Supplementary Information

A conserved nonribosomal peptide synthetase in *Xenorhabdus bovienii* produces citrullinefunctionalized lipopeptides

Jhe-Hao Li,^{1,2} Wooyoung Cho,^{1,2} Randy Hamchand,^{1,2} Joonseok Oh,^{1,2} and Jason M. Crawford^{1,2,3,*}

¹ Department of Chemistry, Yale University, New Haven, CT 06511, USA.

² Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT 06516, USA.

³ Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536 USA.

E-mail: jason.crawford@yale.edu

Table of Contents

Supplementa	ary Methods	3
Table S1	XBJ1_2367 homologs in X. bovienii strains	6
Table S2	XBJ1_2367 homologs in Xenorhabdus species	7
Table S3	Primers used in this study	8
Table S4	XBJ1_2367 dependent ions in E. coli BAP1 and X. bovienii	9
Table S5	¹ H and ¹³ C NMR assignments of bovienimide A (5) and bovienimide B	10
	(6)	
Figure S1	Sequence alignment of C/E domain key residues	11
Figure S2	The sequence logo showing the consensus sequences of specificity codes	12
	in the A domains	
Figure S3	Co-expression of pACYC-XBJ1_2367 and pCDF-Leup resulted in higher	13
	production of 5 and 6 at 30°C	
Figure S4	Key COSY and HMBC correlations of bovienimide B (6)	14
Figure S5	Tandem MS assignment of proposed compound 1	15
Figure S6	Tandem MS assignment of proposed compound 2	16
Figure S7	Tandem MS assignment of proposed compound 3	17
Figure S8	Tandem MS assignment of proposed compound 4	18
Figure S9	Tandem MS assignment of bovienimide A (5)	19
Figure S10	Tandem MS assignment of bovienimide B (6)	20
Figure S11	Tandem MS assignment of proposed compound 7	21
Figure S12	Tandem MS assignment of proposed compound 8	22
Figure S13	Tandem MS assignment of proposed compound 9	23
Figure S14	Tandem MS assignment of proposed compound 10	24
Figure S15	Tandem MS assignment of proposed compound 11	25
Figure S16	Configuration analysis of bovienimide B (6) using Marfey's reagent	26
Figure S17	EICs of spontaneous formed methyl (6c), ethyl (6b, 8b) and butyl esters	27
	(6d) in E. coli expressing XBJ1_2367	
Figure S18	Tandem MS assignment of proposed compound 6b	28
Figure S19	Tandem MS assignment of proposed compound 8b	29

Figure S20	Tandem MS assignment of proposed compound 6c	30
Figure S21	Tandem MS assignment of proposed compound 6d	31
Figure S22	Maximum likelihood tree of all annotated adenylation domains in X.	32
	<i>bovienii</i> SS-2004 and <i>XBJ1_2367</i> homologues	
Figure S23	¹ H NMR spectrum of bovienimide A (5), 600 MHz, DMSO- <i>d</i> ₆ , 25 °C	33
Figure S24	gCOSY NMR spectrum of bovienimide A (5), 600 MHz, DMSO-d ₆ , 25	34
	°C	
Figure S25	zTOCSY NMR spectrum of bovienimide A (5), 600 MHz, DMSO-d ₆ , 25	35
	°C	
Figure S26	¹ H- ¹³ C gHSQC NMR spectrum of bovienimide A (5), 600 MHz, DMSO-	36
	<i>d</i> ₆ , 25 °C	
Figure S27	¹ H- ¹³ C gHMBC NMR spectrum of bovienimide A (5), 600 MHz, DMSO-	37
	<i>d</i> ₆ , 25 °C	
Figure S28	¹ H NMR spectrum of bovienimide B (6), 600 MHz, MeOD-d ₄ , 25 °C	38
Figure S29	gCOSY NMR spectrum of bovienimide B (6), 600 MHz, MeOD-d4, 25 °C	39
Figure S30	¹ H- ¹³ C gHSQC NMR spectrum of bovienimide B (6), 600 MHz, MeOD-	40
	<i>d</i> ₄ , 25 °C	
Figure S31	¹ H- ¹³ C gHMBC NMR spectrum of bovienimide B (6), 600 MHz, MeOD-	41
	<i>d</i> ₄ , 25 °C	

