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Supplementary Notes
Note S1. We note that heritability estimates will be affected by technical noise (e.g., instrument measurement
error), making comparisons of heritability estimates across two biological phenomena (e.g., miRNA expression
and RNA expression) measured using different assays (e.g., smRNA-seq and RNA-seq) difficult (1, 2). In order
to control for differences in noise, as part of our quality control procedure, we used noisyR (3) to remove noisy
transcripts which generally correspond to the most lowly expressed genes (3–5). To test if noise may confound
the heritability analysis in the final dataset, we used transcript abundance as a proxy for noise and evaluated
the relationship between transcript abundance and estimated heritability (Fig. S7). We found no relationship
between these variables, suggesting that the effect of residual noise on the reported results is minimal.
Nonetheless, the potential impact of different noise-to-signal dynamics is an important caveat to the results
presented in this study.
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Supplementary Materials and Methods
Human pancreatic islet procurement and processing

We procured the human pancreatic islet (HPI) samples used in this study from the Integrated Islet Distribution
Program, the National Disease Research Interchange (NDRI), or ProdoLabs. Tables S1,2 contain demographic
and other reported information for the 69 samples (HPIs; age = 46.17 ± 10.71 y; 53.62% male; BMI = 27.49 ±
4.97 kg/m2) considered in this study after quality control steps (see below). Islets were shipped overnight from
the distribution centers. On receipt, we pre-warmed islets to 37°C in shipping media for 1-2 hours before
harvest and harvested ∼2,000-5,000 islet equivalents (IEQs) from each organ donor for subsequent molecular
assays (e.g., RNA isolation).

Genotyping and quality control

We transferred 500-1,000 IEQs to tissue culture-treated flasks, cultured them as in Gershengorn et al. (6), and
isolated genomic DNA for genotyping. We genotyped isolated DNA at the National Human Genome Research
Institute Home (NHGRI) Genomics Core facility using either the HumanOmni2.5-4v1_H BeadChip array or the
InfiniumOmni2-5Exome-8v1-3 BeadChip array (v1.3, Illumina, San Diego, CA, USA). Overall genotyping call
rates ranged from 96.08-99.81%. As described previously (7), we mapped the Illumina array probe sequences
to the GRCh37 (hg19) genome assembly using novoalign v2.07.11
(http://www.novocraft.com/products/novoalign). For downstream analysis and genotype imputation, we
excluded SNPs with (i) ambiguous probe alignments, (ii) a 1000 Genomes (1000G) phase 3 variant with a
minor allele frequency (MAF)≥1% within 7 base pairs (bp) of the 3’ end of the probe, or (iii) call rates
<95%—resulting in chip genotypes for 1,825,450 SNPs. Using SNP genotypes and KING v1.4 (8), we tested
for sample relatedness and did not identify any individuals related at a 3rd-degree relationship or closer.

Sample genetic ancestry and genotype PCs

To assess genetic ancestry, we ​estimated genetic principal components (PCs) using weights produced with the
Population Reference Sample (POPRES) reference panel (9) implemented in LASER (10). Briefly, we pruned
genotyped, autosomal SNPs using plink v1.9 with a pairwise r2​ threshold of 0.5, excluding SNPs with a
MAF≤1%, Hardy-Weinberg P<10−6 (with options --indep-pairwise 50 5 0.5 --maf 0.01 --hwe 0.000001), or in
regions of high linkage disequilibrium (LD) (11, 12). Next, we passed the genotypes of the remaining 564,920
SNPs to LASER to calculate genetic PCs of the samples in this study combined with the POPRES reference
populations. We assigned genetic ancestry based on the POPRES-predicted nearest neighbors (k=10). We
identified 42, 7, and 6 individuals of European, African, and Hispanic/Latino ancestry, respectively.

To control for population stratification in downstream analyses, we performed a second round of principal
component analysis (PCA) within each major ancestry present in this study (i.e., European, African, and
Hispanic/Latino). For each major ancestry, we re-filtered SNPs following the method described above and used
smartpca implemented in Eigensoft v6.1.4 (13, 14) to perform PCA with the retained SNPs. We used smartpca
to perform the Tracy-Widom test (15) across the first 20 PCs and included PCs with P≤0.05 in subsequent
analyses. For European-only analyses, we used 460,072 filtered SNPs and identified 4 PCs. For African-only
analyses, we used 208,609 filtered SNPs and identified 0 PCs. For Hispanic/Latino-only analyses, we used
146,562 filtered SNPs and identified 0 PCs.

