 
by neglecting the last term and spatially modulating friction:  

𝜂v� − (1 + 𝑔𝛩°)𝛾v = −𝑡G��Z , S24 

where 

𝛩°(𝑠) = ±1 if 𝑠 ∈ 𝐺
0 if 𝑠 ∉ 𝐺 

with 𝐺 being a small region posterior to the apical myosin patch. 

Formally, the existence of retrograde flow and its magnitude follows from integrating Eq. S24 over the whole 

domain of the embryo: 

v‾ = −
𝑔ℓ°
𝐿 v‾°. S25 

Here, v‾ is the tangential velocity averaged over the whole epithelium, 𝐿 is the length of the whole epithelium, 

ℓ° is the length of region 𝐺, and v‾° is the tangential velocity averaged over region 𝐺. From Eq. S25 with 

𝑔 > 0 follows directly that overall average flow v‾ and v‾° have opposite sign, implying retrorade flow within 

𝐺.This is because frictional force in the high friction (𝑔 > 0) region must be balanced by frictional force in 

the other, low friction (𝑔 = 0) region. Since frictional force is proportional to velocity and total force must 

sum to zero, this means that if the velocity in the low friction region is positive (clockwise), the velocity in 

the region of high friction will have to be negative (counterclockwise). Moreover, the absence of localized 

friction, 𝑔 = 0, implies zero average velocity, v‾ = 0. 

4.2 Model Fitting 
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To quantitatively compare equations (1)–(3) in the main text (which follow from Eq. S22) to experimental 

data, we assumed a linear relation between apical and basal active tension, 𝑡G��G  and 𝑡G��H , and the respective 

sqh::GFP signal, 𝐼G and 𝐼H: 

																			𝑡G��G = 𝑓G𝐼G  

𝑡G��H = 𝑓H𝐼H.														 

We assume that 𝑓G and 𝑓H can be different, where due to the different cytoskeletal structures apically and 

basally, we expect 𝑓G > 𝑓H. According to Eqs. S11 and S12, we thus have: 

𝑡G�� = 𝑓G𝐼G + 𝑓H𝐼H

𝑚G�� = (𝑓G𝐼G − 𝑓H𝐼H)
ℎ
2 .

 

Insertion into equation (3) in the main text (i.e. Eq. S22) and division by 𝜂 yields: 

v� −
1
𝑙¸C
v = −𝑟G𝐼GZ O1+

𝑐ℎ
2
P − 𝑟H𝐼HZ O1−

𝑐ℎ
2
P , S26 

where 𝑙¸ = º𝜂/𝛾 is the hydrodynamic length scale, 𝑟G = 𝑓G/𝜂, and 𝑟H = 𝑓H/𝜂. The parameters 𝑟G and 𝑟H 

have units of rates per pixel intensity – they indicate how fast the epithelium contracts per pixel intensity of 

myosin. 

We use Eq. S26 to fit model equation (3), while using the correspondingly modified equations to fit 

equations (1) and (2) in the main text. In particular, we leave out the terms ∼ ℎ𝑐 on the right-hand side for 

equations (1) and (2), and we introduce a localized friction for equation (2). 

To fit to experimental data, we first use the measured 𝑐, 𝐼G,𝐼H and ℎ to numerically solve Eq. S26 for v at 

each time step. For this, we discretize this equation in space with regular lattice spacing 𝛥𝑠 = 0.01 and 

solve the resulting linear equation in v(𝑠) in python using a sparse matrix inverter. 

To obtain the parameters 𝑙¸, 𝑟G, and 𝑟H (and 𝑔 for equation (2)), we always fitted the theoretical predictions 

for v(𝑠) to its respective measured curves v(𝑠) at all time points simultaneously between 𝑇G<H = −5…8	min. 

To this end, we used the python routine curve-fit to minimize the squared distances between theoretical 

and measured v summed over all positions and times (minimal 𝜒C plotted in Fig. 5I). In particular, we carried 

out two kinds of simultaneous fits. First, for many fits, we imposed that all parameter values should be the 

same at all time points. These corresponds to the blue curves in Fig. 3C,E, 4D,E, and 5G,H. Second, for 

some fits, we allowed 𝑙¸ to be different for each time point, while we imposed that all other parameters have 

to be the same value at each time point. This corresponds to the magenta curves in Fig. 5G,H and all the 

fit curves in Fig. S6D-E and Fig. S7B-F. 

