Supplementary Information

Cobalt(III)-catalyzed asymmetric ring-opening of 7oxabenzonorbornadienes via indole C–H functionalization

Yang Zheng, Wen-Yun Zhang, Qing Gu, Chao Zheng,* and Shu-Li You*

Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.

E-mail: zhengchao@sioc.ac.cn or slyou@sioc.ac.cn

Table of Contents

1. Supplementary Methods	S3
1.1 General information	S3
1.2 General procedure and characterization of products	S4
1.3 Gram-scale reaction and derivatization reactions	S19
1.4 Mechanistic experiments	S22
1.5 Control experiment	S28
1.6 X-Ray crystal structures	S31
1.7 Absolute configuration of <i>cis-</i> 7	S37
1.8 Computational calculations	S38
1.9 Copies of NMR spectra	S41
1.10 Copies of HPLC chromatograms	S146
2. Supplementary References	S194

1. Supplementary Notes

1.1 General information

Unless otherwise noted, materials were purchased from commercial suppliers (Shanghai Bidepharm, Adamasbeta®, J&K Scientific, TCI Shanghai and others) and used without further purification. All the solvents were treated according to standard methods. Flash column chromatography was performed using 200–300 mesh silica gel. ¹H and ¹³C NMR spectra were recorded on Bruker, Agilent, and Varian instruments (400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protic solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). All air- and moisture-sensitive reactions were performed under an atmosphere of argon in flame-dried glassware. **Co-1** to **Co-7** were prepared according to the known procedures.^[1]

1.2 General procedure and characterization of products

Procedure for the synthesis of *trans-3aa*.^[2] A sealed tube with a magnetic stir bar was charged with Cp*Co(CO)I₂ (2.4 mg, 0.005 mmol), CsOAc (5.7 mg, 0.03 mmol), **1a** (19.5 mg, 0.1 mmol), **2a** (21.6 mg, 0.15 mmol), TFE (0.3 mL) under argon atmosphere. The mixture was stirred at 50 °C for 10 h. Then, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1 to 4:1) to afford *trans-3aa*.

trans-**3aa**, 32.2 mg, 95% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.80 (d, J = 4.8 Hz, 2H), 8.17 (d, J = 8.0 Hz, 1H), 7.62-7.60 (m, 1H), 7.54 (dd, J = 7.6, 1.6 Hz, 1H), 7.29-7.26 (m, 2H), 7.24-7.15 (m, 3H), 7.15-7.11 (m, 1H), 6.68 (s, 1H), 6.58 (dd, J = 9.6, 2.4 Hz, 1H), 6.06 (dd, J = 9.6, 3.2 Hz, 1H), 5.12 (d, J = 10.4 Hz, 1H), 4.82 (br, 1H), 4.68 (dt, J = 10.4, 3.2 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.4, 141.8, 138.1, 136.9, 132.5, 130.5, 129.4, 128.1, 127.9, 127.7, 126.2, 125.9, 123.2, 122.4, 120.4, 117.6, 113.8, 106.8, 75.1, 41.9. **IR** (thin film): v_{max} (cm⁻¹) = 3251, 3036, 2923, 2852, 1563, 1452, 1424, 1347, 1262, 1198, 1153, 1078, 991, 845, 792, 741, 690, 635, 522.

HRMS (ESI) calcd for C₂₂H₁₇ON₃Na [M+Na]⁺: 362.1269. Found: 362.1272.

Procedure for the synthesis of racemic products of *cis***-3**. A sealed tube with a magnetic stir bar was charged with $[Cp^*Rh(CH_3CN)_3](SbF_6)_2$ (4.2 mg, 0.005 mmol), AgOAc (36.7 mg, 0.22 mmol), **1** (0.1 mmol), **2** (0.15 mmol), and DCM (1.0 mL) under argon atmosphere. The mixture was stirred at 60 °C for 10 h. Afterwards, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1 to 4:1) to afford racemic products of *cis*-**3**.

General procedure. A sealed tube with a magnetic stir bar was charged with (R_a)-**Co-7** (4.0 mg, 0.005 mmol), NaOPiv·H₂O (4.4 mg, 0.03 mmol), **1** (0.1 mmol), **2** (0.15 mmol), TFE (0.3 mL) and HFIP (0.1 mL) under argon atmosphere. The mixture was stirred at 50 °C for 18 h. Afterwards, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel

(hexanes/ethyl acetate = 8:1 to 4:1) to afford *cis*-3.

cis-**3aa**, 33.6 mg, 99% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, J = 4.8 Hz, 2H), 8.12 (d, J = 8.4 Hz, 1H), 7.53-7.51 (m, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.32-7.28 (m, 2H), 7.26-7.18 (m, 3H), 7.14 (td, J = 7.6, 1.2 Hz, 1H), 6.66 (dd, J = 9.6, 1.6 Hz, 1H), 6.45 (s, 1H), 6.03 (m, 1H), 5.74 (br, 1H), 5.40 (d, J = 7.2 Hz, 1H), 4.69 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 157.3, 137.2, 136.5, 136.4, 132.1, 129.2, 128.9, 128.3, 127.9, 127.6, 126.0, 125.97, 123.2, 122.3, 120.4, 117.7, 113.8, 109.3, 70.7, 38.8.

IR (thin film): v_{max} (cm⁻¹) = 3251, 3036, 2924, 2852, 1563, 1452, 1424, 1347, 1262, 1198, 1153, 1078, 991, 845, 792, 742, 690, 635, 522.

HRMS (ESI) calcd for C₂₂H₁₇ON₃Na [M+Na]⁺: 362.1269. Found: 362.1272.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 16.49 min, t_R (major) = 19.89 min, ee > 99%. [α]_D³⁵ = +211.6 (*c* = 1.0, CHCl₃).

cis-**3ba**, 27.2 mg, 77% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, J = 4.8 Hz, 2H), 7.94 (d, J = 8.4 Hz, 1H), 7.52-7.49 (m, 1H), 7.33-7.25 (m, 3H), 7.23-7.18 (m, 1H), 7.14-7.10 (m, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.67 (dd, J = 9.6, 1.6 Hz, 1H), 6.48 (s, 1H), 6.03 (dd, J = 9.6, 5.2 Hz, 1H), 5.45 (br, 1H), 5.35 (d, J = 7.2 Hz, 1H), 4.74-4.71 (m, 1H), 2.41 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.4, 136.9, 136.1, 136.0, 132.0, 129.6, 128.9, 128.8, 128.2, 127.8, 127.6, 126.2, 126.0, 123.2, 122.5, 117.6, 111.2, 107.5, 70.4, 39.1, 18.6.

IR (thin film): v_{max} (cm⁻¹) = 3033, 2962, 2918, 2853, 1564, 1422, 1346, 1299, 1261, 1198, 1157, 1074, 906, 795, 768, 727, 700, 643, 523, 461.

HRMS (ESI) calcd for C₂₃H₁₉ON₃Na [M+Na]⁺: 376.1426. Found: 376.1424.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 13.06 min, t_R (major) = 18.76 min, ee > 99%. [α]_D³⁵ = +91.1 (*c* = 1.0, CHCl₃).

cis-**3ca**, 33.9 mg, 96% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (d, J = 4.8 Hz, 2H), 8.03 (d, J = 8.4 Hz, 1H), 7.53-7.47 (m, 1H), 7.31-7.26 (m, 2H), 7.24-7.17 (m, 3H), 7.03 (dd, J = 8.8, 1.6 Hz, 1H), 6.65 (dd, J = 9.6, 1.6 Hz, 1H), 6.37 (s, 1H), 6.02 (dd, J = 9.6, 5.2 Hz, 1H), 5.62 (br, 1H), 5.38 (d, J = 7.2 Hz, 1H), 4.74-4.70 (m, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 157.5, 136.53, 136.48, 135.5, 132.2, 131.7, 129.5, 129.1, 128.3, 127.9, 127.6, 126.1, 126.0, 124.7, 120.2, 117.4, 113.7, 109.2, 70.7, 39.0, 21.4.

IR (thin film): v_{max} (cm⁻¹) = 2920, 1563, 1423, 1335, 1297, 1262, 1216, 1172, 1078, 867, 794, 749, 701, 665, 591. **HRMS** (ESI) calcd for C₂₃H₁₉ON₃Na [M+Na]⁺: 376.1426. Found: 376.1428.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 14.12 min, t_R (major) = 20.02 min, ee = 92%. [α]_D³⁵ = +112.0 (*c* = 1.0, CHCl₃).

cis-3da, 35.0 mg, 99% yield, pale yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 4.8 Hz, 2H), 7.92 (s, 1H), 7.53-7.51 (m, 1H), 7.32-7.28 (m, 3H), 7.23-7.19 (m, 2H), 6.99 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.65 (dd, *J* = 9.6, 1.6 Hz, 1H), 6.40 (s, 1H), 6.02 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.83 (br, 1H), 5.39 (d, *J* = 7.2 Hz, 1H), 4.68-4.64 (m, 1H), 2.45 (s,

3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 157.4, 137.6, 136.5, 135.8, 133.1, 132.2, 129.1, 128.3, 127.8, 127.6, 127.0, 126.1, 126.0, 123.9, 120.0, 117.6, 113.8, 109.2, 70.7, 38.9, 22.2.

IR (thin film): v_{max} (cm⁻¹) = 3030, 1564, 1486, 1422, 1341, 1266, 1197, 1126, 1077, 907, 811, 794, 727, 701, 646, 597, 546, 520, 465.

HRMS (ESI) calcd for C₂₃H₁₉ON₃Na [M+Na]⁺: 376.1426. Found: 376.1430.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 13.91 min, t_R (major) = 20.39 min, ee = 99%. [α]_D³⁴ = +174.3 (*c* = 1.0, CHCl₃).

cis-**3ea**, 27.5 mg, 78% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (d, *J* = 4.8 Hz, 2H), 7.48-7.46 (m, 1H), 7.38-7.31 (m, 2H), 7.28-7.25 (m, 2H), 7.19-7.14 (m, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.67 (d, *J* = 9.6 Hz, 1H), 6.43 (s, 1H), 5.96 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.28 (br, 1H), 5.24 (d, *J* = 7.2 Hz, 1H), 4.00-3.96 (m, 1H), 1.95 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 158.1, 137.4, 137.1, 136.1, 132.0, 129.8, 128.5, 128.3, 127.8, 127.7, 126.1, 126.1, 125.8, 122.3, 121.9, 119.2, 118.5, 107.1, 70.4, 38.7, 20.5.

IR (thin film): v_{max} (cm⁻¹) = 2962, 1561, 1457, 1417, 1344, 1261, 1221, 1075, 907, 794, 764, 726, 636, 522. **HRMS** (ESI) calcd for C₂₃H₁₉ON₃Na [M+Na]⁺: 376.1426. Found: 376.1430.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 13.85 min, t_R (major) = 18.17 min, ee = 74%. $[\alpha]_{D}^{34}$ = +324.0 (*c* = 1.0, CHCl₃).

cis-**3fa**, 36.5 mg, 99% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, J = 4.8 Hz, 2H), 7.72 (d, J = 8.4 Hz, 1H), 7.52-7.50 (m, 1H), 7.31-7.27 (m, 2H), 7.22-7.18 (m, 2H), 7.14 (t, J = 8.0 Hz, 1H), 6.65 (dd, J = 9.6, 1.6 Hz, 1H), 6.59 (d, J = 7.6 Hz, 2H), 6.01 (dd, J = 9.6, 5.2 Hz, 1H), 5.61 (br, 1H), 5.35 (d, J = 7.2 Hz, 1H), 4.70-4.66 (m, 1H), 3.87 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.4, 152.6, 138.5, 136.3, 135.1, 132.1, 128.8, 128.2, 127.9, 127.7, 126.2, 126.0, 124.0, 119.7, 117.8, 107.1, 106.1, 102.4, 70.5, 55.4, 39.0.

IR (thin film): v_{max} (cm⁻¹) = 3003, 1564, 1493, 1423, 1356, 1303, 1254, 1216, 1187, 1145, 1110, 1077, 1036, 991, 820, 794, 747, 700, 664, 546, 521, 463.

HRMS (ESI) calcd for C₂₃H₁₉O₂N₃Na [M+Na]⁺: 392.1375. Found: 392.1377.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 32.90 min, t_R (major) = 79.27 min, ee > 99%. [α]_D³⁰ = +296.8 (*c* = 1.0, CHCl₃).

cis-**3ga**, 36.6 mg, 99% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, J = 4.8 Hz, 2H), 7.75 (d, J = 2.3 Hz, 1H), 7.52-7.50 (m, 1H), 7.30 (d, J = 1.6 Hz, 1H), 7.29-7.28 (dd, J = 3.6, 2.0 Hz, 2H), 7.22 (t, J = 4.8 Hz, 1H), 7.20-7.16 (m, 1H), 6.81 (dd, J = 8.4, 2.4 Hz, 1H), 6.67-6.59 (m, 1H), 6.38 (s, 1H), 6.02 (dd, J = 9.6, 5.2 Hz, 1H), 5.62 (br, 1H), 5.44-5.29 (m, 1H), 4.71-4.67 (m, 1H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 157.5, 157.2, 138.0, 136.5, 135.4, 132.2, 129.1, 128.3, 127.7, 127.6, 126.03, 126.0, 123.4, 120.7, 117.5, 111.1, 109.2, 98.9, 70.6, 55.9, 38.9.

IR (thin film): v_{max} (cm⁻¹) = 3249, 3230, 2923, 2780, 1615, 1568, 1485, 1434, 1348, 1269, 1233, 1199, 1160, 1136, 1082, 1026, 945, 844, 796, 780, 750, 701, 661, 608, 549, 465, 439.

HRMS (ESI) calcd for C₂₃H₁₉O₂N₃Na [M+Na]⁺: 392.1375. Found: 392.1377.

HPLC conditions: Chiralcel OD–H column ($4.6 \text{ mm} \times 250 \text{ mm}$), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 17.48 min, t_R (major) = 27.19 min, ee > 99%. [α]_D³⁰ = +344.5 (*c* = 1.0, CHCl₃).

BnO

cis-**3ha**, 43.7 mg, 98% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.81 (d, *J* = 4.8 Hz, 2H), 8.07 (d, *J* = 9.2 Hz, 1H), 7.54-7.51 (m, 1H), 7.47-7.40 (m, 2H), 7.40-7.34 (m, 2H), 7.33-7.28 (m, 3H), 7.23-7.15 (m, 2H), 6.96-6.91 (m, 2H), 6.66 (dd, *J* = 9.6, 1.6 Hz, 1H), 6.37 (s, 1H), 6.02 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.77 (br, 1H), 5.41 (d, *J* = 7.2 Hz, 1H), 5.07 (s, 2H), 4.73-4.70 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.3, 154.8, 137.6, 137.1, 136.4, 132.2, 132.1, 129.9, 129.0, 128.6, 128.3, 127.89, 127.86, 127.6, 127.5, 126.0, 125.9, 117.4, 115.0, 113.3, 109.3, 104.0, 70.7, 70.6, 38.9.

IR (thin film): v_{max} (cm⁻¹) = 3031, 1613, 1564, 1425, 1338, 1177, 1120, 1078, 1015, 793, 748, 698, 664, 549, 522, 464.