Genotype imputation

We imputed genotypes as described in Lawlor et al. (7). Briefly, we assessed the allele frequency of each SNP
by combining genotype data from the samples in this study with 140 samples from separate studies (7, 16) that
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were genotyped using similar array technology. We removed SNPs that had an alternate allele frequency
difference >20% with the 1000G phase 3 EUR samples or that were palindromic with a MAF>20%, genotype
missingness >2.5%, and Hardy-Weinberg P<10−4. With the remaining 1,825,450 SNPs, we performed
pre-phasing and imputation on autosomal markers using the Michigan Imputation Server (17). For pre-phasing,
we used Eagle v2.3 (18) for autosomal chip markers and SHAPEIT v2.r790 (19) for chrX markers. We
subsequently used minimac3 (17) for imputation of missing genotypes using the Haplotype Reference
Consortium (hrc.r1.1.2016) panel (20). Finally, we removed all SNPs with an imputation r2≤0.3.

miRNA isolation, sequencing, and processing

We performed small RNA sequencing (smRNA-seq) to measure miRNAs using two different protocols: library
preparation 1 (LP1) and library preparation 2 (LP2).

For LP1, we performed smRNA-seq as described in Lawlor et al. (7). Briefly, we extracted and purified total
RNA from islets using Trizol (Life Technologies, Carlsbad, CA), generated smRNA libraries from 1 μg total RNA
using Illumina’s TruSeq Small RNA Library Kit, and performed single-end 51 base sequencing using an
Illumina HiSeq2500 in ‘Rapid Mode’ with version 2 chemistry (Illumina, San Diego, CA).

For LP2, we isolated ​​total RNA using the Total Purification kit (Norgen Biotek, Thorold, ON, Canada), following
the manufacturer’s instructions. We quantified RNA with a Nanodrop 2000 (Thermo Fisher Scientific, Waltham,
MA) and determined RNA integrity using either an Agilent 2100 Bioanalyzer or a 4200 Tapestation (Agilent
Technologies, Santa Clara, CA). We generated smRNA libraries using the CleanTag Small RNA Library Prep
kit (TriLink Biotechnologies, San Diego, CA) and performed single-end 57 base sequencing using an Illumina
HiSeq2500 (Illumina, San Diego, CA). Sequencing was performed at the Genome Sequencing Facility of the
Greehey Children’s Cancer Research Institute (University of Texas Health Science Center, San Antonio, TX).

For both preparations, we used miRquant v2.0 (21) to trim, map, and quantify smRNA-seq reads to the
GRCh37 (hg19) genome assembly. We trimmed reads using Cutadapt v1.12 (22). Following miRquant
guidelines, we discarded reads with <10 nucleotide overlap between the adapter sequence and the 3’-end of
the sequencing read, ≥10% errors in the alignment, or <14 nucleotides in length after trimming. We aligned
reads using Bowtie v1.1.0 (23) and created genomic windows containing miRNA loci from perfectly aligning
reads. We re-aligned imperfectly mapped reads to these genomic windows to identify internal edits and
non-templated nucleotide additions to the miRNAs using SHRiMP v2.2.2 (24). If a read aligned equally well to
multiple genomic loci, we proportionally assigned reads to each of the loci. Finally, we quantified miRNA
isoforms both as read counts (for differential gene expression analysis) and as normalized reads per million
mapped to miRNAs (RPMMM; for genetic analyses). Given the uncertainty surrounding miRNA isoforms
(isomiRs) shifted >2 nucleotides, we considered miRNAs with nucleotide shifts ≤2 in either direction as high
confidence isomiRs for subsequent analyses.

Small RNA-seq quality control

For the analyses described in cis-miRNA-eQTL analysis, Heritability estimates, and Variance
decomposition analysis and the PGS miRNA differential expression analysis described in miRNA
differential expression analysis, we were limited to the 64 samples from LP1 with both genotype and miRNA
expression data. Across these 64 samples, we used verifybamID v.1.1.1 (25) to compare miRNA reads aligned
with exceRpt v4.4.0 (26) (miRquant does not generate bam files) to the SNP chip genotypes, removing 3
samples that were identified as likely sample swaps (CHIPMIX>35%). We considered sequencing coverage
and dropped 4 samples due to low sequence coverage (<3 million reads). Next, we used noisyR v1.0.0 (3) to
remove samples and miRNAs with a high degree of noise. We (i) calculated expression similarities across
samples using the calculate_expression_similarity_counts function with options
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similarity.measure="correlation_pearson" and n.elements.per.window=noisyr::optimise_window_length with
default parameters, (ii) defined sample-specific abundance thresholds (i.e., expression threshold where
miRNAs with raw counts< threshold may indicate noisy transcripts) using the results from i with options
similarity.threshold and method.chosen as defined by the calculate_noise_threshold_method_statistics
function, and (iii) retained miRNAs with raw counts≥ sample-specific abundance thresholds from ii in at least
25% of samples. To remove outlier samples exhibiting a high degree of noise, we calculated the average
similarity across binned expression levels and compared each sample to the dataset averages using the
Cramér-Von Mises test (27) (cvm.test in goftest v1.2_2), but we identified no outliers (Bonferroni-corrected
P-value (PBonf)≤0.05; Fig. S3A). In total across all sample filters, we excluded 7 samples and used the
remaining 57 samples for downstream analyses. With regards to miRNA filters, for the for the analyses
described in cis-miRNA-eQTL analysis, Heritability estimates, and Variance decomposition analysis, we
removed low-abundance (counts<100 in ≥75% of samples) and sex-chromosome miRNAs, retaining 697
miRNAs (we removed sex-chromosome miRNAs from genetic analyses due to the additional complexity that
they add to analysis (28)). For the PGS miRNA differential expression analysis described in miRNA
differential expression analysis, we removed low-abundance (counts<100 in ≥75% of samples) miRNAs
within each major ancestry group (without an additional sex-chromosome filter), retaining 766, 726, and 661
miRNAs for European, African, and Hispanic/Latino ancestries, respectively.