4.3 Limitation on compression of apical myosin patch 
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We realized that our fitting of model equation (3) resulted in a substantial increase of the hydrodynamic 

length scale of over an order of magnitude around the time of symmetry breaking (Fig. S6D). Upon close 

examination of possible causes for this jump, we first noted that assuming a dominant role of apical myosin 

during the asymmetric phase, the velocity of polarized flow should scale as v‾ ∼ 𝑓G𝐼G/𝛾 = 𝐼G𝑟G𝑙¸C . Second, 
we noticed a steep decrease in velocity in our velocity fit curves in the region where the apical myosin patch 

is, around 𝑠 ≈ 0.03 (magenta curves in Fig. 5H, blue region in Fig. S6E). This velocity decrease in the fit 

curves corresponds to a strong contractile flow, which is created by apical myosin and resisted by tissue 

viscosity. The corresponding contraction rate is of order ∼ 𝑓G𝐼G/𝜂 = 𝐼G𝑟G. Taken together, in our 𝜒C 

minimization-based fitting, to keep the contraction of the apical myosin patch close to measured values 

while keeping large enough v‾, the hydrodynamic length scale 𝑙¸ needs to be large during the asymmetric 

phase. 

To test these ideas, we also examined a model where the contraction rate of the region with the apical 

myosin patch (the primordium) would be limited. Limiting this contraction rate makes sense, because the 

primordium undergoes isotropic contraction. Indeed, this region around the apical myosin distribution has 

increased epithelial height in the asymmetric phase (Fig. S6F). There will thus be a limit on how far this 

part of the tissue will be able to contract until elastic resistance prevents further contraction. In our model, 

we have not included elasticity, which would require including an additional parameter and defining 

reference states. To keep the model simple, we have decided to study the consequences of a limited 

primordium contraction rate in a symmetric region around the peak of apical myosin distribution at 𝑠 = 0.03 

(Fig. S6F) by substantially increasing viscosity in this primordium region (Eq. 4 in Fig. 7SA). 

We show results of fits where we locally increased viscosity by a factor of 𝑒 = 100 within the primordium 

region for which we tested different lengths 0 ≤ 𝐿½ ≤ 0.80. We find that the contraction rate in the 

primordium region is indeed decreased (Fig. S7B). Moreover, the corresponding increase in hydrodynamic 

length scale is also much smaller now, from 𝑙¸ ≈ 0.04 (40	𝜇𝑚) during symmetric flow to maximally 𝑙¸ ≈ 0.4 

(400	𝜇𝑚) during asymmetric flow (Fig. S7C). We also find that these results are largely independent of the 

increase in viscosity as long as 𝑒 > 10 (Fig. S7E, F). Taken together, taking into account a limited 

primordium contraction rate, our data can be explained better (smaller 𝜒C, see Fig. S7D) and with a smaller 

decrease in friction with the eggshell. 

4.4 Replacing viscous term by an elastic term 

As we argue in the main text, deformation rates in the embryo are on the order of 1/50 min-1 (Fig. S3A,B), 

while elastic stresses are expected to relax on time scales of minutes. However, only anisotropic stresses 

in the epithelial tangent plane are expected to relax, e.g. by T1 transitions. Meanwhile, for an effectively 

elastic response of cells to changes in their shape and in the absence of cell divisions and extrusion, the 
embryo is expected to react elastically to local changes in epithelial area. Because our one-dimensional 

model does not distinguish between isotropic and anisotropic deformation, we compared our model Eq. 3 
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in Fig. 5 of the main text, which assumes a viscous response of the tissue to stretch, to a model where we 

replace this viscous response by an elastic response: 

𝐸u� − 𝛾v = −𝑡G��Z − 𝑐𝑚G��
Z S27 

where 𝐸 is an effective Young’s modulus and u(s¡, t) = s(t) − s¡ is the displacement field, where we use as 

reference state s¡ a time point t¡ during cellularization, and s(t) is the 1D position of the corresponding 

material point at any later time  t > t¡. Note that Eq. S27, combined with Eqs. S6, S7, S18, and S19 

corresponds to the model of an elastic beam with intrinsic stretch −𝑡G��/𝐸, intrinsic curvature −𝑚G��/𝜅, the 

additional curvature term (second term on the right-hand side of Eq. S27), and specific external forces (e.g. 

friction against the vitelline membrane and the pressure difference between perivitelline space and yolk). 

To quantitatively compare to experimental data, we again assumed a linear relation between apical and 

basal active tension and the respective sqh::GFP signal  (as described in Sec. 4.2), which converts Eq. 

S27 to the following form   

v =
𝑓G
𝛾 𝐼G

Z O1 +
𝑐ℎ
2
P +

𝑓H
𝛾 𝐼H

Z O1 −
𝑐ℎ
2
P +

𝐸
𝛾 u

� S28 

The right-hand side of this equation contains three unknown parameters, ÀÁ
Â

,	ÀÃ
Â

 and ½
Â
. To fit to experimental 

velocity data v(𝑠, 𝑡), we integrate Eq. S28 using Euler steps u(s¡, t + ∆t) = u(s¡, t) + v(s¡ + u(s¡, t), t)∆t  with 

a time step of ∆t	 = 0.5	min, initial condition u(s¡, t¡) = 0, and with measured time-dependent fields for 𝑐, 

𝐼G, and 𝐼H, as well as the measured value for ℎ. 