HRMS (ESI) calcd for C₂₉H₂₃O₂N₃Na [M+Na]⁺: 468.1688. Found: 468.1684.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 40.48 min, t_R (minor) = 64.22 min, ee = 99%. [α]_D²⁶ = +323.8 (*c* = 1.0, CHCl₃).

cis-**3ia**, 36.8 mg, 88% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.81 (d, *J* = 4.8 Hz, 2H), 8.07 (d, *J* = 9.2 Hz, 1H), 7.54-7.51 (m, 1H), 7.47-7.40 (m, 2H), 7.40-7.34 (m, 2H), 7.33-7.28 (m, 3H), 7.23-7.15 (m, 2H), 6.96-6.91 (m, 2H), 6.66 (dd, *J* = 9.6, 1.6 Hz, 1H), 6.37 (s, 1H), 6.02 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.77 (br, 1H), 5.41 (d, *J* = 7.2 Hz, 1H), 5.07 (s, 2H), 4.73-4.70 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.6, 157.1, 138.1, 136.2, 135.9, 132.0, 131.0, 128.55, 128.47, 128.2, 127.8, 126.1, 125.9, 125.9, 122.9, 118.0, 115.5, 115.4, 108.4, 70.7, 38.8. **IR** (thin film): v_{max} (cm⁻¹) = 2922, 2852, 1564, 1420, 1334, 1261, 1190, 1075, 864, 791, 745, 701, 582. **HRMS** (ESI) calcd for C₂₂H₁₆ON₃BrNa [M+Na]⁺: 440.0374. Found: 440.0376.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 12.56 min, t_R (major) = 16.61 min, ee = 99%. [α]_D³⁰ = +44.5 (*c* = 1.0, CHCl₃).

cis-**3ja**, 30.1 mg, 72% yield, pale yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 4.8 Hz, 2H), 8.07 (d, J = 9.2 Hz, 1H), 7.54-7.51 (m, 1H), 7.47-7.40 (m, 2H), 7.40-7.34 (m, 2H), 7.33-7.28 (m, 3H), 7.23-7.15 (m, 2H), 6.96-6.91 (m, 2H), 6.66 (dd, J = 9.6, 1.6 Hz, 1H), 6.37 (s, 1H), 6.02 (dd, J = 9.6, 5.2 Hz, 1H), 5.77 (br, 1H), 5.41 (d, J = 7.2 Hz, 1H), 5.07 (s, 2H), 4.73-4.70 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 157.0, 137.8, 137.5, 136.3, 132.0, 128.6, 128.4, 128.10, 128., 127.7, 126.1, 125.9, 125.5, 121.4, 118.0, 117.0, 116.8, 109.0, 70.6, 38.8.

IR (thin film): v_{max} (cm⁻¹) = 2921, 1566, 1424, 1340, 1288, 1195, 1120, 1072, 1017 918, 905, 866, 791, 757, 702, 646, 588, 553, 462, 424.

HRMS (ESI) calcd for C₂₂H₁₆ON₃BrNa [M+Na]⁺: 440.0374. Found: 440.0372.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 17.77 min, t_R (major) = 28.72 min, ee = 99%. [α]_D³⁰ = +175.7 (*c* = 1.0, CHCl₃).

cis-**3ka**, 23.0 mg, 55% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (d, *J* = 4.8 Hz, 2H), 7.48-7.38 (m, 3H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.30-7.26 (m, 2H), 7.18-7.13 (m, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 9.6, 1H), 6.43 (s, 1H), 5.95 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.22 (d, *J* = 6.8, 1H), 5.02 (br, 1H), 3.89-3.86 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.7, 157.2, 138.8, 135.92, 135.86, 132.0, 131.9, 128.8, 128.4, 127.8, 127.6, 127.2, 126.2, 122.7, 120.0, 106.3, 105.4, 70.2, 38.8.

IR (thin film): v_{max} (cm⁻¹) = 2960, 2924, 2853, 1563, 1413, 1347, 1261, 1184, 1077, 1019, 796, 729, 701, 632. **HRMS** (ESI) calcd for C₂₂H₁₆ON₃BrNa [M+Na]⁺: 440.0374. Found: 440.0374.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 16.58 min, t_R (major) = 26.06 min, ee = 83%. [α]_D³⁰ = +44.8 (*c* = 1.0, CHCl₃).

cis-**3la**, 31.8 mg, 89% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, *J* = 4.8 Hz, 2H), 7.91 (dd, *J* = 10.8, 2.4 Hz, 1H), 7.53-7.50 (m, 1H), 7.36-7.25 (m, 4H), 7.23-7.16 (m, 1H), 6.91 (td, *J* = 8.8, 2.4 Hz, 1H), 6.66 (d, *J* = 9.6 Hz, 1H), 6.41 (s, 1H), 6.01 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.61 (br, 1H), 5.39 (d, *J* = 7.2 Hz, 1H), 4.73-4.70 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.4 (d, *J* = 236.4 Hz), 158.4, 157.2, 137.2, 137.1-137.0 (m), 136.2, 131.9, 128.7, 128.3, 127.9, 127.6, 126.0, 125.9, 125.5 (d, *J* = 1.1 Hz), 120.8 (d, *J* = 9.9 Hz), 117.7, 110.5 (d, *J* = 24.1 Hz), 109.0, 101.2 (d, *J* = 28.5 Hz), 70.5, 38.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -119.4.

IR (thin film): v_{max} (cm⁻¹) = 2924, 1566, 1482, 1422, 1351, 1261, 1196, 1136, 1078, 1015, 953, 908, 847, 785, 729, 701, 647, 608, 521, 462.

HRMS (ESI) calcd for C₂₂H₁₆ON₃FNa [M+Na]⁺: 380.1175. Found: 380.1158.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 15.20 min, t_R (major) = 22.55 min, ee > 99%. [α]_D²⁹ = +163.2 (*c* = 1.0, CHCl₃).

cis-**3ma**, 26.8 mg, 75% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, J = 4.8 Hz, 2H), 8.07 (dd, J = 9.2, 4.8 Hz, 1H), 7.54-7.50 (m, 1H), 7.36-7.26 (m, 3H), 7.22-7.15 (m, 1H), 7.06 (dd, J = 8.8, 2.4 Hz, 1H), 6.93 (td, J = 9.2, 2.4 Hz, 1H), 6.67 (d, J = 9.6, 1H), 6.39 (s, 1H), 6.01 (dd, J = 9.6, 5.2 Hz, 1H), 5.68 (br, 1H), 5.41 (d, J = 7.2 Hz, 1H), 4.75-4.66 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.1 (d, J = 236.3 Hz), 158.5, 157.2, 138.4, 136.3, 133.6, 132.0, 130.1-129.9 (m), 128.6, 128.4, 128.1, 127.7, 126.1, 125.9, 117.8, 115.0 (d, J = 9.2 Hz), 111.0 (d, J = 25.0 Hz), 109.0 (d, J = 4.0 Hz), 105.5 (d, J = 23.4 Hz), 70.7, 38.9. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.9. **IR** (thin film): v_{max} (cm⁻¹) = 2904, 1567, 1471, 1449, 1427, 1349, 1290, 1179, 1116, 1069, 989, 954, 864, 827, 802,

769, 725, 694, 651, 633, 606, 588, 560, 526, 493, 478, 430. **HRMS** (ESI) calcd for C₂₂H₁₆ON₃FNa [M+Na]⁺: 380.1175. Found: 380.1178.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 20.30 min, t_R (major) = 22.21 min, ee = 99%. $[\alpha]_D^{28}$ = +157.0 (*c* = 1.0, CHCl₃).

cis-**3na**, 28.0 mg, 75% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (d, *J* = 4.8 Hz, 2H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.53-7.51 (m, 1H), 7.40 (d, *J* = 2.0 Hz, 1H), 7.35-7.29 (m, 3H), 7.24-7.16 (m, 2H), 6.69 (d, *J* = 9.6 Hz, 1H), 6.39 (s, 1H), 6.03 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.43 (d, *J* = 7.2 Hz, 1H), 4.73-4.69 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.6, 157.1, 138.2, 136.3, 135.5, 132.0, 130.4, 128.6, 128.5, 128.2, 127.7, 126.1, 125.9, 123.3, 119.8, 118.0, 115.1, 108.5, 70.7, 38.9.

IR (thin film): v_{max} (cm⁻¹) = 3021, 1563, 1421, 1335, 1193, 1069, 862, 792, 746, 701, 633, 589, 519.

HRMS (ESI) calcd for C₂₂H₁₆ON₃ClNa [M+Na]⁺: 396.0880. Found: 396.0877.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 11.65 min, t_R (major) = 15.26 min, ee =97%. [α]_D³⁵ = +71.0 (*c* = 1.0, CHCl₃).

cis-30a, 27.8 mg, 70% yield, pale yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 4.8 Hz, 2H), 8.77 (s, 1H), 7.84 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.52-7.50 (m, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.33-7.28 (m, 3H), 7.22-7.15 (m, 1H), 6.67 (d, *J* = 9.6 Hz, 1H), 6.46 (s, 1H), 6.00 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.70 (br, 1H), 5.43 (d, *J* = 7.2 Hz, 1H), 4.73-

4.60 (m, 1H), 3.91 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.1, 158.8, 157.0, 140.3, 136.6, 136.2, 133.0, 131.9, 128.5, 128.4, 128.3, 127.7, 126.1, 125.9, 124.8, 123.4, 120.0, 118.3, 115.9, 108.9, 70.7, 52.1, 38.9.

IR (thin film): v_{max} (cm⁻¹) = 2945, 1711, 1567, 1537, 1477, 1430, 1355, 1306, 1286, 1240, 1201, 1118, 1095, 982, 906, 854, 796, 763, 739, 706, 683, 657, 632, 559, 516, 461.

HRMS (ESI) calcd for C₂₄H₁₉O₃N₃Na [M+Na]⁺: 420.1324. Found: 420.1326.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 25.44 min, t_R (major) = 37.96 min, ee > 99%. [α]_D³⁰ = +352.7 (*c* = 1.0, CHCl₃).

cis-**3pa**, 35.7 mg, 93% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.8 Hz, 2H), 7.69 (s, 1H), 7.54-7.50 (m, 1H), 7.31-7.27 (m, 2H), 7.25-7.22 (m, 1H), 7.20-7.16 (m, 1H), 6.79 (s, 1H), 6.63 (d, *J* = 9.6 Hz, 1H), 6.30 (s, 1H), 5.99 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.91 (dd, *J* = 9.6, 1.6 Hz, 2H), 5.76 (br, 1H), 5.37 (d, *J* = 7.2 Hz, 1H), 4.67-4.63 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.3, 145.4, 144.2, 136.4, 134.9, 132.1, 132.0, 129.0, 128.3, 127.8, 127.6, 126.0, 125.9, 123.4, 117.6, 109.5, 100.9, 99.1, 95.8, 70.7, 38.8.

IR (thin film): v_{max} (cm⁻¹) = 2892, 1565, 1460, 1424, 1343, 1283, 1190, 1160, 1082, 1036, 941, 849, 789, 729, 700, 643, 522.

HRMS (ESI) calcd for C₂₃H₁₇O₃N₃Na [M+Na]⁺: 406.1168. Found: 406.1168.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C. t_R (major) = 39.44 min, t_R (minor) = 43.05 min, ee = 96%. [α]_D³⁰ = +214.8 (*c* = 1.0, CHCl₃).

cis-**3qa**, 20.5 mg, 58% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (s, 2H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.54-7.49 (m, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.31-7.28 (m, 2H), 7.23-7.16 (m, 2H), 7.16-7.08 (m, 1H), 6.65 (d, *J* = 9.6 Hz, 1H), 6.41 (s, 1H), 6.01 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.88 (br, 1H), 5.39 (d, *J* = 7.2 Hz, 1H), 4.63-4.59 (m, 1H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 155.4, 137.2, 136.5, 136.3, 132.1, 129.1, 128.9, 128.3, 127.9, 127.6, 127.4, 126.0, 125.9, 123.0, 122.0, 120.4, 113.4, 108.5, 70.7, 38.7, 15.3.

IR (thin film): v_{max} (cm⁻¹) = 2921, 2779, 1589, 1561, 1436, 1347, 1299, 1198, 1114, 1081, 1016, 786, 735, 701, 662, 608, 548, 522, 465.

HRMS (ESI) calcd for C₂₃H₁₉ON₃Na [M+Na]⁺: 376.1426. Found: 376.1425.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 23.19 min, t_R (minor) = 24.22 min, ee > 99%. [α]_D³¹ = +213.2 (*c* = 1.0, CHCl₃).

cis-**3ra**, 31.1 mg, 87% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (s, 2H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.34-7.27 (m, 2H), 7.25-7.13 (m, 3H), 6.67 (dd, *J* = 9.6, 1.6 Hz, 1H), 6.51 (s, 1H), 6.05 (dd, *J* = 9.6, 4.8 Hz, 1H), 5.26 (d, *J* = 6.8 Hz, 1H), 4.72-4.69 (m, 1H), 4.36 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.4, 153.8, 153.7 (d, *J* = 3.3 Hz), 146.3 (d, *J* = 21.8 Hz), 137.2, 136.5 (d, *J* = 81.7 Hz), 132.1, 129.0, 128.8, 128.3, 128.0, 127.98, 126.4, 126.3, 123.3, 122.3, 120.5, 113.4, 108.8, 70.4, 39.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -142.0. **IR** (thin film): v_{max} (cm⁻¹) = 2919, 1568, 1550, 1436, 1347, 1291, 1245, 1195, 1078, 1015, 922, 793, 742, 703, 676, 640, 603, 586, 549, 520, 468, 432.

HRMS (ESI) calcd for C₂₂H₁₆ON₃FNa [M+Na]⁺: 380.1175. Found: 380.1179.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 16.12 min, t_R (major) = 22.41 min, ee = 90%. [α]_D³⁰ = +141.2 (*c* = 1.0, CHCl₃).

cis-**3sa**, 19.1 mg, 66% yield, pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.8 Hz, 2H), 7.70-7.69 (m, 1H), 7.48-7.45 (m, 1H), 7.30-7.26 (m, 2H), 7.18-7.15 (m, 2H), 6.63 (dd, *J* = 9.6, 1.6 Hz, 1H), 6.20 (t, *J* = 3.2 Hz, 1H), 6.14-6.13 (m, 1H), 6.03 (dd, *J* = 9.6, 4.8 Hz, 1H), 5.25 (d, *J* = 6.4 Hz, 1H), 4.98-4.89 (m, 1H), 4.68 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.3, 136.4, 132.3, 130.2, 129.6, 128.0, 127.8, 127.5, 126.5, 126.1, 122.6, 117.7, 114.9, 110.7, 70.6, 39.2.

IR (thin film): v_{max} (cm⁻¹) = 3365, 2906, 1575, 1484, 1447, 1406, 1280, 1193, 1144, 1119, 1072, 995, 941, 916, 880, 815, 799, 763, 724, 684, 640, 598, 537, 515, 494, 423.

HRMS (ESI) calcd for C₁₈H₁₅ON₃Na [M+Na]⁺: 312.1113. Found: 312.1114.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 85:15 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 8.91 min, t_R (major) = 13.93 min, ee = 72%. [α]_D³¹ = -9.7 (*c* = 1.0, CHCl₃).

cis-**3ta**, 17.3 mg, 57% yield, pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.8 Hz, 2H), 7.51-7.48 (m, 1H), 7.30 (t, *J* = 4.8 Hz, 1H), 7.26-7.21 (m, 2H), 7.14-7.08 (m, 1H), 6.55 (d, *J* = 9.6 Hz, 1H), 5.93-5.89 (m, 3H), 5.46 (br, 1H), 5.15 (d, *J* = 7.2 Hz, 1H), 4.18-4.15 (m, 1H), 2.31 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.3, 136.6, 132.3, 131.4, 129.3, 128.9, 128.0, 127.5, 127.4, 126.1, 125.9, 118.6, 111.4, 110.2, 70.7, 38.7, 14.8.

IR (thin film): v_{max} (cm⁻¹) = 2922, 1561, 1423, 1264, 1219, 1077, 1021, 814, 768, 698, 639, 616, 543, 519.

HRMS (ESI) calcd for C₁₉H₁₇ON₃Na [M+Na]⁺: 326.1269. Found: 326.1266.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 85:15 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 10.89 min, t_R (major) = 14.36 min, ee = 81%. [α]_D³⁵ = -42.8 (*c* = 1.0, CHCl₃).

cis-**3ua**, 34.7 mg, 95% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (d, *J* = 4.8 Hz, 2H), 7.52-7.50 (m, 1H), 7.30-7.23 (m, 3H), 7.21-7.10 (m, 4H), 7.03-6.95 (m, 2H), 6.61 (d, *J* = 9.6 Hz, 1H), 6.30 (d, *J* = 3.6 Hz, 1H), 6.08 (d, *J* = 3.6 Hz, 1H), 5.94 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.24 (br, 1H), 5.17 (d, *J* = 7.2 Hz, 1H), 4.10-4.07 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 157.7, 136.4, 136.1, 133.8, 132.2, 131.6, 128.6, 128.20, 128.17, 127.9, 127.6, 126.3, 126.1, 126.0, 119.2, 111.9, 111.8, 70.6, 38.7.