For the T2D status, sex, age, and BMI miRNA differential expression analysis described in miRNA differential
expression analysis, we were not limited to samples with both genotype and miRNA expression data. We
used the 57 samples from LP1 and an additional 6 samples from LP2. For the LP2 samples, we applied the
same quality control measures as LP1 (apart from the verifybamID SNP genotype checks), but did not identify
any samples for removal. Prior to performing differential expression analysis, we applied the same
low-abundance miRNA filters to both cohorts, removing miRNAs with counts<100 in ≥75% of samples (without
an additional sex-chromosome filter), retaining 751 and 869 miRNAs from LP1 and LP2, respectively.

RNA isolation, sequencing, and processing

We performed RNA-seq as described in Lawlor et al. (7). Briefly, we extracted and purified total RNA from
islets using Trizol (Life Technologies, Carlsbad, CA) and sequenced purified RNA using an Illumina NextSeq
500 with 2x101 bp cycles (Illumina, San Diego, CA). We aligned the processed reads to the GRCh37 (hg19)
genome assembly using STAR v2.73a (29) with default parameters and quantified expression levels of
Gencode v19 genes (Ensembl release 101) using QoRTs v1.3.6 (30). Finally, we quantified normalized mRNA
expression as transcripts per million (TPM).

RNA-seq quality control

For the analyses described in Heritability estimates and Variance decomposition analysis, we began with
42 samples that had both genotype and mRNA expression data. We used verifybamID v1.1.1 (25) to assess
contamination of the total RNA used for RNA-seq in reference to the array genotypes in the coding regions of
the genome. We excluded 1 sample that was likely contaminated (FREEMIX>15%) and 1 sample whose RNA
did not match the corresponding genotypes (CHIPMIX>2%). We assessed sequencing depth across samples
and identified no outliers. Next, we performed noisyR analysis using the same procedure described in Small
RNA-seq quality control to filter noisy RNA transcripts and samples. We identified and removed one outlier
sample (PBonf≤0.05 from Cramér-Von Mises test; Fig. S3B), resulting in 39 samples for downstream analyses.
Finally, we removed low-abundance (counts<100 in ≥75% of samples) and sex-chromosome RNAs (28),
retaining 12,915 protein coding mRNAs for subsequent analysis.

We also obtained mRNA expression and genotype data from 229 HPI samples from the Integrated Network for
Systematic analysis of Pancreatic Islet RNA Expression (InsPIRE) consortium (31) to use in the analyses
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described in Heritability estimates, Variance decomposition analysis, and trans-eQTL analysis. We
downloaded gene expression count data and imputed genotypes from the European Genome-phenome
Archive (EGA; accession number EGAD00001006149). To generate a completely independent dataset, we
used verifybamID v1.1.1 (25) to identify and remove InsPIRE samples that overlapped samples from this study
(CHIPMIX<5%), retaining 190 samples. We performed noisyR analysis to remove noisy transcripts and
samples as described in Small RNA-seq quality control, dropping 1 outlier sample (PBonf≤0.05 from
Cramér-Von Mises test; Fig. S3B). Finally, we removed low-abundance (counts<100 in ≥75% of samples) and
sex-chromosome RNAs, retaining 13,777 protein coding mRNAs.

cis-miRNA-eQTL analysis

We mapped cis-miRNA-eQTLs by testing all SNPs within 250 kilobases (kb) of the mature miRNA transcript
using LIMIX v3.0.4 (32) and the 57 samples with imputed genotypes and miRNA. For genotypes, we selected
4,741,068 bi-allelic, autosomal SNPs with minor allele count (MAC)>10 across the 57 samples. For miRNAs,
we used the 697 miRNAs as described in Small RNA-seq quality control.