To obtain time-independent parameter values for ÀÁ
Â

,	ÀÃ
Â

 and ½
Â
, we fitted the theoretical predictions for v(𝑠, 𝑡) 

to its experimentally measured curves at all time points simultaneously, either without curvature term and 

only during the symmetric phase, i.e. between 𝑇G<H = −4…0	min (red curve in Fig. S10B), or with curvature 

term and during both symmetric and asymmetric phases, i.e. between 𝑇G<H = −4…8	min (red curve in 

Fig. S10C,D). We find that the elastic model fits the symmetric phase alone relatively well (red curve in 

Fig. S10B), with a total deviation between theoretical and experimentally measured velocity of 𝜒C =

48.74	µmC	min¨C, but still less well than our purely viscous model (Eq. 3 in Fig. 5 of the main text), where 

𝜒C = 38.58	µmC	min¨C. Note that with neither viscous nor elastic term, i.e. for no resistance of the tissue to 

tangential deformation, we find 𝜒C = 57.51	µmC	min¨C. Compared to the purely elastic and viscous models, 

this indicates that the viscous term is much more effective in describing the tissue response to tangential 

deformation. The whole process, i.e. symmetric and asymmetric phase, is not well fit by the elastic model 

(red curves in Fig. S10 D), where 𝜒C = 2537.57			µmC	min¨C, whereas the viscous model described the 

process much better with 𝜒C = 1200.31	µmC	min¨C for time-independent parameter values. The reason for 

this is the virtual absence of polarized flow in the elastic model (red curves in Fig. S10 C).  The polarized 

flow is much smaller, because its amplitude is mainly determined by the apical myosin, whose effect is 
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determined by the parameter ÀÁ
Â

, which is much smaller in the elastic model (ÀÁ
Â
= 0.078	µmC	min¨£, 

compared to ÀÁ
Â
= 551.14	0µmC	min¨£ in the viscous model). The drastic difference in this parameter value 

results from the fact that in the viscous model viscosity contributes to a slowdown of the symmetric part of 

the flow, allowing for a larger ÀÁ
Â

 for the same magnitude of the symmetric flow. In other words, if in the 

elastic model ÀÁ
Â

 was set to a large enough value to drive polarized flow with the observed magnitude, then 

this would lead to a much too strong symmetric flow arising from the apical myosin. In conclusion, while the 

elastic model could describe the symmetric phase, it cannot describe the polarized flow, and even the 
symmetric phase alone is better described by our purely viscous model. 

4.5 Simulations using a simplified model 

To obtain a better intuition, we simplified the embryo by representing its shape as an ellipse (elliptic contour 

in Fig. S5A,6A), discretized by 100 evenly spaced nodes. For these simulations we neglected basal myosin 

and approximated the distribution of apical myosin by a rectangular function (green patch in Fig. S5B,6B) 

with height 𝐼G<Å�. To simulate equation (2) in the main text, we moreover approximated the patch of 

increased friction, 𝛩°, by another rectangular function (magenta patch in Fig. S5B) that advected with the 

epithelium. In all simulations, we choose 𝐼G<Å� to be of the order of experimentally measured apical myosin 

intensity 𝐼G (as in Fig. 3B,D) and the values of the physical parameters were chosen from the fit values to 

the experimental data. 

We then simulated discrete time steps 𝛥𝑡 = 0.5	min, where at a given time point 𝑇<Å�, we solved equation (2) 

or (3) in the main text for velocity using the python solver described in the previous section to obtain the 

velocity field v<Å�(𝑠). To further simplify our simulation, we did not allow for any deformation of the 

epithelium. We thus advanced the whole epithelium at each time step by the distance v‾𝛥𝑡. This introduced 

a time dependence in our solution for equation (3), due to a changing offset between curvature 𝑐(𝑠) and 

myosin profile 𝐼G<Å�(𝑠). 

Appendix 

A. Force and torque balance 

To derive the force and torque balance relations, Eqs. S5–S7, we roughly follow the approach from(1). 

We start from noting that in an overdamped system, the total force acting on any piece of the embryo 

between 𝑠£ and 𝑠C needs to vanish: 

0 = 𝐭(𝑠C) − 𝐭(𝑠£) +Æ �𝑓G
1
𝑒G 𝐞

G − 𝑝G𝐧G� 𝑒Gd𝑠
<Ç

<È
+ Æ 𝑝H𝐧H 𝑒Hd𝑠

<Ç

<È
A1 
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Here, the terms on the right hand side are the force exerted by the region of the part of embryo behind 𝑠C, 

the force exerted by the part of the embryo before 𝑠£, the external force exerted on the apical surface, and 

the external force exerted on the basal surface. 