IR (thin film): v_{max} (cm⁻¹) = 2784, 1571, 1447, 1423, 1319, 1281, 1229, 1188, 1120, 1084, 1027, 965, 906, 812, 792, 775, 750, 696, 642, 604, 549, 524, 463.

HRMS (ESI) calcd for C₂₄H₁₉ON₃Na [M+Na]⁺: 388.1426. Found: 388.1425.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 17.05 min, t_R (major) = 23.14 min, ee = 69%. [α]_D³⁴ = -61.3 (*c* = 1.0, CHCl₃).

cis-**3ab**, 30.0 mg, 81% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, *J* = 4.8 Hz, 2H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.28 (s, 1H), 7.24 (d, *J* = 5.2 Hz, 1H), 7.22-7.18 (m, 1H), 7.17-7.13 (m, 1H), 6.98 (s, 1H), 6.61 (d, *J* = 9.6 Hz, 1H), 6.50 (s, 1H), 5.96 (dd, *J* = 9.6, 5.2 Hz, 1H), 5.45 (br, 1H), 5.32 (d, *J* = 7.2 Hz, 1H), 4.70-4.67 (m, 1H), 2.29 (s, 3H), 2.26 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 157.4, 153.3, 137.2, 137.1, 136.7, 135.7, 133.7, 129.7, 129.3, 127.9, 127.8, 127.6, 123.2, 122.2, 120.4, 117.6, 113.8, 109.2, 70.5, 39.2, 19.9, 19.6.

IR (thin film): v_{max} (cm⁻¹) = 2916, 1562, 1500, 1451, 1420, 1345, 1258, 1215, 1019, 881, 798, 743, 703, 618, 480, 425.

HRMS (ESI) calcd for C₂₄H₂₁ON₃Na [M+Na]⁺: 390.1582. Found: 390.1578.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 16.07 min, t_R (major) = 18.63 min, ee = 94%. [α]_D³⁰ = +163.8 (*c* = 1.0, CHCl₃).

cis-**3ac**, 14.0 mg, 35% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (d, J = 4.8 Hz, 2H), 8.11 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.30-7.25 (m, 1H), 7.23-7.19 (m, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.10 (s, 1H), 6.75 (s, 1H), 6.56 (d, J = 9.6 Hz, 1H), 6.46 (s, 1H), 5.92 (dd, J = 9.6, 5.2 Hz, 1H), 5.88 (br, 1H), 5.36 (d, J = 7.2 Hz, 1H), 4.65-4.57 (m, 1H), 3.94 (s, 3H), 3.88 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 157.3, 149.0, 148.0, 137.2, 136.7, 129.6, 129.3, 127.4, 127.1, 124.8, 123.2, 122.3, 120.4, 117.7, 113.8, 109.7, 109.6, 109.3, 70.7, 56.2, 56.0, 38.7.

IR (thin film): v_{max} (cm⁻¹) = 2926, 1562, 1505, 1452, 1417, 1345, 1303, 1243, 1197, 1161, 1127, 1005, 889, 855, 828, 796, 744, 629, 478.

HRMS (ESI) calcd for C₂₄H₂₁O₃N₃Na [M+Na]⁺: 422.1481. Found: 422.1482.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 26.45 min, t_R (major) = 41.80 min, ee = 95%. [α]_D³⁰ = +14.9 (c = 1.0, CHCl₃).

cis-3ad, 28.2 mg, 75% yield, pale yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, J = 4.8 Hz, 2H), 8.10 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.37-7.32 (m, 1H), 7.29 (t, J = 4.8 Hz, 1H), 7.24-7.19 (m, 1H), 7.18-7.12 (m, 1H), 6.99 (dd, J = 10.8, 7.6 Hz, 1H), 6.55 (d, J = 9.6 Hz, 1H), 6.37-6.36 (m, 2H), 6.03 (dd, J = 9.6, 5.6 Hz, 1H), 5.37 (d, J = 7.6 Hz, 1H), 4.61-4.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 157.1, 150.29 (dd, J = 248.3, 12.7 Hz), 149.64 (dd, J = 246.0, 13.2 Hz), 137.2, 135.2, 133.6 (dd, J = 5.5, 3.5 Hz), 129.7 (d, J = 2.6 Hz), 129.1, 128.8 (dd, J = 6.4, 3.9 Hz), 126.4-126.2 (m), 123.4, 122.5, 120.5, 117.8, 115.5 (d, J = 18.9 Hz), 114.6 (d, J = 18.0 Hz), 113.9, 109.5, 70.2, 37.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.6, -141.2.

IR (thin film): v_{max} (cm⁻¹) = 2923, 1564, 1505, 1452, 1427, 1349, 1311, 1261, 1200, 1149, 1104, 1081, 907, 879, 798, 725, 640, 593, 551, 437.

HRMS (ESI) calcd for C₂₂H₁₅ON₃F₂Na [M+Na]⁺: 398.1081. Found: 398.1084.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 85:15 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 16.95 min, t_R (minor) = 18.19 min, ee = 99%. [α]_D³⁵ = +286.1 (*c* = 1.0, CHCl₃).

cis-**3ae**, 19.5 mg, 50% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (d, J = 4.8 Hz, 2H), 8.09 (d, J = 8.4 Hz, 1H), 7.96 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.48-7.39 (m, 2H), 7.37-7.27 (m, 2H), 7.20-7.16 (m, 1H), 7.09 (td, J = 7.6, 1.2 Hz, 1H), 6.84 (d, J = 9.6 Hz, 1H), 6.34 (br, 1H), 6.30 (s, 1H), 6.11 (dd, J = 9.6, 6.0 Hz, 1H), 5.58 (d, J = 7.2 Hz, 1H), 4.81-4.65 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.6, 157.3, 137.2, 136.2, 135.1, 133.9, 133.2, 131.0, 129.6, 129.2, 128.3, 128.2, 127.8, 126.0, 125.9, 124.7, 124.6, 123.2, 122.3, 120.5, 117.7, 113.8, 109.4, 71.2, 38.8.

IR (thin film): v_{max} (cm⁻¹) = 2920, 2851, 1665, 1563, 1452, 1424, 1346, 1261, 1198, 1150, 1081, 886, 800, 742, 696, 637, 616, 477, 433.

HRMS (ESI) calcd for C₂₆H₁₉ON₃Na [M+Na]⁺: 412.1426. Found: 412.1421.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 27.05 min, t_R (major) = 31.74 min, ee = 99%. [α]³¹_D = +24.3 (*c* = 1.0, CHCl₃).

cis-**3af**, 26.8 mg, 67% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.76 (d, J = 4.8 Hz, 2H), 8.28 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.31-7.26 (m, 1H), 7.22 (td, J = 7.2, 1.2 Hz, 1H), 7.16 (t, J = 4.8 Hz, 1H), 7.01 (dd, J = 10.0, 3.2 Hz, 1H), 6.90 (s, 1H), 6.85-6.76 (m, 2H), 6.07 (dt, J = 10.0, 2.0 Hz, 1H), 5.37 (d, J = 4.8 Hz, 1H), 4.95 (dt, J = 5.2, 2.8 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 158.1, 151.2, 149.8, 139.5, 137.4, 129.2, 129.0, 125.0, 123.3, 122.5, 122.2, 121.2, 120.3, 117.5, 114.1, 111.4, 111.3, 109.0, 62.7, 56.6, 56.4, 41.5.

IR (thin film): v_{max} (cm⁻¹) = 2934, 1563, 1481, 1452, 1421, 1345, 1257, 1188, 1084, 956, 855, 798, 745, 664. **HRMS** (ESI) calcd for C₂₄H₂₁O₃N₃Na [M+Na]⁺: 422.1481. Found: 422.1480.

HPLC conditions: Chiralcel OD–H column ($4.6 \text{ mm} \times 250 \text{ mm}$), hexane/*i*-PrOH, 80:20 v/v, flow rate 1 mL/min, $\lambda = 254 \text{ nm}, 25 \text{ °C. } t_{\text{R}}$ (minor) = 26.79 min, t_{R} (major) = 49.94 min, ee > 99%. [α]_D³¹ = -112.4 (c = 1.0, CHCl₃).

cis-**3ag**, 26.8 mg, 73% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.67-7.56 (m, 1H), 7.33-7.27 (m, 1H), 7.25-7.22 (m, 1H), 7.17 (td, *J* = 4.8, 1.2 Hz, 1H), 7.09-6.99 (m, 2H), 6.91-6.87 (m, 2H), 6.12 (dt, *J* = 10.0, 2.0 Hz, 1H), 5.26-5.24 (m, 1H), 4.93-4.91 (m, 1H), 2.37 (s, 3H), 2.35 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 158.2, 139.7, 137.3, 134.0, 133.7, 131.9, 130.4, 130.2, 129.8, 129.2, 129.0, 124.7, 123.4, 122.3, 120.3, 117.5, 114.2, 108.8, 65.6, 41.7, 19.2, 18.5.

IR (thin film): v_{max} (cm⁻¹) = 2922, 1562, 1452, 1421, 1345, 1259, 1193, 1077, 995, 907, 859, 805, 728, 679, 641, 449.

HRMS (ESI) calcd for C₂₄H₂₁ON₃Na [M+Na]⁺: 390.1582. Found: 390.1582.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 85:15 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 9.88 min, t_R (major) = 23.49 min, ee = 98%. [α]_D³¹ = -94.5 (*c* = 1.0, CHCl₃).

cis-**3ah**, 22.8 mg, 62% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.12-8.10 (m, 1H), 7.86 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.63-7.61 (m, 1H), 7.35 (td, *J* = 7.6, 1.2 Hz, 1H), 7.32-7.26 (m, 2H), 7.26-7.21 (m, 2H), 7.19 (t, *J* = 4.8 Hz, 1H), 6.81 (s, 1H), 6.32 (s, 1H), 5.89 (dd, *J* = 2.4, 1.6 Hz, 1H), 4.89 (t, *J* = 2.4 Hz, 1H), 2.10 (dd, *J* = 2.4, 1.6 Hz, 3H), 1.42 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.3, 157.2, 146.0, 140.5, 136.7, 133.7, 132.9, 129.6, 129.4, 128.2, 127.0, 124.0, 123.14, 123.10, 122.4, 120.2, 117.6, 114.0, 109.0, 75.5, 44.4, 24.1, 19.0. **IR** (thin film): v_{max} (cm⁻¹) = 3268, 2925, 1565, 1430, 1350, 1293, 1263, 1202, 1159, 1087, 1035, 958, 860, 802, 759, 746, 719, 666, 630, 579, 560, 538, 464, 442.

HRMS (ESI) calcd for C₂₄H₂₁ON₃Na [M+Na]⁺: 390.1582. Found: 390.1583.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 90:10 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 10.18 min, t_R (minor) = 14.50 min, ee = 52%. [α]_D³¹ = -6.5 (c = 1.0, CHCl₃).

cis-**3ai**, 16.0 mg, 43% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.63-761 (m, 1H), 7.31-7.26 (m, 1H), 7.25-7.21 (m, 1H), 7.18 (t, *J* = 4.8 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.89 (s, 1H), 6.63 (dd, *J* = 9.6, 3.2 Hz, 1H), 5.99 (dt, *J* = 9.6, 1.6 Hz, 1H), 5.33 (d, *J* = 4.4 Hz, 1H), 4.93-4.87 (m, 1H), 2.32 (s, 3H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 158.1, 139.8, 137.4, 137.0, 135.2, 133.6, 130.2, 130.0, 129.2, 128.1, 127.6, 124.7, 123.4, 122.3, 120.3, 117.6, 114.2, 108.9, 65.6, 42.2, 20.9, 14.4.

IR (thin film): v_{max} (cm⁻¹) = 2962, 1564, 1452, 1425, 1346, 1259, 1015, 790, 739, 593.

HRMS (ESI) calcd for C₂₄H₂₁ON₃Na [M+Na]⁺: 390.1582. Found: 390.1579.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 25.23 min, t_R (major) = 36.13 min, ee = 97%. [α]_D³⁵ = -259.9 (*c* = 1.0, CHCl₃).

cis-**3ai'**, 11.8 mg, 32% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, J = 4.8 Hz, 2H), 8.14 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.25-7.23 (m, 2H), 7.22-7.18 (m, 1H), 7.18-7.12 (m, 1H), 7.10 (d, J = 7.6 Hz, 1H), 6.98 (dd, J = 10.0, 1.6 Hz, 1H), 6.49 (s, 1H), 6.09 (dd, J = 10.0, 4.8 Hz, 1H), 5.25 (d, J = 6.8 Hz, 1H), 5.11 (br, 1H), 4.70 (ddd, J = 6.8, 4.8, 1.6 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 157.5, 137.1, 136.2, 134.3, 132.1, 130.1, 129.5, 129.3, 129.0, 125.1, 123.7, 123.2, 122.3, 120.4, 117.6, 113.9, 109.1, 103.5, 71.1, 38.8, 20.8, 14.8.

IR (thin film): v_{max} (cm⁻¹) = 2962, 1565, 1452, 1427, 1347, 1301, 1259, 1014, 792, 749, 703.

HRMS (ESI) calcd for C₂₄H₂₁ON₃Na [M+Na]⁺: 390.1582. Found: 390.1568.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 85:15 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 14.98 min, t_R (major) = 32.95 min, ee > 99%. [α]_D³⁶ = +38.5 (*c* = 1.0, CHCl₃).

Procedure for the synthesis of *cis***-3va.** A sealed tube with a magnetic stir bar was charged with (R_a)-Co-7 (8.0 mg, 0.010 mmol), $Zn(OAc)_2$ (5.5 mg, 0.030 mmol), **1v** (16.1 mg, 0.10 mmol), **2a** (21.6 mg, 0.15 mmol), TFE (0.3 mL) and HFIP (0.1 mL) under argon atmosphere. The mixture was stirred at 60 °C for 24 h. Then, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1 to 4:1) to afford *cis*-**3va**.

cis-**3va**, 9.8 mg, 32% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.61-8.52 (m, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.82 (td, *J* = 7.6, 1.6 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.41-7.32 (m, 2H), 7.28-7.24 (m, 3H), 7.11 (d, *J* = 7.2 Hz, 1H), 6.55 (dd, *J* = 9.6, 3.2 Hz, 1H), 6.05 (dd, *J* = 9.6, 2.4 Hz, 1H), 5.03 (d, *J* = 13.2 Hz, 1H), 4.66 (dt, *J* = 13.2, 2.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.8, 148.0, 146.5, 140.1, 138.8, 137.8, 132.4, 130.8, 128.5, 128.3, 128.0, 127.2, 126.0, 125.0, 123.8, 123.6, 122.2, 76.1, 43.1.

IR (thin film): v_{max} (cm⁻¹) = 3062, 2921, 2851, 2815, 1726, 1591, 1567, 1533, 1476, 1449, 1374, 1282, 1248, 1195, 1154, 1114, 1076, 1034, 1000, 959, 905, 859, 832, 784, 767, 721, 692, 672, 649, 628.

HRMS (ESI) calcd for $C_{19}H_{15}ONS [M-H_2O+H]^+$: 288.0847. Found: 288.0844.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 90:10 v/v, flow rate = 1 mL/min, λ = 303 nm, 25 °C. t_R (major) = 9.92 min, t_R (minor) = 13.14 min, ee = 70%. [α]_D²⁵ = -23.6 (*c* = 0.2, CHCl₃).

Procedure for the synthesis of *cis***-3wa**. A sealed tube with a magnetic stir bar was charged with (R_a)-Co-7 (8.0 mg, 0.010 mmol), Zn(OAc)₂ (5.5 mg, 0.030 mmol), **1w** (16.1 mg, 0.10 mmol), **2a** (21.6 mg, 0.15 mmol), TFE (0.3 mL) and HFIP (0.1 mL) under argon atmosphere. The mixture was stirred at 70 °C for 24 h. Then, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and

filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1 to 4:1) to afford *cis*-**3wa**.

cis-**3wa**, 7.5 mg, 25% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.8 Hz, 2H), 7.85 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.55 (td, *J* = 7.6, 1.6 Hz, 1H), 7.47-7.40 (m, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 4.8 Hz, 1H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 6.71 (d, *J* = 6.4 Hz, 1H), 6.51 (dd, *J* = 9.6, 2.8 Hz, 1H), 5.86 (dd, *J* = 9.6, 2.4 Hz, 1H), 5.18-5.05 (m, 1H), 4.41 (dt, *J* = 13.2, 2.4 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.8, 157.3, 143.2, 140.1, 138.6, 133.0, 132.9, 131.4, 131.1, 129.5, 128.5, 128.4, 127.6, 127.4, 126.1, 125.0, 119.3, 76.4, 45.6.