To account for unknown covariates affecting miRNA expression, we used PEER v1.3 (33) to infer and adjust
the miRNA expression data for 5 hidden factors. For PEER correction, we included age and sex as known
covariates. As performed by previous studies (34, 35), we inverse rank-normalized the residual values from
PEER, where the effects of known and discovered factors had been removed.

To account for effects of population structure or cryptic relatedness, we calculated the genetic relatedness
matrix (GRM) across all 4,741,068 SNPs as described in Hoffman (36) and included the GRM as a random
effect term, K, in subsequent models. Briefly, let Xij represent the scaled, centered genetic dosage for individual
i at SNP j. Thus, K=XXT. For the eQTL analysis, we calculated the normalized GRM, K* = K / mean(diag(K)).

For each miRNA, we considered the following generalized linear mixed models:

(1)𝑌 =  𝑀α +  𝐾*υ +  ε

(2)𝑌 =  𝑀α +  𝐺β +  𝐾*υ +  ε

where Y is the inverse rank-normalized PEER residuals described above, M is a matrix of fixed-effect
covariates (here, a vector of ones as an offset term), G is a matrix of candidate genetic variants, K* is the
normalized GRM as defined above, ε is a noise variable, and ɑ, β, and ʋ are the corresponding regression
coefficients. Notably, equation (1) is effectively equation (2), where we assume no genetic effects, β=0. To
assess the association between genetic effects and the phenotype, we derived P-values by performing a
likelihood ratio test using the marginal likelihoods of the two models (32).

To control for correlation among SNPs, we calculated empirical P-values (Pemp) per miRNA, similar to Ongen et
al. (37). Briefly, for each miRNA, we randomly permuted the sample identifiers of G and re-ran the
cis-miRNA-eQTL analysis 10,000 times. Using these permuted P-values, we calculated Pemp as the proportion
of permuted P-values less than or equal to the minimum nominal P-values. Finally, we controlled the false
discovery rate (FDR) across all tested miRNAs using Storey’s method (38) and Pemp.

Heritability estimates

For miRNAs and mRNAs, we estimated the SNP-based heritability ( )—the proportion of variation inℎ
𝑔
2

expression that can be explained by additive effects of commonly occurring genetic variants for each
transcript—by fitting the following model using LIMIX v3.0.4 (32):

(3)𝑌 =  𝑀α +  𝐾*ν +  ε
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where the terms are the same as defined in equations (1) and (2). We considered highly heritable transcripts to
have v≥0.9.

For miRNAs, we used the paired genotype and miRNA data as defined in cis-miRNA-eQTL analysis. For
mRNAs, we used 39 samples with both imputed genotypes and mRNA expression data that passed the QC
filters described in RNA-seq quality control. We included 3,993,494 bi-allelic, autosomal SNPs with MAC>10
across the 39 samples to calculate K*. For both the miRNA and mRNA datasets, we used the methodology
described in cis-miRNA-eQTL analysis to account for unknown covariates in expression data, including age
and sex as covariates. Briefly, we used PEER to adjust expression data for 5 hidden factors and calculated the
inverse rank-normalized residual values of the adjusted expression data to use in heritability estimates.

We repeated the heritability analysis in a similar fashion using an independent dataset of 189 HPI samples with
mRNA expression and genotype data from a previous study (31) (see RNA-seq quality control). Briefly, we
performed PEER factor analysis with sex and age as covariates, identified 5 PEER factors, and calculated the
inverse rank-normalized residual values of the PEER-adjusted expression data to use in heritability estimates.
We included 7,892,333 bi-allelic, autosomal SNPs across the 189 samples to calculate K*. We performed all
heritability estimates as described previously.

Variance decomposition analysis

To investigate the contributions of cis- and trans-acting genetic effects to miRNA and mRNA expression, we
performed variance decomposition using LIMIX v3.0.4 (32). Let K* denote the normalized GRM, K. For each
transcript, we fit the following equation:

(4)𝑌 =  𝑀α +  𝐾
𝑐𝑖𝑠
* 𝑣

𝑐𝑖𝑠
 +  𝐾

𝑡𝑟𝑎𝑛𝑠
* 𝑣

𝑡𝑟𝑎𝑛𝑠
 +  ε

where Kcis is the GRM calculated using SNPs within 250kb of either side of the mature miRNA body or mRNA
transcription start site (TSS; presumed to be cis-acting), Ktrans = Kall - Kcis, and the rest of the terms are the
same as equations (1) and (2). To represent the proportion of variance explained by a single component, we
used the following formula:

(5)ℎ
𝑥
 =  

𝑣
𝑥

𝑣
𝑥
 + 𝑣

𝑆 − 𝑥
 + ε

where S = { cis, trans } and x ⊂ S.