The derivative of Eq. A1 with respect to 𝑠 ≡ 𝑠C is: 

0 = ∂<𝐭 + 𝑓G𝐞G + (𝑝H𝑒H − 𝑝G𝑒G)𝐧 A2 

Using Eqs. S3 and the arc-length derivative, 𝑞′ : = (∂<𝑞)/𝑒 for any 𝑞: 

0 = 𝐭Z + 𝑓G O1 +
ℎ𝑐
2
P
1
𝑒 𝐞 +

(𝛥𝑝 − 𝑝‾ℎ𝑐)𝐧. A3 

Here, we have defined 𝛥𝑝 = 𝑝H − 𝑝G and 𝑝‾ = (𝑝G + 𝑝H)/2. Using 𝐭 = 𝑡𝐞/𝑒 + 𝑡U𝐧 together with the relations 

𝐧′ = 𝑐𝐞/𝑒 and (𝐞/𝑒)′ = −𝑐𝐧, Eq. A3 becomes: 

0 = 𝑡′
1
𝑒 𝐞 − 𝑐𝑡𝐧 + 𝑡U′𝐧 + 𝑐𝑡U

1
𝑒 𝐞

 +𝑓G O1 +
ℎ𝑐
2
P
1
𝑒 𝐞 +

(𝛥𝑝 − 𝑝‾ℎ𝑐)𝐧.
 

Tangential and normal force balance, Eqs. S5 and Eq. S6, can now be read off directly from tangential and 

normal part of this equation. 

The total torque acting on the same piece of embryo also needs to vanish: 

0 = 𝑚(𝑠C) + 𝐱(𝑠C) ⋅ 𝛆 ⋅ 𝐭(𝑠C)
 −𝑚(𝑠£) − 𝐱(𝑠£) ⋅ 𝛆 ⋅ 𝐭(𝑠£)

 +Æ 𝐱G ⋅ 𝛆 ⋅ �𝑓G
1
𝑒G 𝐞

G − 𝑝G𝐧G� 𝑒Gd𝑠
<Ç

<È

 +Æ 𝐱H ⋅ 𝛆 ⋅ 𝑝H𝐧H 𝑒Hd𝑠
<Ç

<È

 

The derivative with respect to 𝑠 ≡ 𝑠C is: 

0 = ∂<𝑚+ 𝐞 ⋅ 𝛆 ⋅ 𝐭 + 𝐱 ⋅ 𝛆 ⋅ (∂<𝐭)
 +𝐱G ⋅ 𝛆 ⋅ [𝑓G𝐞 − 𝑝G𝑒G𝐧]
 +𝐱H ⋅ 𝛆 ⋅ 𝑝H𝑒H𝐧.

 

After using Eqs. S1 and S4 as well as consecutive insertion of Eqs. S2 and A2: 

0 = ∂<𝑚− 𝑒𝑡U +
ℎ
2 𝑓

G𝐧 ⋅ 𝛆 ⋅ 𝐞G 

Insertion of Eq. S3 yields torque balance, Eq. S7: 

0 = 𝑚′ − 𝑡U +
ℎ
2
O1+

ℎ𝑐
2
P𝑓G. 
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B. Virtual work by external forces and torques 

Using force and torque balance, we show here that the expressions in Eqs. S13 and S14 for the virtual 

work by external forces and torques are equivalent(1). To this end, we start with expression Eq. S14: 

𝛿𝑊str = ∮ �(𝑡 + 𝑐𝑚)
𝛿𝑒
𝑒 +𝑚𝛿𝑐�  𝑒d𝑠. B1 

Using 

𝛿𝑒 =
1
𝑒 𝐞 ⋅ ∂<𝛿𝐱

𝛿𝑐 = −
2𝑐
𝑒C 𝐞 ⋅ ∂<𝛿𝐱 −

1
𝑒 𝐧 ⋅ ∂<

O
1
𝑒 ∂<𝛿𝐱

P ,
 

Eq. B1 becomes: 

𝛿𝑊str = ∮ (𝑡 − 𝑐𝑚)
1
𝑒 𝐞 ⋅ ∂<𝛿𝐱 d𝑠

 −∮𝑚𝐧 ⋅ ∂< O
1
𝑒 ∂<𝛿𝐱

P  d𝑠.
 

After partial integrations: 

𝛿𝑊str = −∮ O∂< �(𝑡 − 𝑐𝑚)
1
𝑒 𝐞
�P ⋅ 𝛿𝐱 d𝑠

 −∮ Ë∂< Ì
1
𝑒 ∂<

[𝑚𝐧]ÍÎ ⋅ 𝛿𝐱 d𝑠.
 

Here, we carried out one partial integration on the first integral and two consecutive partial integrations on 

the second integral. Using 𝐧′ = 𝑐𝐞/𝑒: 

𝛿𝑊str = −∮ O𝑡
1
𝑒 𝐞 +𝑚′𝐧

P ′ ⋅ 𝛿𝐱 𝑒d𝑠. 