IR (thin film): v_{max} (cm⁻¹) = 3158, 3066, 2921, 2851, 2825, 1635, 1571, 1555, 1451, 1433, 1413, 1293, 1245, 1193, 1154, 1114, 1076, 1032, 996, 951, 902, 870, 826, 779, 755, 687, 648.

HRMS (ESI) calcd for C₂₀H₁₆ON₂ [M-H₂O+H]⁺:283.1235. Found: 283.1233.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 85:15 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (major) = 9.57 min, t_R (minor) = 23.40 min, ee = 53%. [α]_D²⁸ = -20.0 (*c* = 0.2, CHCl₃).

General procedure. A sealed tube with a magnetic stir bar was charged with (S_a)-**Co-4** (7.6 mg, 0.010 mmol), AgSbF₆ (6.8 mg, 0.020 mmol), Zn(OAc)₂ (9.2 mg, 0.050 mmol), **1** (0.15 mmol), **6** (24.3 mg, 0.10 mmol) and TFE (1.0 mL) under argon atmosphere. The mixture was stirred at 80 °C for 48 h. Then, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 10:1 to 6:1) to afford *cis*-**7**.

cis-**7aa**, 25.4 mg, 58% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.80 (d, *J* = 4.8 Hz, 2H), 8.30 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.26-7.21 (m, 2H), 7.19-7.14 (m, 3H), 6.65 (d, *J* = 9.6 Hz, 1H), 6.48 (s, 1H), 6.29 (dd, *J* = 9.6, 4.0 Hz, 1H), 5.45 (dd, *J* = 10.0, 6.0 Hz, 1H), 5.13 (d, *J* = 5.6 Hz, 1H), 4.95 (d, *J* = 10.4 Hz, 1H), 1.20 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 155.2, 138.8, 137.2, 135.4, 133.0, 130.5, 129.2, 128.2, 128.1, 128.0, 126.61, 126.56, 123.1, 122.0, 120.1, 117.3, 114.4, 107.6, 79.3, 51.4, 38.7, 28.3.

IR (thin film): v_{max} (cm⁻¹) = 2962, 2920, 1707, 1616, 1562, 1485, 1421, 1345, 1262, 1157, 1098, 1027, 923, 860, 804, 629, 527, 478, 442.

HRMS (ESI) calcd for C₂₇H₂₆O₂N₄Na [M+Na]⁺: 461.1953. Found: 461.1942.

HPLC conditions: Chiralcel AD–3 column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 0.7 mL/min, λ = 254 nm, 30 °C. t_R (major) = 9.84 min, t_R (minor) = 15.27 min, ee = 96%. [α]_D²⁸ = -26.1 (*c* = 0.5, CHCl₃).

cis-**7ab**, 28.5 mg, 63% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.8 Hz, 2H), 8.11 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.33-7.29 (m, 2H), 7.28-7.24 (m, 1H), 7.21-7.15 (m, 2H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.70-6.62 (m, 1H), 6.44 (s, 1H), 6.31 (dd, *J* = 10.0, 4.4 Hz, 1H), 5.45 (dd, *J* = 10.0, 6.4 Hz, 1H), 5.10 (d, *J* = 6.0 Hz, 1H), 4.97 (d, *J* = 10.0 Hz, 1H), 2.50 (s, 3H), 1.25 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.38, 158.34, 155.3, 138.0, 137.5, 135.5, 133.0, 132.9, 130.6, 128.1, 127.9, 127.8, 126.9, 126.5, 126.4, 123.5, 119.7, 117.2, 114.2, 107.4, 79.3, 51.5, 38.5, 28.3, 22.2.

IR (thin film): v_{max} (cm⁻¹) = 2976, 2922, 1705, 1564, 1487, 1422, 1365, 1340, 1226, 1161, 1054, 907, 861, 813, 777, 727, 645.

HRMS (ESI) calcd for C₂₈H₂₈O₂N₄Na [M+Na]⁺: 475.2110. Found: 475.2111.

HPLC conditions: Chiralcel IG column (4.6 mm × 250 mm), hexane/*i*-PrOH, 90:10 v/v, flow rate = 0.7 mL/min, λ = 254 nm, 30 °C. t_R (major) = 21.63 min, t_R (minor) = 23.96 min, ee = 95%. [α]_D³⁰ = -46.1 (*c* = 0.5, CHCl₃).

cis-**7ac**, 31.0 mg, 60% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (d, *J* = 4.8 Hz, 2H), 8.21 (d, *J* = 8.8 Hz, 1H), 7.58 (s, 1H), 7.34-7.21 (m, 4H), 7.19-7.12 (m, 2H), 6.65 (dd, *J* = 9.6, 2.4 Hz, 1H), 6.43 (s, 1H), 6.22 (dd, *J* = 9.6, 4.0 Hz, 1H), 5.43 (dd, *J* = 10.4, 6.0 Hz, 1H), 5.15-5.12 (m, 1H), 4.88 (d, *J* = 10.4 Hz, 1H), 1.17 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.3, 158.0, 154.9, 140.5, 135.8, 135.1, 132.7, 130.9, 123.0, 128.2, 128.1, 128.0, 126.9, 126.5, 125.6, 122.3, 117.5, 116.2, 115.0, 106.8, 79.3, 51.1, 39.1, 28.2.

IR (thin film): v_{max} (cm⁻¹) = 3421, 2975, 2928, 1705, 1563, 1489, 1443, 1419, 1364, 1334, 1292, 1259, 1226, 1158, 1055, 1015, 990, 944, 906, 862, 795, 775, 733, 699, 675, 645, 632.

HRMS (ESI) calcd for C₂₇H₂₅O₂N₄BrNa [M+Na]⁺: 539.1059. Found: 539.1050.

HPLC conditions: Chiralcel IG column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 0.7 mL/min, λ = 254 nm, 30 °C. t_R (minor) = 16.85 min, t_R (major) = 24.92 min, ee = 95%. [α]_D²⁹ = -74.2 (*c* = 0.2, CHCl₃).

cis-**7ad**, 27.6 mg, 61% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.79 (d, J = 4.8 Hz, 2H), 8.13 (d, J = 8.4 Hz, 1H), 7.30 (t, J = 6.0 Hz, 2H), 7.25-7.10 (m, 4H), 6.97 (d, J = 7.2 Hz, 1H), 6.66 (dd, J = 9.6, 2.4 Hz, 1H), 6.52 (s, 1H), 6.27 (dd, J = 9.6, 4.0 Hz, 1H), 5.43 (dd, J = 10.4, 6.4 Hz, 1H), 5.15 (s, 1H), 4.95 (d, J = 10.4 Hz, 1H), 2.47 (s, 3H), 1.17 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 158.3, 155.1, 138.3, 137.0, 135.4, 132.9, 130.6, 129.2, 128.8, 128.1, 128.0, 126.9, 126.5, 123.1, 122.3, 117.3, 112.0, 106.1, 79.2, 51.4, 39.0, 28.3, 18.7.

IR (thin film): v_{max} (cm⁻¹) = 2975, 2923, 1705, 1564, 1488, 1424, 1364, 1345, 1299, 1281, 1247, 1227, 1157, 1106, 1089, 1054, 1026, 907, 860, 806, 769, 728, 640, 619.

HRMS (ESI) calcd for C₂₈H₂₈O₂N₄Na [M+Na]⁺: 475.2110. Found: 475.2108.

HPLC conditions: Chiralcel AD-H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 90:10 v/v, flow rate = 0.7 mL/min, λ = 254 nm, 30 °C. t_R (major) = 11.17 min, t_R (minor) = 18.74 min, ee = 96%. [α]_D²⁹ = -33.2 (*c* = 0.5, CHCl₃).

cis-**7ae**, 26.1 mg, 55% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, *J* = 4.8 Hz, 2H), 8.29 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.26-7.21 (m, 1H), 7.21-7.16 (m, 2H), 7.11 (dd, *J* = 10.8, 7.6 Hz, 1H), 6.97 (dd, *J* = 10.8, 7.6 Hz, 1H), 6.53 (d, *J* = 9.6 Hz, 1H), 6.42 (s, 1H), 6.32 (dd, *J* = 9.6, 4.8 Hz, 1H), 5.39 (t, *J* = 8.4 Hz, 1H), 5.09 (d, *J* = 6.0 Hz, 1H), 4.94 (d, *J* = 10.0 Hz, 1H), 1.23 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.44, 158.25, 155.23, 149.85 (dd, *J* = 248, 7.4 Hz), 149.7 (dd, *J* = 248, 7.4 Hz), 137.7, 137.2, 132.4-132.3 (m), 131.22, 129.9-129.8 (m), 126.2, 123.4, 122.2, 120.2, 117.5, 115.9 (d, *J* = 18.8 Hz), 115.3 (d, *J* = 18.8 Hz), 114.4, 107.6, 79.8, 51.0, 37.9, 29.9, 28.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -138.14 (d, *J* = 20.8 Hz), -140.16 (d, *J* = 20.8 Hz).

IR (thin film): v_{max} (cm⁻¹) = 2925, 2854, 2350, 1708, 1577, 1564, 1504, 1454, 1427, 1367, 1347, 1309, 1248, 1164, 1083, 1050, 1021, 883, 806, 784, 749, 663, 637, 619.

HRMS (ESI) calcd for C₂₇H₂₄F₂N₄NaO₂ [M+Na]⁺: 497.1765. Found: 497.1763.

HPLC conditions: [Waters upc, SFC system] Chiralcel IG-3 column (4.6 mm × 250 mm), CO₂/EtOH, 80:20 v/v, flow rate = 1.0 mL/min, λ = 210 nm, 20 °C. t_R (major) = 14.46 min, t_R (minor) = 17.08 min, ee = 94%. [α]_D³⁰ = -72.1 (*c* = 0.2, CHCl₃).

cis-**7af**, 26.1 mg, 50% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) 8.74 (d, J = 4.8 Hz, 2H), 7.88 (d, J = 2.4 Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 7.32-7.21 (m, 5H), 7.19-7.10 (m, 2H), 6.85 (dd, J = 8.4, 2.4 Hz, 1H), 6.67 (d, J = 8.0 Hz, 2H), 6.61 (dd, J = 9.6, 2.4 Hz, 1H), 6.35 (s, 1H), 6.11 (dd, J = 9.6, 3.6 Hz, 1H), 5.41 (d, J = 8.8 Hz, 1H), 5.11 (dd, J = 8.8, 6.0 Hz, 1H), 4.82 (dt, J = 5.6, 2.8 Hz, 1H), 3.89 (s, 3H), 2.14 (s, 3H). The analytical data are in accordance with those of the previous report.^[12]

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 70:30 v/v, flow rate = 1.0 mL/min, λ = 254 nm, 25 °C. t_R (major) = 12.31 min, t_R (minor) = 16.44 min, ee = 91%. [α]_D²⁹ = +39.9 (*c* = 0.5, CHCl₃).

General procedure. A sealed tube with a magnetic stir bar was charged with (S_a)-**Co-4** (7.6 mg, 0.010 mmol), AgNTf₂ (7.8 mg, 0.020 mmol), Fe(OAc)₂ (8.7 mg, 0.050 mmol), **1** (0.15 mmol), **6** (24.3 mg, 0.10 mmol) and toluene (1.0 mL) under argon atmosphere. The mixture was stirred at 70 °C for 48 h. Afterwards, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 10:1 to 6:1) to afford *trans*-**7**.

trans-**7aa**, 23.2 mg, 53% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, *J* = 4.8 Hz, 2H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.30-7.25 (m, 1H), 7.23-7.18 (m, 3H), 7.15 (d, *J* = 7.6 Hz, 2H), 6.65 (d, *J* = 9.6 Hz, 1H), 6.47 (s, 1H), 6.11 (dd, *J* = 9.6, 4.4 Hz, 1H), 5.47 (d, *J* = 9.2 Hz, 1H), 5.24 (t, *J* = 7.2 Hz, 1H), 4.90 (t, *J* = 5.2 Hz, 1H), 1.35 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 158.1, 155.2, 139.3, 137.4, 135.2, 132.5, 129.14, 129.09, 128.3, 128.1, 128.0, 127.9, 126.5, 123.1, 122.0, 120.3, 117.5, 114.0, 107.0, 79.3, 53.5, 40.2, 28.5. **IR** (thin film): v_{max} (cm⁻¹) = 3041, 2974, 2928, 2246, 1704, 1562, 1489, 1452, 1423, 1346, 1259, 1158, 1054, 1016, 908, 859, 792, 728, 644, 530, 477.

HRMS (ESI) calcd for C₂₇H₂₆O₂N₄Na [M+Na]⁺: 461.1953. Found: 461.1938.

HPLC conditions: Chiralcel AD-3 column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 0.7 mL/min, λ = 254 nm, 30 °C. t_R (major) = 10.32 min, t_R (minor) = 16.41 min, ee = 82%. [α]_D³² = -167.9 (*c* = 0.5, CHCl₃).

trans-**7ab**, 25.8 mg, 57% yield, yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, J = 4.8 Hz, 2H), 8.03 (s, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.26-7.16 (m, 3H), 7.16-7.11 (m, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 9.6 Hz, 1H), 6.42 (s, 1H), 6.10 (dd, J = 9.6, 4.8 Hz, 1H), 5.49 (d, J = 9.2 Hz, 1H), 5.29-5.11 (m, 1H), 4.90-4.80 (m, 1H), 2.46 (s, 3H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 158.1, 155.2, 138.5, 137.7, 135.5, 135.2, 132.9, 132.5, 129.2, 128.3, 128.1, 127.9, 126.8, 126.5, 123.5, 119.9, 117.3, 113.9, 106.9, 79.2, 53.5, 40.1, 28.5, 22.2.

IR (thin film): v_{max} (cm⁻¹) = 2972, 2921, 1704, 1564, 1486, 1451, 1421, 1365, 1341, 1262, 1161, 1099, 1042, 1017, 909, 865, 806, 781, 761, 732, 698, 629, 597, 533, 489, 465, 438.

HRMS (ESI) calcd for C₂₈H₂₈O₂N₄Na [M+Na]⁺: 475.2110. Found: 475.2109.

HPLC conditions: Chiralcel AD-3 column (4.6 mm × 250 mm), hexane/*i*-PrOH, 90:10 v/v, flow rate = 0.7 mL/min, λ = 230 nm, 30 °C. t_R (major) = 14.63 min, t_R (minor) = 23.67 min, ee = 82%. [α]_D³² = -137.0 (*c* = 0.5, CHCl₃).

trans-**7ac**, 27.4 mg, 53% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, J = 4.8 Hz, 2H), 8.12 (d, J = 8.8 Hz, 1H), 7.54 (s, 1H), 7.32-7.27 (m, 1H), 7.25-7.17 (m, 3H), 7.14 (d, J = 7.2 Hz, 1H), 6.66 (d, J = 9.6 Hz, 1H), 6.39 (s, 1H), 6.09 (dd, J = 9.6, 4.8 Hz, 1H), 5.36 (d, J = 9.6 Hz, 1H), 5.25-5.12 (m, 1H), 4.91 (t, J = 5.2 Hz, 1H), 1.35 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.8, 155.0, 140.5, 137.7, 134.7, 132.3, 130.6, 128.4, 128.3, 128.2, 128.1, 127.9, 126.5, 125.7, 122.7, 117.6, 115.5, 115.0, 106.1, 79.2, 53.2, 40.1, 28.3.

IR (thin film): v_{max} (cm⁻¹) = 3062, 2920, 2851, 2815, 1726, 1695, 1591, 1568, 1533, 1476, 1450, 1375, 1319, 1282, 1248, 1195, 1154, 1114, 1076, 1034, 1001, 960, 905, 859, 832, 784, 767, 721, 693, 672, 649, 628.

HRMS (ESI) calcd for C₂₇H₂₅O₂N₄BrNa [M+Na]⁺: 539.1059. Found: 539.1049.