For both miRNA and mRNA, we used the PEER-adjusted expression data described in Heritability estimates.
To account for the fact that some miRNA TSSs may be quite far away from the miRNA body, we also
re-estimated genetic effects using a larger 20Mb window to define the set of cis-acting SNPs. Finally, we
repeated this analysis in an independent dataset of 189 HPI samples with mRNA expression and genotype
data and the 250kb window around TSSs. We used the PEER-adjusted expression data as described in
Heritability estimates.

Genetic colocalization analysis

For each miRNA-eQTL, we performed colocalization analysis using coloc v3.1 (39) with default priors and all
variants present in both the miRNA-eQTL analysis and summary statistics of the genetic analysis of interest.
Briefly, coloc outputs posterior probabilities of association for five different hypotheses: PP0 (neither trait is
associated), PP1 (only the miRNA-eQTL is associated), PP2 (only the alternative trait is associated), PP3
(both traits are associated with different causal variants), and PP4 (both traits are associated with the same
causal variant). Based on Guo et al. (40), we considered two genetic signals to have evidence of colocalization
if PP3+PP4≥0.99 and PP4/PP3≥5. For disease and quantitative traits, we used summary statistics from
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common variant genetic association studies for fasting blood glucose levels (41), blood glucose levels (42),
fasting insulin (41), glycated hemoglobin (HbA1c) (42), T2D (43), triglycerides (TG) (42), and red blood cell
distribution width (RCDW) (44). To identify potential downstream targets of miRNAs, we also colocalized each
miRNA-eQTL with exon- and gene-level mRNA eQTL results in HPIs (31). Finally, we only considered
miRNA-eQTLs that colocalized with genetic studies of T2D and glycemic traits, where at least one study had a
lead SNP P-value≤5x10-8 at the miRNA-eQTL locus.

Mendelian randomization and mediation analysis

For the single miRNA-mRNA colocalization pair identified in Genetic colocalization analysis (miR-1908 and
FADS1), we tested for a potential causal relationship between miRNA expression and mRNA expression using
the Mendelian randomization (MR) Wald test paired with the MR Steiger test (TwoSampleMR R package
v0.5.6) (45) and the causal inference test (CIT; CIT R package v2.2) (46) as described in Taylor et al. (47). For
the CIT, we used the 33 samples with paired genotype, miRNA expression, and mRNA expression data. For
both miRNAs and mRNAs, we used the PEER-adjusted expression data described in Heritability estimates
(the MR tests operate on summary statistics).

Briefly, we performed both tests with two configurations: (i) miRNA expression as the exposure, mRNA
expression as the outcome, and the miRNA-eQTL tag SNP as the instrument (i.e., SNP→miRNA
expression→mRNA expression) and (ii) mRNA expression as the exposure, miRNA expression as the
outcome, and the gene eQTL tag SNP as the instrument (i.e., SNP→mRNA expression→miRNA expression).
We note that when the top gene-eQTL and miRNA-eQTL SNP are different, the instrument will be different for
both tests, depending on which molecular trait is used as the exposure. Using the triangulation procedure
described in Taylor et al. (47), we considered a miRNA-mRNA pair to have evidence for a causal relationship if
(i) the MR Wald test indicated an association (P≤0.05), (ii) the MR Steiger test indicated a difference between
variance explained by the SNP on the outcome and the exposure (P≤0.05), and (iii) the conditional regression
tests from the CIT suggested a causal effect (PCausalCIT≤0.05, PReverseCIT>0.05 or PCausalCIT>0.05, PReverseCIT≤0.05).
For the single miRNA-mRNA pair tested (miR-1908 and FADS1), we found no evidence of a causal
relationship (SNP→miRNA→mRNA model: PMR=3.53x10-6, PMR_Steiger=0.03, PCIT=0.786; SNP→mRNA→miRNA
model: PMR=2.61x10-5, PMR_Steiger=0.06, PCIT=0.76); however, as noted in Taylor et al. (47), measurement error
may obscure true causal relationships, particularly in conditional regression models used by the CIT (45).

trans-eQTL analysis

We tested for associations between tag variants from the miRNA-eQTL results and mRNA expression using
LIMIX v3.0.4 (32) as described in cis-miRNA-eQTL analysis. Briefly, for each mRNA, we modeled the
expression with and without the genetic effect of interest. In both models, we included an offset term as a
fixed-effect covariate, the GRM as a random-effect covariate to account for hidden effects of population
structure or cryptic relatedness, and a term for noise. Next, we performed the likelihood ratio test of the two
models to derive nominal P-values of association. Finally, we controlled the FDR across all tested variant-gene
pairs using Storey’s method (38) and the nominal P-values.