Using both 𝐧′ = 𝑐𝐞/𝑒 and (𝐞/𝑒)′ = −𝑐𝐧: 

𝛿𝑊str = −∮ O𝑡Z
1
𝑒 𝐞 − 𝑐𝑡𝐧+ 𝑚

�𝐧+ 𝑐𝑚Z 1
𝑒 𝐞
P ⋅ 𝛿𝐱 𝑒d𝑠.	 B2 

Combining tangential and normal force balance respectively with torque balance, Eqs. S5–S7, we have: 

𝑡′ + 𝑐𝑚′ = − O1+
ℎ𝑐
2
P
C

𝑓G

𝑚″ − 𝑐𝑡 = − �
ℎ
2
O1 +

ℎ𝑐
2
P 𝑓G� ′ − 𝛥𝑝 + 𝑝‾ℎ𝑐.

 

Insertion in B2 yields: 
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𝛿𝑊str = ∮ O1 +
ℎ𝑐
2
P
C

𝑓G
1
𝑒 𝐞 ⋅ 𝛿𝐱 𝑒d𝑠

 +∮ O∂< �
ℎ
2
O1+

ℎ𝑐
2
P𝑓G�P𝐧 ⋅ 𝛿𝐱 d𝑠

 +∮ (𝛥𝑝 − 𝑝‾ℎ𝑐)𝐧 ⋅ 𝛿𝐱 𝑒d𝑠.

 

After partial integration of the second integral: 

𝛿𝑊str = ∮ O1 +
ℎ𝑐
2
P
C

𝑓G
1
𝑒 𝐞 ⋅ 𝛿𝐱 𝑒d𝑠

 −∮
ℎ
2
O1 +

ℎ𝑐
2
P𝑓G(𝐧 ⋅ 𝛿𝐱)′ 𝑒d𝑠

 +∮ O1 −
ℎ𝑐
2
P 𝑝H𝐧 ⋅ 𝛿𝐱 𝑒d𝑠

 −∮ O1 +
ℎ𝑐
2
P 𝑝G𝐧 ⋅ 𝛿𝐱 𝑒d𝑠.

 

Using (𝐧 ⋅ 𝛿𝐱)′ = 𝑐(𝐞/𝑒) ⋅ 𝛿𝐱 + 𝐧 ⋅ 𝛿𝐱′ and (𝐞/𝑒) ⋅ 𝛿𝐧 = −𝐧 ⋅ 𝛿𝐱′, as well as 𝐧 ⋅ 𝛿𝐧 = 0, this becomes: 

𝛿𝑊str = ∮ O1 +
ℎ𝑐
2
P 𝑓G

1
𝑒 𝐞 ⋅

O𝛿𝐱 +
ℎ
2 𝛿𝐧

P  𝑒d𝑠

 +∮ O1 −
ℎ𝑐
2
P𝑝H𝐧 ⋅ O𝛿𝐱 −

ℎ
2 𝛿𝐧

P  𝑒d𝑠

 −∮ O1 +
ℎ𝑐
2
P𝑝G𝐧 ⋅ O𝛿𝐱 +

ℎ
2 𝛿𝐧

P  𝑒d𝑠.

 

Using Eqs. S2 and S3, as well as 𝐧 ⋅ 𝛿𝐧 = 0: 

𝛿𝑊str = ∮ 𝑓G
1
𝑒G 𝐞

G ⋅ 𝛿𝐱G 𝑒Gd𝑠

 +∮ 𝑝H𝐧 ⋅ 𝛿𝐱H 𝑒Hd𝑠
 −∮ 𝑝G𝐧 ⋅ 𝛿𝐱G 𝑒Gd𝑠.

 

This is the same expression as in Eq. S13. 
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Figures S1 to S10: 

 
Fig. S1. Comparison of wildtype with eve, twist, snail mutant embryos. (A, B) Cartoons of Drosophila 

embryo (top) at an early stage, during the process of cellularization and (middle) approximately 30 minutes 

later for a (A) wildtype and (B) eve, twist, snail (ets) mutant embryo. This shows that in ets mutants the 

mesoderm is no longer specified, there is no planar polarization of myosin in the ectoderm, and there is no 

formation of the cephalic furrow. (bottom) Images of these embryos at Tcell = 19 min. (C) Quantification of 

the position of the pole cells (pospc) as a function of time since the cellularization front passes the nuclei in 

the dorsal posterior (Tcell). Average performed over 6 wildtype and 7 ets embryos. Comparison performed 

using two-tailed unpaired t-tests. ns, not significant. (D) Spatial average of the tangential velocity (𝑣̅) as a 

function of time. Average performed over 5 wildtype and 6 ets embryos. (E, F) Spatial profile of tangential 
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velocity for wildtype and ets embryos at (E) Tcell = 12 min and (F) Tcell = 17 min. Error bars represent 