Supplementary References

Supplementary Methods

GPCR PRESTO-Tango Assay

PRESTO-Tango assay was performed according to the protocol reported by Kroeze *et al.* (Kroeze et al., 2015). Briefly, HTLA cells maintained in DMEM containing 10% heat-inactivated fetal bovine serum (HI-FBS) and 1% penicillin/streptomycin were seeded in 96-well tissue culture plates and transfected with 200 ng of C3AR1-Tango plasmid (Addgene plasmid #66231) for 20 h. The medium was replaced with DMEM containing 20 mM HEPES and 1% penicillin/streptomycin 2 h prior to treatment with compounds **5** or **6** (100 μ M, 33 μ M, 11 μ M, 3.7 μ M, 1.2 μ M, 0.41 μ M) in DMSO (final concentration 0.125%), complement protein C3a (10 μ M, 3.3 μ M, 1.1 μ M, 0.37 μ M, 0.12 μ M, 0.041 μ M) in DMSO (final concentration 0.125%), or 0.125% DMSO solvent vehicle. After incubation for 20 h, each well was reacted with 50 μ l of Bright-Glo solution (Promega), diluted 20-fold in DPBS with 20 mM HEPES, for 20 min. Luminescence was measured with a Perkin Elmer EnVision 2100 plate reader.

ISG, NF-KB, LDH cytotoxicity assays

THP1-DualTM (Invivogen) reporter cells contain two inducible promoters that express the secreted luciferase or secreted embryonic alkaline phosphatase (SEAP) reporter genes upon stimulation of the interferon regulatory factor (IRF) or NF- κ B pathways, respectively. THP1-DualTM cells maintained under manufacturer's instructions in RPMI medium (Gibco 11875093) with 10% HI-FBS (Gibco) and 1% penicillin/streptomycin (Gibco) were seeded into 96-well plates and differentiated into a macrophage-like state by incubation with 50 nM phorbol 12-myristate 13-acetate (PMA) (Promega, V1171-5mg) for 72 h. The cells were then treated with compound **5** or **6** (100 μ M, 33 μ M, 11 μ M, 3.7 μ M, 1.2 μ M, 0.41 μ M) in DMSO (final concentration 0.1%), positive control (transfected poly dA:dT for ISG response, 100 ng ml⁻¹ lipopolysaccharide (LPS)

for NF- κ B response), or solvent vehicle negative control (0.1% DMSO) and incubated for 16-20 h. The supernatants were collected and incubated with the luciferase detection agent QUANTI-LucTM (Invivogen) to observe ISG responses or with the SEAP detection agent QUANTI-BlueTM (Invivogen) to detect NF- κ B responses. The NF- κ B assay was also carried out without the differentiation step, as PMA treatment generated higher background readings due to the activation of NF- κ B.

Possible cell cytotoxicity of compounds **5** and **6** was measured using CyQUANTTM LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific) according to the manufacturer's instructions. The spontaneous LDH release was measured using the supernatant of $\sim 1 \times 10^5$ cells incubated with 0.1% DMSO and the maximum LDH release was measured by lysing cells grown in the same conditions. Supernatants of the PMA-treated or untreated THP1-DualTM cells challenged with **5** or **6** (100 µM, 33 µM, 11 µM) in DMSO (final concentration 0.1%) were used for LDH quantification. Absorbance measurements at 490 nm and 680 nm were taken on a Perkin Elmer EnVision 2100 plate reader.

Antimicrobial assays

Compounds **5** and **6** were dissolved in DMSO to a concentration of 50 mM. Each compound was diluted in the corresponding medium to yield final concentrations of 500, 250, 125, 62.5, 31.25, 15.625, 0 μ M (final DMSO concentration 1%) in triplicate wells of a 96-well microplate. *Escherichia coli* DH5 α was grown in LB broth overnight in a shaking incubator at 250 RPM and 37°C. *Bacillus subtilis* and *Saccharomyces cerevisiae* were grown overnight in LB and YPD media, respectively, in a shaking incubator at 250 RPM and 30°C. The bacterial/yeast cultures were diluted to (OD₆₀₀) of 0.5, then diluted further to yield 1e6 cells ml⁻¹. 50 µl of the diluted bacterial cultures was added to each well containing 50 µl of compound or control. The microplate was

incubated overnight in a stationary 37°C (*E. coli*) or 30°C (*B. subtilis*, *S. cerevisiae*) incubator and the OD₆₀₀ of each well was measured using a Perkin Elmer EnVision 2100 plate reader.