We combined the 39 samples in this study with paired mRNA expression data and imputed genotypes
(described in RNA-seq quality control) with 189 samples from an independent dataset (31) (described in
Heritability estimates). Briefly, we restricted the analysis to mRNAs common between both datasets, retaining
12,591 protein coding genes. Following the approach described in cis-miRNA-eQTL analysis to account for
known and unknown covariates, we performed PEER analysis, including sex, age, and source of samples as
covariates, and adjusted for 5 hidden factors. We used the inverse rank-normalized residual values of the
PEER-adjusted mRNA expression as the phenotype in the LIMIX model. We used 4,987,481 bi-allelic,
autosomal SNPs shared between both datasets to calculate the GRM.
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Comparison of HPI miRNA-eQTLs and blood miRNA-eQTLs

We compared SNP-miRNA effect sizes in HPI miRNA-eQTLs to miRNA-eQTL results from previously reported
genetic analyses in blood (48, 49). For Huan et al. (48), we downloaded the published summary statistics,
which included all tested SNP-miRNA pairs at an FDR≤10%. For Sonehara et al. (49), we downloaded the
published summary statistics, which included all tested SNP-miRNA pairs with P≤0.05 (National Bioscience
Database Center [NBDC] Human Database accession number hum0197.v6). For each comparison (i.e., this
study vs. Huan et al. and this study vs. Sonehara et al.), we retained shared SNP-miRNA pairs and
harmonized the effect alleles by reversing the effect size estimates of blood SNP-miRNA pairs if the effect
alleles were swapped. We determined the correlation of the effect size estimates between studies by
calculating Spearman’s rank correlation coefficient.

Intersection of T2D-related SNPs with mature miRNA bodies and target regions

To investigate the overlap of T2D-related SNPs and miRNA target regions within mRNA transcripts, we used
the intersect function from bedtools v2.29.2 (50) to identify overlaps between the genomic coordinates of
predicted miRNA target sites from TargetScan v7.2 (51) and genetic variants from 99% credible sets from
genetic studies for T2D (43), HbA1c (42), and blood glucose (42). In some cases, the miRNA target site was
split across two exons, so the genomic coordinates contained introns. We used GRCh37 (hg19) exon
coordinates to remove SNPs lying in intronic regions (i.e., SNPs that would not affect miRNA binding to the 3’
UTR site). To identify the most islet-relevant miRNA target sites, we only kept SNPs where the miRNA and
target mRNA were highly expressed by filtering for transcripts with raw counts≥100 in at least 25% of samples.
We used the 57 samples in LP1 (described in Small RNA-seq quality control) for the miRNA filter and the 39
samples with mRNA expression data (described in RNA-seq quality control) for the mRNA filter. Finally, to
evaluate the effect of SNPs on target mRNA levels, we used conditional eQTL summary statistics from a study
of HPIs from 420 individuals (31) for mRNAs identified with T2D-related SNPs in miRNA target regions. Taking
the tag SNPs for these eQTLs, we calculated LD with the T2D-related SNPs in miRNA target regions in
European populations (i.e., 1000GENOMES phase_3 FIN, CEU, GBR populations) (52, 53) and considered
those with r2>0.9.

To investigate the overlap of T2D-related SNPs and mature miRNAs, we performed the procedure outlined for
target regions but using the mature miRNA genomic coordinates from miRbase (release 18) (54–59). Briefly,
we used bedtools v2.29.2 (50) to intersect the mature miRNA genomic coordinates with the same T2D-related
99% credible sets and kept SNPs where the miRNA transcript was highly expressed (raw transcript
counts≥100 in at least 25% of samples). For the miRNA filter, we used the 57 samples in LP1 (described in
Small RNA-seq quality control). Since we identified no overlaps, we did not perform further analyses.

Modeling an interaction effect between rs1464569 and miR-532-3p expression on NICN1 expression

To investigate the possibility of an interaction effect between rs1464569 and miR-532-3p expression on NICN1
expression, we used the qtl.iscan function from LIMIX v3.0.4 (32) and the 33 samples with imputed genotypes,
miRNA expression data, and mRNA expression data. We used the RPMMM-normalized counts for miR-532-3p
expression and the TPM-normalized counts for NICN1 expression. To account for effects of population
structure or cryptic relatedness, we calculated the normalized GRM, K*, as described in cis-miRNA-eQTL
analysis using the 3,641,706 bi-allelic, autosomal SNPs with MAC>10 across the 33 samples.