standard deviation.   
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Fig. S2. Characterization of toll vl embryos. (A) Spatial profile of tangential velocity (𝑣) and basal myosin 

intensity for wildtype embryos at Tcell = 9 min. Vertical dashed line represents the center of the dorsal side 

of the embryo (s = 0.25). (B) Schema of the difference between wildtype and toll vl mutant embryos shown 

in (left) a cross section along the anterior-posterior axis and (right) in a sagittal plane. (C) Quantification of 

the direction of tissue flow in wildtype and toll vl mutant embryos. Dorsal and ventral indicate that the tissue 

flows in the imaging plane either towards the dorsal or ventral side and lateral refers to any embryo where 

the tissue flow occurred out of plan. See Movie S4 for examples of each. Data was collected on a DIC 

microscope for 58 wildtype embryos and 68 toll vl mutant embryos (see Materials and Methods). A Fisher's 
exact test revealed that the distribution of dorsal vs non-dorsal flow outcomes was significantly different 

between wildtype and toll vl conditions (p < 0.0001). (D) Spatial average of the tangential velocity (𝑣̅) as a 

function of time for wildtype and toll vl embryos as in Fig. 2E, but including later times. Error bars represent 
the standard deviation.  
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Fig. S3. Orders of magnitude in the experimental data. Data from eve, twist, snail mutants, which behave 

similar to wildtype at early times, but which does not show mesoderm invagination, so the height h can be 

measured more accurately. (A,B) The local strain rate (blue solid curve) is virtually identical with the 

derivative of the tangential velocity 𝑣′ (orange dashed curve) both at (A) Tasb = -2 min and (B) Tasb = 4 min. 

Bars at top of A and B show results of two-tailed Student’s t-test indicates (white regions – not significantly 

different, red regions – significantly different with p < 0.05). This indicates that the contribution by the normal 

motion of the epithelium is negligible. (C) The fluctuations in epithelial height (h) are on the order of 10% 

(spatial coefficient of variation, cv ≈ 7% at Tasb = -2 min and cv ≈ 10% at Tasb = 4 min). (D) The product hc 

is larger at the poles of the embryo, where it maximally becomes approximately 0.4. In all panels, the 

shaded regions indicate the standard error of the mean, computed over 6 embryos.  
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Fig. S4. Detection of symmetric to polarized transition in flow. (A) Temporal profile of the spatially 

averaged velocity 𝑣̅ (black dotted curve) computed from the velocity field of individual time frames. A line 

is fitted in the green region (𝑣̅> 0.2 µm/min and the next five time points) to get an intercept with the time 

axis (Tcell). This time of intercept becomes the time of symmetry breaking Tasb = 0 (vertical magenta line) 

and used to align different embryos. (B) Temporal profile of 𝑣̅ with detection of Tasb for many embryos, using 

the method described in A. (C) Temporal profile of 𝑣̅ with rescaled time axis, where Tasb of the respective 

embryos is defined as zero reference, i.e Tasb < 0 min correspond to symmetric phase of flow and Tasb > 0 

corresponds to polarized phase of flow. (D) Temporal profile of	𝑣̅	, now averaged over all the embryos 

shown in C. The shaded region indicates the standard deviation, computed over 5 embryos.   
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Fig. S5. Fitting with heterogeneous friction. (A) Schematic of the elliptic representation of the embryo. 

Green region corresponds to domain of myosin (M) and magenta region corresponds to domain of high 

friction (G). (B) 1D flat representation of A, where the domains M and G are mathematically described by 

rectangular functions. (C) Experimentally measured temporal profile of spatially averaged velocity 𝑣̅ (black) 

and result of two fits (using the procedure described in Fig. 3) of equation (2): (blue) all parameters constant 

and (red) all parameters but g constant over time. (D) Spatial fit curves for velocity (𝑣), corresponding to 

the fits in panel C for a representative time point during the polarized phase (Tasb = 4 min). Bar on top 

indicates results of a single-tailed Student’s t-test on the experimental velocity profile (red regions – 



 

25 

 

significantly greater than zero with p<0.05, white regions – not significantly greater than zero) at the position 

of high friction. This contradicts the model prediction at this high friction domain. (E) Temporal profile of g 

corresponding to the red curves in panel C and D. (F) Elliptic model simulation: spatial profile of velocity 

(𝑣<Å�) by simulating equation (2) when myosin intensity (𝐼<Å�G ) is constant over time, shown for five different 

values of g. These simulations indicate retrograde (counterclockwise) flow in the region of high friction G. 
(G) Quantification of the pole cell position (pospc, see Materials and Methods) as a function of Tcell. Average 
performed over 6 wildtype (black) and 6 scab (orange) embryos. Comparison shows result of two-tailed 

unpaired t-tests. ns, sot significant. (H) Experimentally measured spatial velocity profile (𝑣) in wildtype 