HPLC conditions: Chiralcel IG column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 0.7 mL/min, λ = 254 nm, 30 °C. t_R (major) = 17.88 min, t_R (minor) = 21.13 min, ee = 86%. [α]_D³⁰ = -169.6 (*c* = 0.8, CHCl₃).

trans-**7ad**, 24.9 mg, 55% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, J = 4.8 Hz, 2H), 8.05 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 9.6 Hz, 1H), 7.26-7.16 (m, 3H), 7.16-7.09 (m, 2H), 6.95 (d, J = 7.2 Hz, 1H), 6.64 (d, J = 9.6 Hz, 1H), 6.53 (s, 1H), 6.10 (dd, J = 9.6, 4.4 Hz, 1H), 5.55 (d, J = 9.2 Hz, 1H), 5.25 (t, J = 8.0 Hz, 1H), 4.89 (ddd, J = 6.6, 4.4, 1.6 Hz, 1H), 2.44 (s, 3H), 1.36 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 158.2, 155.3, 138.8, 137.1, 135.4, 132.6, 129.7, 129.4, 128.7, 128.2, 128.0, 127.9, 127.6, 126.5, 123.1, 122.3, 117.5, 111.4, 105.3, 79.2, 53.7, 40.1, 28.5, 18.7.

IR (thin film): v_{max} (cm⁻¹) = 2969, 2922, 2854, 1699, 1564, 1488, 1424, 1364, 1345, 1245, 1157, 1089, 1072, 1043, 1015, 988, 907, 858, 802, 768, 728, 639.

HRMS (ESI) calcd for C₂₈H₂₈O₂N₄Na [M+Na]⁺: 475.2110. Found: 475.2105.

HPLC conditions: Chiralcel AD-H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 90:10 v/v, flow rate = 0.7 mL/min, λ = 254 nm, 30 °C. t_R (major) = 15.18 min, t_R (minor) = 20.53 min, ee = 77%. [α]_D²⁷ = -270.1 (c = 0.3, CHCl₃).

trans-**7ae**, 24.2 mg, 51% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, J = 4.8 Hz, 2H), 8.25 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.25-7.18 (m, 2H), 7.16 (t, J = 7.6 Hz, 1H), 7.13-7.08 (m, 1H), 6.95 (dd, J = 10.4, 7.6 Hz, 1H), 6.54 (d, J = 9.2 Hz, 1H), 6.49 (s, 1H), 6.13 (dd, J = 9.6, 4.4 Hz, 1H), 5.64 (d, J = 9.2 Hz, 1H), 5.20 (t, J = 8.0 Hz, 1H), 4.84 (t, J = 5.6 Hz, 1H), 1.35 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.9, 155.1, 149.78 (dd, J = 247.1, 13.0 Hz), 149.55 (dd, J = 247.1, 13.0 Hz), 138.5, 137.2, 132.2-132.1 (m), 130.0, 129.2-129.1 (m), 126.2, 123.2, 122.1, 120.3, 117.4, 117.0 (d, J = 18.0 Hz), 115.0 (d, J = 18.0 Hz), 114.0, 107.1, 79.5, 53.1, 39.5, 29.7, 28.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -138.07 (d, J = 20.8 Hz), -139.89 (d, J = 20.8 Hz).

IR (thin film): v_{max} (cm⁻¹) = 2963, 2924, 1703, 1565, 1505, 1455, 1427, 1390, 1367, 1347, 1308, 1260, 1164, 1098, 1049, 1020, 883, 802, 749, 698, 682, 665, 638, 619.

HRMS (ESI) calcd for C₂₇H₂₄F₂N₄NaO₂ [M+Na]⁺: 497.1765. Found: 497.1769.

HPLC conditions: [Waters upc, SFC system] Chiralcel IG-3 column (4.6 mm × 250 mm), CO₂/EtOH, 80:20 v/v, flow rate = 1.0 mL/min, λ = 210 nm, 20 °C. t_R (major) = 13.58 min, t_R (minor) = 18.45 min, ee = 63%. [α]_D³¹ = -168.4 (*c* = 0.2, CHCl₃).

trans-**7af**, 23.0 mg, 44% yield, pale foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (d, J = 4.8 Hz, 2H), 7.97 (d, J = 6.4 Hz, 1H), 7.73-7.61 (m, 2H), 7.28 (d, J = 4.8 Hz, 1H), 7.26-7.24 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.4 Hz, 1H), 7.10-7.04 (m, 1H), 6.83 (dd, J = 8.4, 2.4 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 6.50 (dd, J = 9.6, 2.4 Hz, 1H), 6.14 (s, 1H), 5.87 (dd, J = 9.6, 2.8 Hz, 1H), 4.77 (dd, J = 12.0, 6.4 Hz, 1H), 4.52 (dt, J = 12.0, 2.8 Hz, 1H), 3.89 (s, 3H), 2.14 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.8, 157.24, 157.15, 142.5, 139.2, 137.3, 137.1, 135.7, 132.8, 131.3, 129.0, 128.3, 128.0, 127.9, 127.4, 126.4, 126.2, 123.5, 120.8, 117.9, 111.2, 107.4, 98.3, 59.6, 56.0, 39.2, 21.7.

IR (thin film): v_{max} (cm⁻¹) = 3281, 2961, 2833, 2252, 1616, 1564, 1485, 1421, 1344, 1291, 1266, 1236, 1199, 1150, 1112, 1078, 1020, 953, 906, 807, 771, 727, 687, 659, 629, 580, 547, 522, 443.

HRMS (ESI) calcd for C₃₀H₂₆N₄NaO₃S [M+Na]⁺: 545.1623. Found: 545.1615.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 70:30 v/v, flow rate = 1.0 mL/min, λ = 254 nm, 25 °C. t_R (major) = 12.61 min, t_R (minor) = 14.23 min, ee = 63%. $[\alpha]_{D}^{29}$ = -45.9 (*c* = 0.2, CHCl₃).

1.3 Gram-scale reaction and derivatization reactions

Gram-scale reaction

A 25 mL sealed tube with a magnetic stir bar was charged with (R_a)-**Co-7** (60.1 mg, 0.075 mmol), NaOPiv·H₂O (127.9 mg, 0.9 mmol), **1a** (585.6 mg, 3.0 mmol), **2a** (648.9 mg, 4.5 mmol), TFE (9.0 mL) and HFIP (3.0 mL) under argon atmosphere. The mixture was stirred at 50 °C for 48 h. Then, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (50 mL). The resulting mixture was extracted with ethyl acetate (3 × 30 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1 to 4:1) to afford *cis*-**3aa** in 97% yield and 98% ee (dr = 95:5).

Derivatization reactions

(a) Synthesis of compound 4

A 25 mL sealed tube with a magnetic stir bar was charged with *cis*-**3aa** (67.9 mg, 0.2 mmol), Pd/C (20.0 mg, palladium on activated carbon, 10% Pd basis, 0.1 equiv) and EtOAc (2 mL) under argon atmosphere. Then, the reaction mixture was exchanged with H₂ atmosphere (1 atm) and stirred at rt for 24 h. After completion (monitored by TLC), the crude reaction mixture was filtered with celite and washed with EtOAc. The solution was concentrated by rotary evaporation. After that, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1 to 4/1) to afford **4**.

4, 64.9 mg, 95% yield, yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (d, *J* = 4.8 Hz, 2H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 6.4 Hz, 1H), 7.26-7.14 (m, 6H), 6.69 (s, 1H), 5.01-4.88 (m, 1H), 4.18 (dt, *J* = 12.4, 3.2 Hz, 1H), 3.13-2.86 (m, 2H), 2.49 (qd, *J* = 12.4, 5.6 Hz, 1H), 2.20-1.99 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.5, 158.3, 141.8, 137.6, 137.3, 136.8, 130.6, 129.2, 129.1, 128.1, 126.2, 123.3, 122.2, 120.3, 117.6, 113.8, 107.2, 69.0, 39.4, 29.5, 23.1.

IR (thin film): v_{max} (cm⁻¹) = 2931, 1562, 1453, 1422, 1347, 1210, 1084, 1054, 952, 806, 740, 666, 640, 442. **HRMS** (ESI) calcd for C₂₂H₁₉ON₃Na [M+Na]⁺: 364.1426. Found: 364.1423.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 24.11 min, t_R (major) = 30.97 min, ee > 99%. [α]_D³⁴ = -506.5 (*c* = 1.0, CHCl₃).

(b) Synthesis of compound 5

A sealed tube was filled with argon. To this flask were added Pd_2dba_3 (2.4 mg, 0.0025 mmol, 2.5 mol%), SPhos (4.2 mg, 0.01 mmol, 10 mol%), *cis*-**3ia** (41.8 mg, 0.1 mmol, 1.0 equiv), PhB(OH)₂ (24.4 mg, 0.2 mmol, 2.0 equiv), Na₂CO₃ (5.3 mg, 0.05 mmol, 0.5 equiv) and toluene/EtOH/H₂O (0.75 mL/0.25 mL/0.25 mL). The reaction was sealed with Teflon plug and stirred at 80 °C for 6 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl aqueous solution (15 mL), and then extracted with EtOAc (3 × 15 mL). The combined organic fractions were dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1 to 4/1) to afford **5**.

5, 35.2 mg, 85% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (d, J = 4.8 Hz, 2H), 8.19 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.60 (dt, J = 6.4, 1.2 Hz, 2H), 7.54-7.49 (m, 1H), 7.46 (dd, J = 8.8, 2.0 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.33-7.27 (m, 4H), 7.22-7.18 (m, 1H), 6.68 (dd, J = 9.6, 1.6 Hz, 1H), 6.49 (s, 1H), 6.05 (dd, J = 9.6, 5.2 Hz, 1H), 5.65-5.57 (m, 1H), 5.41 (d, J = 7.2 Hz, 1H), 4.74 (ddd, J = 7.2, 5.2, 1.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 157.3, 142.0, 137.2, 136.6, 136.3, 135.5, 132.0, 129.6, 128.8, 128.6, 128.3, 127.9, 127.6, 127.3, 126.6, 125.9, 125.9, 122.7, 118.7, 117.6, 114.1, 109.4, 70.6, 38.8.

IR (thin film): v_{max} (cm⁻¹) = 3240, 1602, 1571, 1421, 1345, 1180.21, 1086, 1024, 791, 759, 695, 637, 579. **HRMS** (ESI) calcd for C₂₈H₂₁ON₃Na [M+Na]⁺: 438.1582. Found: 438.1586.

HPLC conditions: Chiralcel OD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 80:20 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 15.21 min, t_R (major) = 25.83 min, ee > 99%. $[\alpha]_D^{33}$ = +229.83 (*c* = 1.0, CHCl₃).

(c) Attempts to remove the pyrimidine group of the ARO products.

4, > 99% ee

8, 70% yield, > 99% ee

Eq.1: A 10 mL sealed tube with a magnetic stir bar was charged with *cis*-**3aa** (33.9 mg, 0.1 mmol), NaOEt (20.4 mg, 0.3 mmol), MeOH (0.1 mL) and DMSO (0.3 mL). Then the reaction was sealed with Teflon plug and stirred at 60 °C for 10 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl aqueous solution (15 mL), and then extracted with EtOAc (3 × 15 mL). The combined organic fractions were dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 to 10/1) to afford the aromatization product in 85% yield (27.3 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (d, J = 4.8 Hz, 2H), 8.23 (d, J = 8.4 Hz, 1H), 7.96-7.89 (m, 1H), 7.86-7.78 (m, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H)., 7.54-7.45 (m, 2H), 7.38-7.30 (m, 2H), 7.28-7.26 (m, 1H), 7.13 (t, J = 4.8 Hz, 1H), 6.95 (s, 1H). The analytical data are in accordance with those of the previous report.^[13]

<u>Eq.2</u>: A 10 mL sealed tube with a magnetic stir bar was charged with **4** (34.1 mg, 0.1 mmol), NaOEt (20.4 mg, 0.3 mmol), MeOH (0.1 mL) and DMSO (0.3 mL). Then the reaction was sealed with Teflon plug and stirred at 60 °C for 10 h. After completion (monitored by TLC), the reaction was quenched by saturated NH₄Cl aqueous solution (15 mL), and then extracted with EtOAc (3 × 15 mL). The combined organic fractions were dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1 to 6/1) to afford **8** in 70% yield (23.9 mg, pale foam).^[14]

¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.42 (d, *J* = 4.8 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.31-7.26 (m, 1H), 7.25-7.18 (m, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.11-6.96 (m, 2H), 6.81 (t, *J* = 4.8 Hz, 1H), 6.67 (d, *J* = 3.2 Hz, 1H), 6.35 (d, *J* = 2.0 Hz, 1H), 3.54 (dt, *J* = 12.4, 3.2 Hz, 1H), 3.16 (ddd, *J* = 17.2, 6.4, 3.2 Hz, 1H), 3.03 (ddd, *J* = 17.2, 10.8, 6.4 Hz, 1H), 2.75 (qd, *J* = 12.4, 6.4 Hz, 1H), 2.22-2.12 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.0, 159.3, 140.1, 137.1, 136.3, 134.8, 130.3, 129.3, 128.8, 128.1, 126.1, 121.2, 120.1, 119.5, 115.2, 110.8, 100.6, 74.9, 39.1, 28.8, 24.1.

IR (thin film): v_{max} (cm⁻¹) = 2961, 2924, 2852, 1572, 1456, 1416, 1309, 1041, 958, 800, 749, 693, 653, 636. **HRMS** (ESI) calcd for C₂₂H₁₉N₃NaO [M+Na]⁺: 364.1426. Found: 364.1420.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 90:10 v/v, flow rate = 1 mL/min, λ = 254 nm, 25 °C. t_R (minor) = 10.82 min, t_R (major) = 12.80 min, ee > 99%. [α]_D²⁹ = -70.64 (*c* = 0.5, CHCl₃).

1.4 Mechanistic experiments

(a) Deuterium-labeling experiments

B: (*R*_a)-Co-7, NaOPiv, TFE-D₃/HFIP-D₂ (v/v = 3:1), 50 °C.

Conditions A (racemic reaction):

A 10 mL sealed tube with a magnetic stir bar was charged with $Cp^*Co(CO)I_2$ (1.2 mg, 0.0025 mmol), CsOAc (3.0 mg, 0.015 mmol), **1a** (10.0 mg, 0.05 mmol), TFE-D₃ (0.3 mL) under argon atmosphere. The resulting mixture was stirred at 50 °C for 18 h. Then, the mixture was cooled to room temperature and diluted with EtOAc (25 mL), and filtered through a celite pad. The filter cake was washed with EtOAc (30 mL) and the combined filtrate was washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The deuterated ratio was calculated based on ¹H NMR analysis of the crude mixture.

Supplementary Fig. 1 ¹H NMR spectrum for deuterium-labeling experiment

Conditions B (enantioselective reaction):

To a 10 mL sealed tube with a magnetic stir bar was charged with (R_a)-**Co-7** (2.4 mg, 0.0025 mmol), NaOPiv·H₂O (2.2 mg, 0.015 mmol), **1a** (10.0 mg, 0.05 mmol), TFE-D₃ (0.3 mL) and HFIP-D₂ (0.1 mL) under argon atmosphere. The resulting mixture was stirred at 50 °C for 18 h. Then, the mixture was cooled to room temperature and diluted with EtOAc (25 mL), and filtered through a celite pad. The filter cake was washed with EtOAc (30 mL) and the combined filtrate was washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The deuterated ratio was calculated based on ¹H NMR analysis of the crude mixture.

Supplementary Fig. 2 ¹H NMR spectrum for deuterium-labeling experiment

(b) Intermolecular kinetic isotope effect of 2-pyrimidyl indole

Racemic reaction:

To a 10 mL sealed tube with a magnetic stir bar was charged with Cp^{*}Co(CO)I₂ (2.4 mg, 0.005 mmol), CsOAc (5.8 mg, 0.03 mmol), **1a** or **1a-D** (19.5 mg, 0.10 mmol), **2a** (21.6 mg, 0.15 mmol) and TFE (0.5 mL) under argon atmosphere. The resulting mixture was stirred at 50 °C. For each 30 min, 50 μ L of the reaction mixture was transferred to a short pad of silica gel and washed with ethyl acetate. The solvent was evaporated, and analyzed by ¹H NMR using dibromomethane as an internal standard. The KIE value (*k*_H/*k*_D) was calculated to be 1.3 based on the initial reaction rates.