We considered the following generalized linear mixed models:

(6)𝑌 =  𝑀α +  𝐾*υ +  ε
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(7)𝑌 =  𝑀α +  (𝐺 * 𝐸)β +  𝐾*υ +  ε

where Y is the inverse rank-normalized NICN1 expression, G*E is the interaction between rs1464569 (G) and
the inverse rank-normalized miR-532-3p expression (E), and the remaining terms are the same as defined in
equations (1) and (2). As covariates, we passed sex (with male as reference), age, rs1464569 dosages,
inverse rank-normalized miR-532-3p expression, and a vector of ones as an offset term. We performed a
likelihood ratio test using the marginal likelihoods of the two models to derive the nominal P-value (32). To
derive an empirical P-value, we performed the permutation analysis described in cis-miRNA-eQTL analysis.
Briefly, we randomly permuted the sample ids of G and re-ran the interaction analysis 10,000 times. Using
these permuted P-values, we calculated Pemp as the proportion of permuted P-values less than the nominal
P-value.

To evaluate the effect of cell type composition, we repeated the above analysis, incorporating the cell type
proportions calculated in Cell type composition estimation as an additional covariate. We found that
incorporating cell type proportions had no effect on the results.

Polygenic score calculations

We calculated polygenic scores for each genotyped participant using the --score function from PLINK v1.9 (60,
61) and SNP weights derived from genetic associations for T2D (43), fasting blood glucose (41), fasting insulin
(41), blood glucose (42), and HbA1c (42). For the SNP weights, we used previously reported weights for blood
glucose (42, 62) and HbA1c (42, 62) and calculated weights using PRS-CS (release Sept. 10, 2020) (63) for
the remaining phenotypes with European samples from the 1000 genomes project as a linkage disequilibrium
reference panel.

miRNA differential expression analysis

We tested for association of miRNA expression with T2D status, sex, age, BMI, and PGSs for T2D and
glycemic traits (described in Polygenic score calculations). Depending on the phenotype, we fit different
models to account for dataset specific effects. For T2D status, sex, age, and BMI, we analyzed miRNA data
from three library preparation (LP) methods: LP1 from this study (n=2 T2D, n=55 NGT; 751 miRNAs), LP2 from
this study (n=2 T2D, n=4 NGT; 869 miRNAs), and a third LP method from a publicly available miRNA
expression dataset (n=4 T2D, n=3 NGT; 268 miRNAs) (64). To control for differences across library preparation
methods, we fit separate models for each LP and meta-analyzed the results. For the Kameswaran et al.
dataset, we used the same processing pipeline that we used for LP1 and LP2: we quantified miRNA counts
from fastQ files using the miRquant pipeline (see miRNA isolation, sequencing, and processing) and
filtered lowly-abundance miRNAs (counts<100 in ≥75% of samples; see Small RNA-seq quality). For the
PGSs, we used the 57 samples from LP1 which had both genotype and miRNA data. To account for ancestry
specific biases in PGSs (65), we fit separate models for each major ancestry—European (n=42; 766 miRNAs),
African (n=7; 726 miRNAs), and Hispanic/Latino (n=6; 661 miRNAs)—and meta-analyzed the results.

For each phenotype, we used a three-stage pipeline to identify differentially expressed (DE) miRNAs within
each dataset (i.e., library preparation or ancestry). We (i) performed a first-pass Wald test using DESeq2
v1.32.0 (66), (ii) identified factors of unknown variation using RUVSeq v1.26.0 (67) and empirically derived
control genes from stage i, and (iii) re-ran stage i and incorporated the calculated RUVSeq factors from stage ii
as additional covariates. To determine the final set of phenotype-associated miRNAs, we meta-analyzed the
results across datasets using MetaVolcano v1.6.0 (68).

In stage i, we used DESeq2 to pre-compute size factors across samples with the pre-filtered miRNA
expression counts to capture the full library sizes of each sample. Then, we tested for DE miRNAs using
DESeq2’s Wald test with default parameters, raw miRNA counts (described in Small RNA-seq quality
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control), the pre-computed size factors, and a set of covariates specific for each phenotype and dataset (Table
S5,6). Across all phenotypes, we included sex and age as covariates, where age was standardized to unit
variance (mean centered and scaled). For the age, sex, and BMI tests, we included T2D status as an
additional covariate. For BMI, we mean-imputed three samples with missing BMI values and standardized
these values to unit variance (mean centered and scaled). For the PGS analyses, we also included the genetic
PCs as additional covariates according to the analysis described in Sample genetic ancestry and genotype
PCs. Briefly, we included 4 PCs for the European ancestry analyses and 0 PCs for the other ancestries
(African and Hispanic/Latino), since the PC analysis reported little variation in samples of African and
Hispanic/Latino ancestry. For some models (e.g., BMI analysis in the Kameswaran et al. dataset), we were
restricted by sample size in the number of terms that we could include in the model (the number of covariates
included in a model cannot equal the total number of samples being considered). In such cases, we prioritized
dropping the age covariate from the model as we identified no age-associated miRNAs.