(black) and scab embryos (orange) at a representative time point Tasb = 4 min. Bar on top indicates results 
of a double-tailed Student’s t-test (white regions – not significantly different, red regions – significantly 

different with p<0.05) at the position of high friction. This contradicts the model prediction at this high friction 

domain. Average performed over 5 wildtype and 5 scab embryos. The shaded regions associated to 

experimental data is the standard deviation. 
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Fig. S6. Fitting with curvature-active moment coupling. (A) Schematic of the elliptic representation of 

the embryo. Green region corresponds to myosin domain (M). (B) 1D flat representation of A, where the 

domain M is mathematically described by a rectangular function. (C) Experimentally measured temporal 

profile of spatially averaged velocity 𝑣̅ (black) and result of three fits (using procedure described in Fig. 3 

in the main text) of equation (3): (1) considering both apical and basal myosin for the entire time range Tasb 

> -5 min (blue), (2) neglecting apical myosin for Tasb < 0 min (red) and (3) neglecting basal myosin for Tasb 

< 0 min (green). In fitting all parameters were constant over time. (D) Temporal profile of the hydrodynamic 

length (lH) corresponding to the magenta curves in Fig. 5G, H in the main text. In this plot lH is given in units 

of epithelial length L=1000 𝜇𝑚. (E) Experimentally measured spatial profile of velocity 𝑣 (black) and the 

associated fit curve shown in Fig. 5H (magenta, in main text). (F) Experimentally measured spatial profile 

of the epithelial height (h, orange) and apical myosin intensity (Ia, green) at the same time point as in E. 

The shaded regions associated to experimental data is the standard deviation, computed over 6 embryos.   
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Fig. S7. Curvature-active moment-based model with limited tissue contraction at the region of apical 
myosin. (A) Schematic representation of our model, equation (4), which is similar to Fig. 5D in main text, 
but with an additional domain E (dark blue region) where the localized viscosity is increased by a factor e. 

(B) Experimentally measured spatial profile of velocity 𝑣 (black) and result of fits (using procedure described 

in Fig. 3 in the main text) of equation (4) with increased value of viscosity fixed at e = 100, shown for five 

values of the length of high viscosity domain LE (centered around and restricted within the apical myosin 

domain, and). In fitting, all parameters but the hydrodynamic length (lH) constant over time. (C) Temporal 

profile of lH corresponding to fitting described in B. (D) Comparison of the fit quality for fitting curves in B: 

chi-square values (𝜒C), summed over all time points. (E) Similar to panel B but fitting was done with a fixed 

value of the length LE = 0.04 and for five different values of increase in viscosity e. (F) Temporal profile of 

lH corresponding to fitting described in panel E. Here, lH is given in units of epithelial length L~1000 𝜇𝑚. The 

shaded regions associated to experimental data is the standard deviation, computed over 6 embryos.   
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Fig. S8. fat2 and capicua characterization. (A) Temporal profile of 𝑣 for individual fat2 embryos. (B) 

Temporal profile of posterior averaged velocity 𝑣̅ÑÒ< for wildtype (black), fat2 (pink), and toll vl (blue) 

embryos. (C) Temporal profile of 𝑣̅ for individual toll vl embryos. (D) A 3D lightsheet image of a fat2 embryo 

and the corresponding 2D cross-section used for data analysis. Scale bar is 20 μm. (E) Quantification of 

the time at which the first puncta of myosin appears (First Myo Time) for 5 wildtype and 5 fat2 embryos. (F) 
Quantification of the length of the posterior myosin domain (Myo Length) 2.5 minutes after the first large 

movement of the pole cells for 5 wildtype and 5 fat2 embryos. (G) Quantification of average brightness of 
the myosin domain 2.5 minutes after the first large movement of the pole cells normalized to the average 

brightness of the cellularization front 5 minutes after cellularization (Avg Myo Int) for 5 wildtype and 5 fat2 

embryos. (H) View of the posterior of a wildtype (left) and capicua (right) embryo imaged for sqh::GFP. 
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Scale bar is 20 μm. Note: the capicua embryos were imaged with a single copy of sqh::GFP and 

GAP43::mSc. (I) Schematic showing the change in apical myosin domain in capicua embryos. (J) 
Experimental spatially averaged tangential velocity as a function of time since symmetry breaking for 5 

wildtype, and 5 capicua embryos. (K) Pole cell position (pospc) as a function of time for 6 wildtype, and 9 
capicua embryos. (L) Average velocity of tissue flow resulting from simulations performed on elliptical 

embryos with different length of myosin domain (mL; see SI Appendix). Comparisons in B, E, F, G, J and 
K performed using two-tailed unpaired t-test. ns, not significant; *, p < 0.05; **, p < 0.01; ****, p < 0.0001.  
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Fig. S9. wildtype, toll vl, fitting and prediction. (A) Experimentally measured spatial profile of velocity 𝑣 