Supplementary Fig. 3 Initial rate of the reaction of 1a with 2a

Supplementary Fig. 4 Initial rate of the reaction of 1a-D with 2a

Enantioselective reaction:

To a 10 mL sealed tube with a magnetic stir bar was charged with (R_a)-**Co-7** (4.0 mg, 0.005 mmol), NaOPiv·H₂O (4.4 mg, 0.03 mmol), **1a** or **1a-D** (19.5 mg, 0.10 mmol), **2a** (21.6 mg, 0.15 mmol), TFE (0.3 mL) and HFIP (0.1 mL) under argon atmosphere. The resulting mixture was stirred at 50 °C. For each 30 min, 50 µL of the reaction mixture was transferred to a short pad of silica gel and washed with ethyl acetate. The solvent was evaporated, and analyzed by ¹H NMR using dibromomethane as an internal standard. The KIE value (k_H/k_D) was calculated to be 1.1 based on the initial reaction rates.

Supplementary Fig. 5 Initial rate of the reaction of 1a with 2a

Supplementary Fig. 6 Initial rate of the reaction of 1a-D with 2a

(c) ¹³C KIE Determination

Reference reaction

A sealed tube with a magnetic stir bar was charged with (R_a)-**Co-7** (20.0 mg, 0.025 mmol), NaOPiv·H₂O (44.0 mg, 0.3 mmol), **1a** (195.2 mg, 1.0 mmol), **2** (259.6 mg, 1.5 mmol), TFE (3.0 mL) and HFIP (1.0 mL) under argon atmosphere. The mixture was stirred at 50 °C for 25 h. Then, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (50 mL). The resulting mixture was extracted with ethyl acetate (3 × 25 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1 to 4:1) to afford *cis*-**3aa** (310.8 mg, 91% yield). A sample of *cis*-**3aa** (150 mg) was subjected to quantitative ¹³C NMR analysis.

Low conversion reaction procedure

A sealed tube with a magnetic stir bar was charged with (R_a)-Co-7 (60.1 mg, 0.075 mmol), NaOPiv·H₂O (127.9 mg, 0.9 mmol), **1a** (585.6 mg, 3.0 mmol), **2a** (648.9 mg, 4.5 mmol), TFE (9.0 mL) and HFIP (3.0 mL) under argon atmosphere. The mixture was stirred at 50 °C. Then, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (50 mL). The resulting mixture was extracted with ethyl acetate (3 × 25 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. All the volatiles were evaporated under reduced pressure. Two parallel experiments were performed at the conversions (of **1a**) of 25% (for 2.3 h) and 12% (for 1.0 h) monitored by ¹H NMR. The remaining residues were purified by column chromatography on silica gel (hexanes/ethyl acetate = 8:1 to 4:1) to afford *cis*-**3aa**. The samples of *cis*-**3aa** (120 mg) were subjected to quantitative ¹³C NMR analysis.

NMR Measurements

Pure samples of *cis*-**3aa** were individually analyzed by ¹³C NMR spectroscopy, following the protocol of Singleton. The ¹³C NMR spectra were acquired on a Bruker Avance III 600 MHz spectrometer (150 MHz, CDCl₃) at 28 °C with inverse-gated decoupling and calibrated $2\pi/9$ pulses, collecting a total of 512k points. T1 values were determined prior to the acquisitions, and delays of 120 s (120 s > 5 × T1) were utilized between pulses. Five independent acquisitions were obtained for each sample (~19 h acquisition time). Each spectrum was manually integrated three times with a 0th order baseline correction and phase correction.

Results

Carbon-13 KIEs (K_P) were determined from the analysis of the spectra of *cis*-**3aa** via quantitative measurements of ¹³C peak intensities obtained from peak deconvolution and were calculated using the formula^[3] shown below.

$$K_P = \frac{\ln(1-F)}{\ln\left(1-F\left(\frac{R_P}{R_0}\right)\right)}$$

Where *F* represents the fractional conversion of starting material to product and R represents the carbon peak intensity ratios of the target carbon versus the reference carbon peak (C4 in all cases). R_P is the peak ratio for *cis*-**3aa** at low conversion and R₀ is the peak ratio for the fully converted *cis*-**3aa**.

nontary rubic ri	O Tranetio 1900			0.20)
Entry	Carbon	R ₀	R_P	R_P/R_0	¹³ C KIE
1	3	104.5221	102.4338	0.9800205	1.023(5)
2	2	103.3009	102.4946	0.9921946	1.009(2)
3	1	100.4979	100.5780	1.0007970	0.999(1)
4	5	102.8170	102.6153	0.9980383	1.002(3)
5	4	100.0000	100.0000	1	1.000

Supplementary Table 1. ¹³C Kinetic isotope effects sample 1. 25% conversion (F = 0.25)

Supplementary Table 2. ¹³C Kinetic isotope Effects sample 2. 12% conversion (*F* = 0.12)

Entry	Carbon	R ₀	R _P	R_P/R_0	¹³ C KIE
1	3	104.5221	101.9446	0.9753401	1.027(0)
2	2	103.3009	101.8309	0.9857697	1.015(4)
3	1	100.4979	100.1539	0.9965770	1.003(7)
4	5	102.8170	102.6600	0.9984730	1.001(7)
5	4	100.0000	100.0000	1	1.000

Supplementary Table 3. ¹³C Kinetic isotope effects average of the 2 samples.

Entry	Carbon	KIE 1	KIE 2	Average
1	3	1.023(5)	1.027(0)	1.025(3)
2	2	1.009(2)	1.015(4)	1.012(3)
3	1	0.999(1)	1.003(7)	1.001(4)
4	5	1.002(3)	1.001(7)	1.002(0)
5	4	1.000	1.000	1.000

1.5 Control experiment

(a) Rh-based catalysts are not effective in the current ARO reactions of 7-oxabenzonorbornadienes

The reactions between <u>7-oxabenzonorbornadiene</u> and indole were conducted under the optimized conditions of Li's work (Conditions 1 and 2. Ref. *Angew. Chem. Int. Ed.* **2019**, *58*, 322-326). *Cis*-**3aa** was not detected, and **1a** and **2a** were recovered. Besides, under our optimized conditions, when the Cp^xCo was replaced by Cp^xRh (Conditions 3), the reaction did not occur either. These results demonstrated that the cobalt catalysts exhibit unique reactivity for ARO of 7-oxabenzonorbornadiene.

<u>Conditions 1</u>: A 10 mL sealed tube with a magnetic stir bar was charged with **1a** (78.1 mg, 0.40 mmol), **2a** (28.8 mg, 0.20 mmol), [Cp^xRh] (7.6 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.020 mmol), Ag₂SO₄ (93.5 mg, 0.30 mmol), toluene (4.0 mL) under argon atmosphere. The resulting mixture was stirred at 60 °C for 14 h. Then, the mixture was cooled to room temperature and diluted with EtOAc (25 mL), and filtered through a celite pad. The filter cake was washed with EtOAc (30 mL) and the combined filtrate was washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. Then the crude mixture was subjected to ¹H NMR analysis. **1a** and **2a** were recovered by column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 to 20/1).

<u>Conditions 2</u>: A 10 mL sealed tube with a magnetic stir bar was charged with **1a** (58.6 mg, 0.30 mmol), **2a** (28.8 mg, 0.20 mmol), [Cp^xRh] (7.6 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.020 mmol), AgOAc (66.8 mg, 0.40 mmol), toluene (4.0 mL) under argon atmosphere. The resulting mixture was stirred at 60 °C for 14 h. Then, the mixture was cooled to room temperature and diluted with EtOAc (25 mL), and filtered through a celite pad. The filter cake was washed with EtOAc (30 mL) and the combined filtrate was washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. TLC indicated that no reaction occurred.

<u>Conditions 3</u>: A sealed tube with a magnetic stir bar was charged with **1a** (19.5 mg, 0.1 mmol), **2a** (21.6 mg, 0.15 mmol), [Cp^{*}Rh] (3.8 mg, 0.0025 mmol), NaOPiv·H₂O (4.4 mg, 0.030 mmol), TFE (0.3 mL) and HFIP (0.1 mL) under argon atmosphere. The mixture was stirred at 50 °C for 18 h. Afterwards, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. TLC indicated that no reaction occurred.

cis-3aa, 95:5 dr

(b) No post-coupling interconversion exits between the cis- and trans-products

The model reactions yielding *cis*-**3aa** and *trans*-**3aa** were conducted respectively (Supplementary Scheme 1a). Then the cis-3aa and trans-3aa were isolated in high yields with good diastereoselectivity (cis-3aa, 98% yield, 95:5 dr; trans-3aa, 95% yield, 90:10 dr). After that, cis-3aa or trans-3aa was tested under the conditions of trans (conditions A) or cis (conditions B), respectively. In both cases, 3aa was mainly recovered with no change of their dr ratios (Supplementary Scheme 1b and Figure S7).

95% recovery, 95:5 dr 96% recovery, 90:10 dr Supplementary Scheme 1. Control experiments, shown that no post-coupling interconversion exits between the cis- and trans-products. Conditions A: Cp^{*}Co(Co)I₂ (0.005 mmol), CsOAc (0.03 mmol) in TFE (0.5 mL) at 50 °C for 10 h. Conditions B: (R_a)-Co-7 (0.005 mmol), NaOPiv·H₂O (0.03 mmol) in TFE (0.3 mL) and HFIP (0.1 mL) at 50 °C for 12 h.

trans-3aa

cis-3aa

Investigation of cis-3aa under Conditions A (Supplementary Scheme 1b, left): A sealed tube with a magnetic stir bar was charged with *cis*-3aa (34.0 mg, 0.10 mmol), Cp Co(Co)I₂ (2.4 mg, 0.005 mmol), CsOAc (5.8 mg, 0.03 mmol), TFE (0.5 mL) under argon atmosphere. The mixture was stirred at 50 °C for 10 h. Afterwards, the mixture was cooled to room temperature and quenched by saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. Then the crude mixture was subjected to ¹H NMR analysis. And cis-3aa was recovered by column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1).

Investigation of trans-3aa under Conditions B (Supplementary Scheme 1b, right): A sealed tube with a magnetic stir bar was charged with trans-3aa (34.1 mg, 0.10 mmol), (Ra)-Co-7 (4.0 mg, 0.005 mmol), NaOPiv·H₂O (4.4 mg, 0.03 mmol), TFE (0.3 mL) and HFIP (0.1 mL) under argon atmosphere. The mixture was stirred at 50 °C for 12 h. Afterwards, the mixture was cooled to room temperature and guenched by saturated NH₄Cl agueous solution (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and filtered. Then the crude mixture was subjected to ¹H NMR analysis. And trans-3aa was recovered by column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1).

Supplementary Fig. 7 ¹H NMR spectra of the crude mixtures (control experiments). Conditions A: Cp^{*}Co(Co)I₂ (0.005 mmol), CsOAc (0.03 mmol) in TFE (0.5 mL) at 50 °C for 10 h. Conditions B: (R_a)-Co-7 (0.005 mmol), NaOPiv·H₂O (0.03 mmol) in TFE (0.3 mL) and HFIP (0.1 mL) at 50 °C for 12 h.

1.6 X-Ray crystal structures

(a) X-ray crystal structure of trans-3da

Supplementary Fig. 8 The X-ray crystal structure of enantiopure *trans*-**3da** with thermal ellipsoids at the 30% probability level (CCDC: 2164324).

Supplementary Table 4. Crystal data and structure refinement for mj21175_0m.

Identification code	mj21175_0m		
Empirical formula	C23 H19 N3 O		
Formula weight	353.41		
Temperature	173.01 K		
Wavelength	1.34139 Å		
Crystal system	Monoclinic		
Space group	C 1 2/c 1		
Unit cell dimensions	a = 26.557(3) Å	α = 90°.	
	b = 7.0049(9) Å	$\beta = 107.253(7)^{\circ}.$	
	c = 20.726(3) Å	γ = 90°.	
Volume	3682.0(8) Å ³		
Z	8		
Density (calculated)	1.275 Mg/m ³		
Absorption coefficient	0.405 mm ⁻¹		
F(000)	1488		
Crystal size	0.05 x 0.03 x 0.01 mm ³		
Theta range for data collection	3.886 to 55.119°.		
Index ranges	-32<=h<=32, -8<=k<=7, -25<=l<=20		
Reflections collected	15700		
Independent reflections	3519 [R(int) = 0.0893]		
Completeness to theta = 53.594°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7508 and 0.3677		
Refinement method	Full-matrix least-squares on F ²		

Data / restraints / parameters	3519 / 0 / 246
Goodness-of-fit on F ²	1.066
Final R indices [I>2sigma(I)]	R1 = 0.0841, wR2 = 0.2277
R indices (all data)	R1 = 0.1280, wR2 = 0.2665
Extinction coefficient	n/a
Largest diff. peak and hole	0.505 and -0.278 e.Å ⁻³

(b) X-ray crystal structure of enantiopure cis-3da

Supplementary Fig. 9 The X-ray crystal structure of enantiopure *cis*-**3da** with thermal ellipsoids at the 30% probability level (CCDC: 2164323).

Supplementary Table 5. Crystal data and structure refinement for mj21150_0m.

Identification code	mj21150_0m		
Empirical formula	C23 H19 N3 O		
Formula weight	353.41		
Temperature	173.01 K		
Wavelength	1.34139 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 7.0927(2) Å	$\alpha = 90^{\circ}.$	
	b = 13.5847(3) Å	$\beta = 90^{\circ}.$	
	c = 18.5402(5) Å	$\gamma = 90^{\circ}.$	
Volume	1786.39(8) Å ³		
Z	4		
Density (calculated)	1.314 Mg/m ³		
Absorption coefficient	0.418 mm ⁻¹		
F(000)	744		
Crystal size	0.1 x 0.08 x 0.05 mm ³		
Theta range for data collection	5.025 to 55.035°.		
Index ranges	-8<=h<=7, -16<=k<=16, -22<=l<=22		
Reflections collected	20323		
Independent reflections	3404 [R(int) = 0.0540]		
Completeness to theta = 53.594°	99.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7508 and 0.5671		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3404 / 0 / 246		
Goodness-of-fit on F ²	1.052		
Final R indices [I>2sigma(I)]	R1 = 0.0304, wR2 = 0.0760		

R indices (all data)	R1 = 0.0315, wR2 = 0.0769
Absolute structure parameter	0.06(12)
Extinction coefficient	n/a
Largest diff. peak and hole	0.122 and -0.152 e.Å ⁻³

(c) X-ray crystal structure of enantiopure trans-7ab'

<u>Conditions 1:</u> A 4 mL vial with a magnetic stir bar was charged with *trans*-**7ab** (49.2 mg, 95:5 dr, >99% ee, 0.11 mmol) and HCl (2.0 mL, 4 mol/L in dioxane). The resulting mixture was stirred at room temperature for overnight. The reaction mixture was quenched by saturated Na₂CO₃ aqueous solution (30 mL). The resulting mixture was extracted with DCM (3 × 15 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated, giving the amine as white solid used in the next step without further purification.

<u>Conditions 2:</u> A 10 mL round-bottomed flask with a magnetic stir bar was charged with aforementioned amine (35.2 mg), *p*-toluenesulfonyl chloride (TsCl, 22.9 mg, 0.12 mmol), Et₃N (83 μ L, 0.60 mmol), DMAP (12.0 mg, 0.10 mmol) and DCM (2.0 mL). The resulting mixture was stirred at room temperature for 12 h. After the reaction was complete, the solvent was removed by a rotary evaporator. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1 to 4/1) to afford *trans*-**7ab'** (45.6 mg, 88% yield over two steps).

trans-**7ab**', white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (d, *J* = 4.8 Hz, 2H), 8.06 (d, *J* = 6.4 Hz, 1H), 7.83 (s, 1H), 7.72 (d, *J* = 7.2 Hz, 1H), 7.28 (t, *J* = 5.2 Hz, 2H), 7.26-7.23 (m, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 1H), 7.10-7.04 (m, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 2H), 6.50 (dd, *J* = 9.6, 2.4 Hz, 1H), 6.16 (s, 1H), 5.88 (dd, *J* = 9.6, 2.8 Hz, 1H), 4.78 (dd, *J* = 12.0, 6.4 Hz, 1H), 4.49 (dt, *J* = 12.0, 2.8 Hz, 1H), 2.50 (s, 3H), 2.12 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.8, 157.1, 142.4, 139.6, 137.2, 136.7, 135.7, 133.1, 132.9, 131.2, 129.0, 128.3, 128.0, 127.97, 127.3, 127.1, 126.3, 126.1, 123.8, 120.1, 117.9, 113.4, 107.4, 59.7, 39.1, 22.2, 21.7. **IR** (thin film): v_{max} (cm⁻¹) = 2955, 2919, 2850, 1732, 1645, 1564, 1486, 1425, 1379, 1332, 1261, 1185, 1155, 1118, 1092, 1021, 955, 915, 872, 809, 758, 725, 697, 663.