In stage ii, we performed RUVSeq analysis, a method designed to control for unknown variation in differential
expression studies. Briefly, in order to run RUVSeq, one must define a set of control transcripts that are not
correlated with the phenotype of interest. Following the RUVSeq recommendations, we used the results from
stage i to identify control miRNAs, defined as the half with the highest P, excluding miRNAs with P≤0.25. We
used the DESeq2-normalized counts of the control miRNAs and the RUVg function from RUVSeq to calculate
two factors of unwanted variation.

In stage iii, we repeated the stage i analysis and included the 2 RUVSeq factors from stage ii as additional
covariates. For some models, we dropped a RUVSeq factor as a covariate due to the small sample size of the
dataset and the limitations that sample size imposes on the number of covariates that one can model (Table
S5,6).

Finally, for all miRNAs observed in at least 2 datasets, we meta-analyzed the effects across datasets using a
random effect model implemented by the rem_mv function in MetaVolcanoR with default parameters. We
attempted to remove miRNAs that showed effect size heterogeneity using Cochran’s Q-test (69) as
implemented in MetaVolcanoR, but we found no miRNAs with PCochran≤0.05. For miRNAs observed in a single
dataset, we retained the original stage iii P-values. We performed multiple hypothesis correction using Storey’s
method (38) and considered miRNAs with |log2(FC)|≥1 and FDR≤0.05 to be differentially expressed.

Identifying mRNA targets of nominated miRNAs

We tested for associations between the miRNAs identified in the genetic and differential expression analyses
and either (i) all mRNAs present in our data after QC steps (see RNA-seq quality control) or (ii) target
mRNAs as predicted by TargetScan v7.2 (51). We used LIMIX v3.0.4 (32) and the 33 samples with both
miRNA and mRNA expression data. For both miRNA and mRNA transcripts, we used the inverse
rank-normalized PEER residuals described in Heritability estimates.

For each miRNA, we considered the following generalized linear mixed models:

(8)𝑌 =  𝑀α +  ε

(9)𝑌 =  𝑀α +  𝑋β +  ε

where Y is the inverse rank-normalized PEER residuals of target mRNAs, M is a matrix of fixed-effect
covariates (here, a vector of ones as an offset term), X is the inverse rank-normalized PEER residuals of the
current miRNA, ε is a noise variable, and ɑ and β are the corresponding regression coefficients. We derived
P-values by performing a likelihood ratio test using the marginal likelihoods of the two models and controlled
the FDR across all tested miRNAs using Storey’s method (38).
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Cell type composition estimation

Using fastQ files from a publicly available miRNA expression dataset of sorted human alpha and beta cells
(64), we quantified miRNA counts using the miRquant pipeline described in miRNA isolation, sequencing,
and processing. To deconvolute cell type composition, we used 532 miRNAs that had raw counts≥100 in at
least one of the cell types and were also present in the samples from this study with average raw counts≥100.
We estimated the cell composition of islets in this study using the unmix function from DESeq2 v1.30.1 (66)
(Fig. S20). We ran unmix with default parameters and defined the alpha value with DESeq2’s
dispersionFunction using fitType = "parametric". We note the limitation that there are islet cell types that are
unaccounted for in this deconvolution (e.g., delta cells) as we did not have miRNA expression profiles for these
cell types.

To evaluate the effect of cell type composition in the presented data, we repeated analyses and incorporated
cell type composition as an additional covariate. For cis-miRNA-eQTL analysis, we included cell type
composition as a covariate during PEER correction. For miRNA differential expression analysis, we
included cell type composition as a covariate in the DESeq2 model. Due to limited sample size among specific
library preparations and ancestries, we only compared the effect of cell type composition in the LP1-specific
DE miRNAs for the sex, age, BMI, and T2D status analyses and European-specific DE miRNAs for the PGS
analyses. We found that incorporating cell type composition had a minimal impact on the final results (Fig.
S21).

Data availability

The individual-level genotype, RNA-seq, and LP1 smRNA-seq data generated in this study are available in the
database of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap) accession number
phs001188.v2.p1 and are accessible through dbGaP’s standard data access request procedures. The LP2
smRNA-seq are available in the Gene Expression Omnibus (GEO) data repository
(https://www.ncbi.nlm.nih.gov/geo) under the GSE196797 accession number. Summary statistics for analyses
presented in this study are available in the zenodo data repository (https://zenodo.org) accession number
7516377.
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