(black) in wildtype embryos and result of fits of equation (3) in panel Fig. 5D in main text (blue solid curve, 

no limit to contraction of the primordium) and equation (4) in panel Fig. S7A (blue dashed curve, limited 

contraction of the primordium with e = 100 and LE = 0.04), representative time Tasb = 4 min. The fits were 

performed using the same procedure as described in Fig. 5G (magenta curve in main text). (B) Parameters 

corresponding to fits in panel A, temporal profile of the hydrodynamic length lH (as curves) and other 

constant parameters ra, rb and their ratio (in legend). (C, D) Prediction of velocity for toll vl using parameters 

from wildtype in panel B (blue dashed line), and myosin and curvature data from toll vl. (C) Experimentally 

measured spatial profile of velocity 𝑣 in wildtype (black) and toll vl (green solid curve), and predicted spatial 

velocity profile for toll vl (green dashed curve). Bar on top shows results of a double-tailed Student’s t-test 

(white regions – not significantly different, red regions – significantly different with p<0.05). (D) 
Experimentally measured temporal profile of spatially averaged velocity 𝑣̅ in wildtype (black) and toll vl 

(green solid curve), and predicted temporal profile of spatially averaged velocity for toll vl (green dashed 

curve). 
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Fig. S10. Comparison of our viscous model with an elastic model. (A) Equations for the viscous model 

(same as equation 3 in Fig. 5 in the main text or equation S22 in the SI) and the elastic model (same as 

equation S27 in the SI). (B) Symmetric phase: fits of the viscous model (blue, equation E1 without the 

curvature term) and the elastic model (red, equation E2 without the curvature term) at a representative time 

point in symmetric phase (Tasb = -4 min). Both fits were obtained by simultaneously fitting the respective 

equations to all experimentally measured velocity data (black) between Tasb = -4 min and Tasb = 0 min, 

where we kept all parameters constant over time. (C,D) Symmetric + asymmetric phase: (C) Experimental 

temporal profile of spatially averaged velocity 𝑣̅ (black) and average velocity curved obtained from fits to 

equations E1 (blue) and E2 (red). The fits were obtained by simultaneous fit of the respective equations to 

the experimentally measured spatio-temporal velocity profiles for time points between Tasb = -4 min and 
Tasb = 8 min, where all parameters were kept constant over time. (D)  Corresponding spatial fit curves at a 

representative time point during the polarized-flow phase (Tasb = 4 min). The shaded regions associated to 

experimental data indicate the standard deviation, computed over 6 ets embryos.  
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Legends for Movies S1 to S8: 

Movie S1 (separate file): Time-lapse of early Drosophila morphogenesis in a wildtype embryo. Imaged in 

the sagittal plane on a two-photon microscope labeled with GAP43::mScarlet (top) and sqh::GFP (bottom).  

Movie S2 (separate file): Tissue dynamics in wildtype and ets embryos. Time-lapse of myosin activation 

in a wildtype (top) and eve, twist, snail embryo (bottom) synchronized with respect to the time when the 

cellularization front passes the nuclei in the dorsal posterior. 

Movie S3 (separate file): Tracking of pole cells in a wildtype embryo. Time-lapse of tissue dynamics in an 

embryo labeled for cell membrane maker GAP43::mScarlet. The green dot shows the position used to 

calculate pole cell movement over time (as in Fig. 1D). 

Movie S4 (separate file): Direction of flow in toll vl embryos. Time-lapse of three toll vl mutant embryos 

that flow indifferent directions. The top embryo flows dorsally, the middle embryo flows laterally, and the 

bottom embryo flows ventrally. 

Movie S5 (separate file): Tissue dynamics in wildtype, toll vl, and cta embryos. Time-lapse of myosin 

activation in a wildtype (top), toll vl (middle), and cta (bottom) embryos synchronized with respect to the 

time when the cellularization front passes the nuclei in the dorsal posterior. 

Movie S6 (separate file): Tissue dynamics in wildtype and scab knockout embryos. Time-lapse of myosin 

activation in a wildtype (top) and scab knockout (bottom) embryos synchronized with respect to the time 

when the cellularization front passes the nuclei in the dorsal posterior. 

Movie S7 (separate file): Tissue dynamics in wildtype and fat2 embryos. Time-lapse of myosin activation 

in a wildtype (top) and fat2 (bottom) embryos synchronized with respect to the time when the cellularization 

front passes the nuclei in the dorsal posterior. 

Movie S8 (separate file): Tissue dynamics in wildtype and cic embryos. Time-lapse of myosin activation 

in a wildtype (top), and cic (bottom) embryos synchronized with respect to the time when the cellularization 

front passes the nuclei in the dorsal posterior. 
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