HRMS (ESI) calcd for C₃₀H₂₆O₂N₄SNa [M+Na]⁺: 529.1674. Found: 529.1663.

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 70:30 v/v, flow rate = 1.0 mL/min, λ = 254 nm, 25 °C. t_R (major) = 10.35 min, t_R (minor) = 14.45 min, ee > 99%. [α]_D³³ = -97.1 (*c* = 0.1, CHCl₃).

Supplementary Fig. 10 The X-ray crystal structure of enantiopure *trans*-**7ab**' with thermal ellipsoids at the 30% probability level (CCDC: 2208797).

Supplementary Table 6. Crystal data and structure refinement for mj22376_0m.

Identification code	mj22376_0m
Empirical formula	C30 H26 N4 O2 S

Formula weight	506.61	
Temperature	213.00 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 10.7690(3) Å	a= 90°.
	b = 12.6152(3) Å	b= 118.946(2)°.
	c = 11.0758(3) Å	g = 90°.
Volume	1316.71(6) Å ³	
Z	2	
Density (calculated)	1.278 Mg/m ³	
Absorption coefficient	0.888 mm ⁻¹	
F(000)	532	
Crystal size	0.07 x 0.07 x 0.05 mm ³	
Theta range for data collection	4.090 to 55.015°.	
Index ranges	-12<=h<=13, -15<=k<=15, -13<=l<=13	
Reflections collected	19336	
Independent reflections	4984 [R(int) = 0.0595]	
Completeness to theta = 53.594°	99.7 %	
Absorption correction	Semi-empirical from equival	ents
Max. and min. transmission	0.7508 and 0.5495	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	4984 / 1 / 336	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0506, wR2 = 0.1222	
R indices (all data)	R1 = 0.0756, wR2 = 0.1360	
Absolute structure parameter	0.044(13)	
Extinction coefficient	n/a	
Largest diff. peak and hole 0.639 and -0.376 e	ə.Å ⁻³	
1.7 Absolute configuration of cis-7

(a) Reported results (Ref. [12], Angew. Chem. Int. Ed. 2019, 58, 322-326).

In Ref. [12], HPLC conditions: Chiralcel AD–H, hexane/*i*-PrOH, 70:30 v/v, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C. t_R (minor) = 10.43 min, t_R (major) = 12.73 min, ee = 90%. [α]_D²⁰ = -98.07 (*c* = 0.2, CH₂Cl₂).

(b) Conditions in this work for the synthesis of *cis*-7gb.

cis-**7gb**, 27.2 mg, 52% yield, pale yellow foam. ¹**H NMR** (400 MHz, CDCl₃) 8.74 (d, J = 4.8 Hz, 2H), 7.88 (d, J = 2.4 Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 7.32-7.21 (m, 5H), 7.19-7.10 (m, 2H), 6.85 (dd, J = 8.4, 2.4 Hz, 1H), 6.67 (d, J = 8.0 Hz, 2H), 6.61 (dd, J = 9.6, 2.4 Hz, 1H), 6.35 (s, 1H), 6.11 (dd, J = 9.6, 3.6 Hz, 1H), 5.41 (d, J = 8.8 Hz, 1H), 5.11 (dd, J = 8.8, 6.0 Hz, 1H), 4.82 (dt, J = 5.6, 2.8 Hz, 1H), 3.89 (s, 3H), 2.14 (s, 3H). The analytical data is in accordance with the previous report.^[12]

HPLC conditions: Chiralcel AD–H column (4.6 mm × 250 mm), hexane/*i*-PrOH, 70:30 v/v, flow rate = 1.0 mL/min, λ = 254 nm, 25 °C. t_R (major) = 12.31 min, t_R (minor) = 16.44 min, ee = 91%. [α]_D²⁶ = +97.5 (*c* = 0.2, CH₂Cl₂).

1.8 Computational calculations

Computational methods.

All the computational works were performed with Gaussian16^[4] or ORCA 4.1.0 packages.^[5] DFT calculations were carried out using the B3LYP-D3(BJ) functional^[6] including the D3 version of Grimme's empirical dispersion correction with Becke–Johnson damping.^[7] The def2-SVP basis sets^[8] were applied for all atoms. Optimizations were conducted without any constraint in gas phase. Frequency analyses were carried out to confirm each structure being a minimum (no imaginary frequency) or a transition state (only one imaginary frequency). Single-point calculations with RI-PWPB95-D3(BJ) method and def2-TZVPP basis sets (with auxiliary basis sets def2-TZVPP/C^[9] and def2/JK^[10]) were performed using the geometries obtained at the B3LYP-D3(BJ)/def2-SVP level of theory. The calculated structures were visualized with VMD 1.9.3.^[11]

Reaction pathway involving chiral CpCo catalyst. The reaction of N-pyrimidinylindole (1a) and 7oxabenzonorbornadiene (2a) catalyzed by the chiral CpCo complex with pivalate anion was considered (Figure S12). The cationic Co-complex with **1a** was set as zero-point of the potential energy surface (**INT-0**, 0.0 kcal/mol). In this complex, **1a** was coordinated to the Co center with the nitrogen atom of the pyrimidine moiety. The indole C-H cleavage proceeded via a well-recognized six-membered-ring concerted metallation deprotonation (CMD) transition state **TS-1** (8.8 kcal/mol). The Co–C bond formation [B(Co-C) = 2.03 Å] and the concomitant proton transfer to the ligated pivalate anion [B(C1-H) = 1.24 Å and B(O2-H) = 1.41 Å] gave rise to the cyclometallated intermediate INT-1 (-3.9 kcal/mol). Then, the pivalic acid was replaced by 2a, leading to intermediate INT-2 (0.5 kcal/mol) in which a hydrogen bond was formed between the pivalic acid and the oxygen atom of 2a. Subsequently, the migratory insertion of the Co-C bond into the olefin moiety of 2a proceeded via transition state TS-2 (6.4 kcal/mol), which yielded intermediate INT-3 (2.6 kcal/mol). The following β -oxygen elimination was the enantioselectivity and diastereoselectivity-determining step of the whole reaction. Among the transition states leading to all possible isomers (Figure S12), the one corresponding to the generation of (1S,2R)-cis-3aa was energetically the most favorable [TS-cis-SR, 13.7 kcal/mol, named as TS-cis-SR in the main text], which well reproduced the predominate formation of this isomer experimentally. Notably, its energy was much higher than those of TS-1 and TS-2, thus making the previous C-H cleavage and olefin insertion steps reversible, which was consistent with the deuterium-labelling experiment. Meanwhile, this C=C and Co-O bond-formation process was highly exergonic, leading to INT-4 with rather low energy (-22.1 kcal/mol) and the irreversibly established of the chirality of product. On the contrary, the transition state leading to the opposite enantiomer (1R,2S)-cis-3aa was also located [TS-3-cis-RS, 21.8 kcal/mol, named as TS-cis-RS in the main text], whose energy was much higher than that of TS-3-cis-SR by 8.1 kcal/mol. Stronger steric repulsion was observed for TS-3-cis-RS, which was exemplified by short H–H distances (less than 2.20 Å) between 7-oxabenzonorbornadiene and the tert-butyl group of the catalyst. On the other hand, the energies of the transition states for the formation of the other diastereoisomers of the products (trans-3aa) are even higher [TS-3-trans-RR, 21.5 kcal/mol and TS-3-trans-SS, 22.3 kcal/mol]. Higher degree of charge separation was observed in these two transition states compared with those in TS-cis-SR and TS-3-cis-RS because the Co-O interaction was absence in TS-3-trans-RR and TS-3trans-SS.

Supplementary Fig. 11 The profile of the alternative reaction pathway involving chiral CpCo catalyst calculated at the PWPB95-D3(BJ)/def2-TZVPP (SMD, TFE)//B3LYP-D3(BJ)/def2-SVP (gas) level of theory. The relative Gibbs free energies (ΔG_{sol}) are in kcal/mol. The distances of forming/cleaving bonds are in Å.

13.7 kcal/mol

TS-3-*trans*-RR 21.5 kcal/mol

TS-3-*trans*-SS 22.3 kcal/mol

21.8 kcal/mol

Supplementary Fig. 12 Optimized structures of key β -oxygen elimination transition states. Calculated at the PWPB95-D3(BJ)/def2-TZVPP (SMD, TFE)//B3LYP-D3(BJ)/def2-SVP (gas) level of theory. The cyclopentadienyl ligands are presented in the van der Waals model. The cobalt center and the substrates are shown in the ball-and-stick model. The relative Gibbs free energies (ΔG_{sol}) are represented in kcal/mol. The bond distances are presented in Å.

Reaction pathway involving Cp*Co(CO)I₂ as the catalyst. When Cp*Co(CO)I₂ was employed as the catalyst, racemic *trans*-**3aa** became the major product (10:90 *trans/cis*, entry1 in Table 1 in the main text). The energy profile for the reaction between **1a** and **2a** catalyzed by the Cp*Co catalyst was considered (Figure S13). Starting from complex **INT-0'**(0.0 kcal/mol), the C–H activation of **1a** proceeded via transition state **TS-1'** (12.8 kcal/mol) in which

an acetate anion worked as the internal base [B(C1–H) = 1.24 Å and B(O1–H) = 1.39 Å], leading to cyclometallated complex **INT-1'** (2.6 kcal/mol). The formed acetic acid was next replaced by **2a** via *endo*- or *exo*-coordination to yield intermediates **INT-2'-***trans* (10.5 kcal/mol) or **INT-2'-***cis* (-1.4 kcal/mol). In both cases, a hydrogen bond was formed between the acetic acid and **2a**. Migratory insertion of C–Co bond into the olefin moiety of **2a** proceeded via transition states **TS-2'-***trans* (19.3 kcal/mol) or **TS-2'-***cis* (8.8 kcal/mol) in which the Co center was located in the opposite or the same side of the oxygen bridge in **2a**. It should be mentioned that the Cp* ligand is sterically less hindered compared with the chiral Cp ligand used in the enantioselective reaction. Thus, an additional acetate anion could coordinate to the Co center in the following *anti*- β -oxygen elimination transition state [**TS-3'-***trans*, 19.4 kcal/mol, named as **TS-***trans* energetically more favorable than the transition state of *cis*- β -oxygen elimination [**TS-3'-***cis*, 22.6 kcal/mol, named as **TS-***cis*-*rac* in the main text]. Finally, *trans*-**3aa** was released from intermediate **INT-5'***trans* (-5.5 kcal/mol).

Supplementary Fig. 13 The profile of the alternative reaction pathway involving Cp*Co(CO)I₂ catalyst calculated at the PWPB95-D3(BJ)/def2-TZVPP (SMD, TFE)//B3LYP-D3(BJ)/def2-SVP (gas) level of theory. The relative Gibbs free energies (ΔG_{sol}) are in kcal/mol. The distances of forming/cleaving bonds are in Å.

1.9 Copies of NMR spectra

Supplementary Fig. 14 ¹H NMR Spectrum of trans-3aa

Supplementary Fig. 15 ¹³C NMR Spectrum of trans-3aa

Supplementary Fig. 16 ¹H NMR Spectrum of cis-3aa

S44

Supplementary Fig. 18 ¹H NMR Spectrum of cis-3ba

S46

Supplementary Fig. 20 ¹H NMR Spectrum of cis-3ca

-0.5

-1.0

7

--1000

-1000

-20.00

-30.00

-40.00

Supplementary Fig. 22 ¹H NMR Spectrum of cis-3da 11.0 10. . СП 10.0 9 . СП 9.0 오 2.11-1 8. 5 8.0 1.00 / 1.07_{~1} 7.5 3.05 1.02 1.00 7.0 1.04 Ja 6 1.12 J 1.00 J . Сп 6.0 1.07 J 1.02 1.07 ¥ μı Ċ1 f 5.0 1 (ppm) 1.11-1 4.5 4.0 3.5 5 3.0 2 3.24-I . Сп 2.0 1.5 1.0 0.5 0.0

-8.87

-8.86 8.86

-8.85

8.84

-7.93 -7.52

7.51

7.51 7.50

7.32 7.31

7.30 -7.30

7.30

7.29

7.28

-7.28

-7.26 -7.25

7.24

7.23 -7.20

7.19

7.19

7.18

7.18

-7.17 6.99

-6.99 -6.98

6.97 -6.97

-6.66 -6.66 -6.64

-6.63 6.40

-6.40 -6.04

-6.03 -6.02

-6.01 -5.38

-5.37 -5.36 -5.35

4.67 4.67

4.66 2.45

2.45 1.22

1.22 L0.01

-18000

-17000

-14000

15000

16000

-13000

-8000

-90.00

-10000

-11000

-12000

-60.00

-50.00

-7000

Supplementary Fig. 24 ¹H NMR Spectrum of cis-3ea

Supplementary Fig. 25 ¹³C NMR Spectrum of cis-3ea

Supplementary Fig. 26 ¹H NMR Spectrum of cis-3fa

Supplementary Fig. 27 ¹³C NMR Spectrum of *cis*-3fa

11.0 10.5 MeO 10.0 9 . СП ₂ż 9 $<^{8.84}_{8.83}$ Ŷ 0 2.00-1 8. 5 7.75 00 -7.74 0 0.91~ -7.52 0.97 7.5 -7.51 1.04 1.97 -7.51 -7.50 7.0 1.01 -7.31 Ŧ 0.98 -7.30 6.5 0.95-1.05--7.29 -7.29 6.0 0.93년 7.29 0.98 -7.28 0.87 J ូ ភ 7.26 0.97 A -7.24 fl 5.0 1 (ppm) -7.22 7.21 1.05-4 ت -7.19 -7.18 7.18 4.0 -7.18 3.04-x -7.17 .ω 5 -6.83 -6.82 3.0 -6.81 -6.80 2.5 -6.65 -6.63 2 -6.63 0 -6.38 1.5 -6.04 -6.02 -6.01 1.0 -6.00 -5.37 0 -5.36 Ċ1 -5.35 0.0 -5.35 -4.71 -0.5 -4.70 4.69 -1.0 -4.69 4.68 3.83 7 -5000 -20 000 -25 000 -30000 -35000 -40000-50.000 -55000 -60.000 -65000 -10000 -45000 -70000 -15000 -5000 -75000

Supplementary Fig. 28 ¹H NMR Spectrum of cis-3ga

Supplementary Fig. 29 ¹³C NMR Spectrum of cis-3ga

Supplementary Fig. 30 ¹H NMR Spectrum of *cis*-3ha

Supplementary Fig. 31 ¹³C NMR Spectrum of cis-3ha

Supplementary Fig. 32 ¹H NMR Spectrum of *cis*-3ia

Supplementary Fig. 33 ¹³C NMR Spectrum of cis-3ia

Supplementary Fig. 34 ¹H NMR Spectrum of cis-3ja

Supplementary Fig. 35 ¹³C NMR Spectrum of cis-3ja

Supplementary Fig. 36 ¹H NMR Spectrum of cis-3ka

Supplementary Fig. 37 ¹³C NMR Spectrum of cis-3ka

Supplementary Fig. 38 ¹H NMR Spectrum of cis-3la

Supplementary Fig. 39 ¹³C NMR Spectrum of cis-3la

Supplementary Fig. 40 ¹⁹F NMR Spectrum of cis-3la

Supplementary Fig. 41 ¹H NMR Spectrum of cis-3ma

Supplementary Fig. 42 ¹³C NMR Spectrum of cis-3ma

Supplementary Fig. 43 ¹⁹F NMR Spectrum of cis-3ma

Supplementary Fig. 44 ¹H NMR Spectrum of cis-3na

Supplementary Fig. 45 ¹³C NMR Spectrum of *cis*-3na

Supplementary Fig. 46 ¹H NMR Spectrum of cis-3oa

Supplementary Fig. 47 ¹³C NMR Spectrum of cis-3oa

Supplementary Fig. 48 ¹H NMR Spectrum of cis-3pa

Supplementary Fig. 49 ¹³C NMR Spectrum of cis-3pa

Supplementary Fig. 50 ¹H NMR Spectrum of cis-3qa

Supplementary Fig. 51 ¹³C NMR Spectrum of *cis*-3qa

Supplementary Fig. 52 ¹H NMR Spectrum of cis-3ra

Supplementary Fig. 53 ¹³C NMR Spectrum of *cis*-3ra

Supplementary Fig. 54 ¹⁹F NMR Spectrum of cis-3ra

Supplementary Fig. 55 ¹H NMR Spectrum of cis-3sa

Supplementary Fig. 56 ¹³C NMR Spectrum of cis-3sa

Supplementary Fig. 57 ¹H NMR Spectrum of cis-3ta

Supplementary Fig. 58 ¹³C NMR Spectrum of cis-3ta

Supplementary Fig. 59 ¹H NMR Spectrum of cis-3ua

Supplementary Fig. 60 ¹³C NMR Spectrum of cis-3ua

Supplementary Fig. 61 ¹H NMR Spectrum of *cis*-3va

Supplementary Fig. 62 ¹³C NMR Spectrum of cis-3va

Supplementary Fig. 64 ¹³C NMR Spectrum of *cis-*3wa

Supplementary Fig. 65 ¹H NMR Spectrum of cis-3ab

Supplementary Fig. 67 ¹H NMR Spectrum of cis-3ac

Supplementary Fig. 68 ¹³C NMR Spectrum of *cis*-3ac

Supplementary Fig. 69 ¹H NMR Spectrum of cis-3ad

230 220 210200 임 190 158.56 157.12 180 151.59 -151.46 170 -150.93 150.80 160 -149.12 -148.99 150-148.48 -148.35 140-137.17 -135.22 ∿133.60 130129.68 -129.65 120 -129.11 0 110 f1 (ppm) -128.74 -126.28 123.44 100 122.48 120.46 -117.80 90 -115.60 -115.41 80 -114.65 114.47 70 -113.89 109.52 60 ₹70.16 50 -40 -37.8330 20 10 0 -10 9 -500 -600 -700 -800 -1400-900 -1100-200 -300 -400 -1000 -1200 -1300 -100 --100

Supplementary Fig. 70 ¹³C NMR Spectrum of cis-3ad

Supplementary Fig. 71 ¹⁹F NMR Spectrum of cis-3ad

Supplementary Fig. 72 ¹H NMR Spectrum of cis-3ae

Supplementary Fig. 73 ¹³C NMR Spectrum of cis-3ae

Supplementary Fig. 74 ¹H NMR Spectrum of cis-3af

Supplementary Fig. 75 ¹³C NMR Spectrum of cis-3af

Supplementary Fig. 76 ¹H NMR Spectrum of cis-3ag

Supplementary Fig. 77 ¹³C NMR Spectrum of cis-3ag

Supplementary Fig. 78 ¹H NMR Spectrum of cis-3ah

Supplementary Fig. 79 ¹³C NMR Spectrum of *cis*-3ah

Supplementary Fig. 80 ¹H NMR Spectrum of cis-3ai

Supplementary Fig. 81 ¹³C NMR Spectrum of *cis*-3ai

Supplementary Fig. 82 1D-nosey NMR Spectra for cis-3ai

Supplementary Fig. 83 ¹H NMR Spectrum of cis-3ai'

Supplementary Fig. 84 ¹³C NMR Spectrum of cis-3ai'

Supplementary Fig. 86 ¹H NMR Spectrum of cis-7aa

Supplementary Fig. 87 ¹³C NMR Spectrum of *cis*-7aa

Supplementary Fig. 88 ¹H NMR Spectrum of cis-7ab

Supplementary Fig. 89 ¹³C NMR Spectrum of cis-7ab

Supplementary Fig. 92 ¹H NMR Spectrum of cis-7ad

S120

Supplementary Fig. 94 ¹H NMR Spectrum of cis-7ae

Supplementary Fig. 95 ¹³C NMR Spectrum of *cis*-7ae

Supplementary Fig. 96 ¹⁹F NMR Spectrum of cis-7ae

Supplementary Fig. 97 ¹H NMR Spectrum of cis-7af

Supplementary Fig. 98 ¹H NMR Spectrum of trans-7aa.

Supplementary Fig. 99 ¹³C NMR Spectrum of trans-7aa

Supplementary Fig. 100 ¹H NMR Spectrum of trans-7ab

Supplementary Fig. 101 ¹³C NMR Spectrum of trans-7ab

Supplementary Fig. 102 ¹H NMR Spectrum of trans-7ab'

Supplementary Fig. 103 ¹³C NMR Spectrum of trans-7ab'

Supplementary Fig. 104 ¹H NMR Spectrum of trans-7ac

Supplementary Fig. 105 ¹³C NMR Spectrum of trans-7ac

Supplementary Fig. 106 ¹H NMR Spectrum of trans-7ad

Supplementary Fig. 107 ¹³C NMR Spectrum of trans-7ad

Supplementary Fig. 108 ¹H NMR Spectrum of trans-7ae

Supplementary Fig. 109 ¹³C NMR Spectrum of trans-7ae

Supplementary Fig. 110 ¹⁹F NMR Spectrum of trans-7ae

Supplementary Fig. 112 ¹³C NMR Spectrum of *trans*-7af

Supplementary Fig. 113 ¹H NMR Spectrum of 4

Supplementary Fig. 114 ¹³C NMR Spectrum of 4

Supplementary Fig. 115 ¹H NMR Spectrum of 5

Supplementary Fig. 116 ¹³C NMR Spectrum of 5

1.10 Copies of HPLC chromatograms

Supplementary Fig. 119 HPLC analysis of cis-3aa

Supplementary Fig. 120 HPLC analysis of cis-3ba

Supplementary Fig. 121 HPLC analysis of *cis*-3ca

0.60

0.50

0.40-₽ 0.30-

0.20

0.10-

0.00-

0.00

Supplementary Fig. 122 HPLC analysis of cis-3da

30.00

Supplementary Fig. 123 HPLC analysis of cis-3ea

Supplementary Fig. 124 HPLC analysis of cis-3fa

Supplementary Fig. 125 HPLC analysis of cis-3ga

Supplementary Fig. 126 HPLC analysis of cis-3ha

Supplementary Fig. 127 HPLC analysis of cis-3ia

Supplementary Fig. 128 HPLC analysis of cis-3ja

Supplementary Fig. 129 HPLC analysis of cis-3ka

Supplementary Fig. 130 HPLC analysis of cis-3la

Supplementary Fig. 131 HPLC analysis of cis-3ma

Supplementary Fig. 132 HPLC analysis of cis-3na

Supplementary Fig. 133 HPLC analysis of cis-30a

Supplementary Fig. 134 HPLC analysis of cis-3pa

Supplementary Fig. 135 HPLC analysis of cis-3qa

Supplementary Fig. 136 HPLC analysis of cis-3ra

Supplementary Fig. 137 HPLC analysis of cis-3sa

Supplementary Fig. 138 HPLC analysis of cis-3ta

Supplementary Fig. 139 HPLC analysis of cis-3ua

Supplementary Fig. 140 HPLC analysis of cis-3va

Supplementary Fig. 141 HPLC analysis of cis-3wa

Supplementary Fig. 142 HPLC analysis of cis-3ab

Supplementary Fig. 143 HPLC analysis of cis-3ac

Supplementary Fig. 144 HPLC analysis of cis-3ad

Supplementary Fig. 145 HPLC analysis of cis-3ae

Supplementary Fig. 146 HPLC analysis of cis-3af

Supplementary Fig. 147 HPLC analysis of cis-3ag

Supplementary Fig. 148 HPLC analysis of cis-3ah

Supplementary Fig. 149 HPLC analysis of cis-3ai

Supplementary Fig. 150 HPLC analysis of cis-3ai

Supplementary Fig. 151 HPLC analysis of cis-7aa

	Peak Results									
	SampleName	RT	Width (sec)	Height	Area	% Area				
1	zy-08-62-rac	9.790	42.000	57063	968161	6.85				
2	zy-08-62-rac	10.395	51.300	476892	6131092	43.35				
3	zy-08-62-rac	15.572	75.500	27073	924101	6.53				
4	zy-08-62-rac	16.523	73.700	288306	6120655	43.27				

Peak Results								
	SampleName	RT	Width (sec)	Height	Area	% Area		
1	ZY-08-105	9.836	51.400	802981	13293555	92.34		
2	ZY-08-105	10.406	30.300	21399	284576	1.98		
3	ZY-08-105	15.271	79.100	9095	300569	2.09		
4	ZY-08-105	16.398	64.600	24583	518297	3.60		

Supplementary Fig. 152 HPLC analysis of cis-7ab

Peak Results									
	SampleName	RT	Width (sec)	Height	Area	% Area			
1	zy-10-3-1-ch	20.079	78.000	10865	358533	3.33			
2	zy-10-3-1-ch	21.630	172.600	176579	9553853	88.82			
3	zy-10-3-1-ch	23.955	100.300	4688	234099	2.18			
4	zy-10-3-1-ch	33.912	150.400	10014	610068	5.67			

Supplementary Fig. 153 HPLC analysis of cis-7ac

Br

	Peak Results								
		SampleName	RT	Width (sec)	Height	Area	% Area		
ĺ	1	ZY-09-49-2-RAC	16.873	102.800	311620	10702487	47.35		
	2	ZY-09-49-2-RAC	17.909	66.800	15272	458308	2.03		
ĺ	3	ZY-09-49-2-RAC	21.189	105.100	12075	450187	1.99		
	4	ZY-09-49-2-RAC	24.997	202.800	160514	10992990	48.63		

Peak Results							
	SampleName	RT	Width (sec)	Height	Area	% Area	
1	ZY-09-49-1-CH	16.847	73.800	1461	53023	2.38	
2	ZY-09-49-1-CH	17.805	78.700	2788	93335	4.19	
3	ZY-09-49-1-CH	21.123	98.800	2333	83319	3.74	
4	ZY-09-49-1-CH	24.920	226.000	29486	1996061	89.68	
Supplementary Fig. 154 HPLC analysis of cis-7ad

Peak Results								
	SampleName	RT	Width (sec)	Height	Area	% Area		
1	ZY-09-57-1-ch	11.165	96.600	501648	11883771	91.68		
2	ZY-09-57-1-ch	15.200	62.900	10085	258781	2.00		
3	ZY-09-57-1-ch	18.743	104.800	5836	254031	1.96		
4	ZY-09-57-1-ch	20.624	107.700	14902	565928	4.37		

Supplementary Fig. 155 HPLC analysis of cis-7ae

				× /		
1	13.586	Unknown	8220	49.250	1 <mark>6</mark> 3300	1.65
2	14.464	Unknown	372154	86.500	9168483	92.64
3	17.083	Unknown	9247	78.850	300193	3.03
4	18.440	Unknown	8307	72.000	264952	2.68

Supplementary Fig. 156 HPLC analysis of cis-7af

Supplementary Fig. 157 HPLC analysis of trans-7aa

Peak Results									
	SampleName	RT	Width (sec)	Height	Area	% Area			
1	zy-08-62-rac	9.790	42.000	57063	968161	6.85			
2	zy-08-62-rac	10.395	51.300	476892	6131092	43.35			
3	zy-08-62-rac	15.572	75.500	27073	924101	6.53			
4	zy-08-62-rac	16.523	73.700	288306	6120655	43.27			

	Peak Results									
	SampleName	RT	Width (sec)	Height	Area	% Area				
1	zy-09-5-2	9.665	41.300	26019	446889	2.29				
2	zy-09-5-2	10.320	66.000	1352548	17405594	89.00				
3	zy-09-5-2	16.407	89.200	80346	1704913	8.72				

Supplementary Fig. 158 HPLC analysis of trans-7ab

Peak Results									
	SampleName	RT	Width (sec)	Height	Area	% Area			
1	ZY-09-36-1-CH	13.961	64.400	15635	469581	3.22			
2	ZY-09-36-1-CH	14.630	69.800	696677	12779610	87.76			
3	ZY-09-36-1-CH	21.346	89.200	1659	50039	0.34			
4	ZY-09-36-1-CH	23.668	112.200	38353	1262320	8.67			

Supplementary Fig. 159 HPLC analysis of trans-7ab'

Supplementary Fig. 160 HPLC analysis of trans-7ac

	Peak Results									
	SampleName	RT	Width (sec)	Height	Area	% Area				
1	ZY-09-48-1-CH	16.732	69.200	595	19427	0.55				
2	ZY-09-48-1-CH	17.883	114.200	103669	3178850	89.71				
3	ZY-09-48-1-CH	21.130	80.300	6745	238176	6.72				
4	ZY-09-48-1-CH	25.011	152.400	1666	107066	3.02				

Supplementary Fig. 161 HPLC analysis of trans-7ad

	Peak Results									
	SampleName	RT	Width (sec)	Height	Area	% Area				
1	ZY-09-56-1-ch	11.155	61.300	11876	280750	2.91				
2	ZY-09-56-1-ch	15.178	104.100	307068	8278482	85.78				
3	ZY-09-56-1-ch	18.609	71.800	466	14708	0.15				
4	ZY-09-56-1-ch	20.530	125.400	28475	1076600	11.16				

Supplementary Fig. 162 HPLC analysis of trans-7ae

Supplementary Fig. 163 HPLC analysis of trans-7af

Supplementary Fig. 164 HPLC analysis of 4

Supplementary Fig. 165 HPLC analysis of 5

Supplementary Fig. 166 HPLC analysis of 8

2. References

- 1. K. Ozols, Y. S. Jang, N. Cramer, J. Am. Chem. Soc. 2019, 141, 5675-5680.
- 2. K. Muralirajan, S. Prakash, C.-H. Cheng, Adv. Synth. Catal. 2017, 359, 513-518.
- a) Y.-H. Liu, P.-P. Xie, L. Liu, J. Fan, Z.-Z. Zhang, X. Hong, B.-F. Shi, *J. Am. Chem. Soc.* 2021, *143*, 19112-19120; b) C. M. Rathbun, J. B. Johnson, *J. Am. Chem. Soc.* 2011, *133*, 2031-2033; c) L. van Dijk, R. Ardkhean, M. Sidera, S. Karabiyikoglu, Ö. Sari, T. D. W. Claridge, G. C. Lloyd-Jones, R. S. Paton, S. P. Fletcher, *Nat. Catal.* 2021, *4*, 284-292.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. K. Normand, Rendell, A. P. Raghavachari, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- 5. a) F. Neese, *WIREs Comput. Mol. Sci.* **2012**, *2*, 73-78; b) F. Neese, *WIREs Comput. Mol. Sci.* **2017**, *8*, e1327; c) F. Neese, F. Wennmohs, U. Becker, C. Riplinger, *J. Chem. Phys.* **2020**, *152*, 224108.
- a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789; c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
- a) E. R. Johnson, A. D. Becke, *J. Chem. Phys.* 2005, *123*, 024101; b) A. D. Becke, E. R. Johnson, *J. Chem. Phys.* 2005, *122*, 154104; c) E. R. Johnson, A. D. Becke, *J. Chem. Phys.* 2006, *124*, 174104; d) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, *132*, 154104; e) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* 2011, *32*, 1456-1465.
- 8. a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305; b) F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.
- 9. A. Hellweg, C. Hattig, S. Hofener, Klopper, W. Theor. Chem. Acc. 2007, 117, 587-597.
- 10. F. Weigend, J. Comput. Chem. 2008, 29, 167-175.
- 11. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33-38.
- 12. X. Yang, G. Zheng, X. Li, Angew. Chem. Int. Ed. 2019, 58, 322-326.
- 13. L. Kong, S. Yu, G. Tang, H. Wang, X. Zhou, X. Li, Org. Lett. 2016, 18, 3802-3805.
- 14. X. Zhou, Y. Luo, L. Kong, Y. Xu, G. Zheng, Y. Lan, X. Li, ACS Catal. 2017, 7, 7296-7304.