X. bovienii strain name	XBJ1_2367 orthologue	Amino acid identity (%)
puntauvense	XBP1v2 400023	92.53
felitiae France	XBXBFFR1v2 630020	92.47
Jollieti	XBJ2v2 1260017	100
oregonense	XBO1v2 1300059	92.11
kraussei Quebec	XBKQ1v2 850017	92.09
Intermedium	XBI1v2 1260106	93.04
CS03	XBW1v5 2161	92.47
	XBW1v5 ²¹⁶² (terminal PCP domai	in)
felitiae Florida	XBFFL1v2 1440021	92.47
kraussei Becker Underwood	XBKB1v2 2960007	92.23
felitiae Moldova	XBFM1v2_1510028	92.44

Table S1 *XBJ1_2367* homologs in *X. bovienii* strains. Genes are shown with magnifying genomes (MAGE) accession codes.

Species	NCBI Accession	Amino	A1 domain	A2 domain	A3 domain
_		Acid			
		Identity			
X. beddingii	WP_086111596.1	68.0%	DAWLLGAV	DVWHFSLI	DISNIGGV
X. bovienii SS-2004	CBJ81493.1	100.0%	DAWLIGAV	DLYNNAL -	DISNIGAI
X. budapestensis	WP_099134826.1	68.5%	DAWIIGVI	DVWHLSLI	DISNIGAV
X. doucetiae	WP_071827274.1	73.4%	DGWLIGAV	DLYNNALT	DISNIGAV
X. eapokensis	WP_074023869.1	68.3%	DAWLLGAV	DVWFLSLI	DISNIGAI
X. ehlersii	WP_099131307.1	69.3%	DAWLLGAV	DVWYLSLI	DISNIGAI
X. griffiniae ^a	WP_053014213.1	68.4%	DAWLMGAV	DVWYLSLI	DISNIGAI
X. hominickii	WP_069316711.1	69.4%	DVQFIAH-	DAWXVAAI	DISNIGAV
X. innexi	WP_086956251.1	65.0%	DAWLLGAV	DVWHLSLI	DISNIGAI
X. ishibashii	WP_099116303.1	68.6%	DAWLLGAV	DVWYLSLI	DISNIGAI
X. japonica	WP_092519020.1	70.8%	DAWLLGAV	DVWHLSLI	DISNIGAV
X. khoisanae SF87	WP_084728559.1	69.7%	DAWLMGAV	DVWYLSLV	DISNIGAI
X. kozodoii	WP_099141660.1	68.3%	DAWLLGAI	DVWYLSLI	DISNIGAI
X. mauleonii	WP_092507495.1	68.1%	DVWFI-GI	DLYNNALT	DISNIGAV
X. miraniensis	WP_099114446.1	70.2%	DAWLIGAV	DVWYLSLV	DISNIGAI
X. nematophila	WP_050986630.1	70.2%	DAWLLGAV	DLYNNALT	DISNIGAV
ATCC19061					
X. poinarii	WP_052708256.1	73.7%	DAWILGAI	DLYNNAM-	DISNIGAV
X. stockiae	WP_099125076.1	64.9%	DAWLLGAI	DVWHLSLI	DISNIGAI
X. szentirmaii	PHM32961.1	68.6%	DVWFI-GV	DLYXNALT	DISNIGAV
DSM16338					
X. thuongxuanensis	WP_074019651.1	68.7%	DAWLLGAV	DVWYLSLI	DISNIGAI
X. vietnamensis	WP_086108473.1	70.7%	DAWLLGAI	DVWHLSLI	DISNIGAV
Xenorhabdus sp.	WP_052189507.1	67.4%	DAWIIGAI	DVWHFSLI	DISNIGAV
NBAII XenSa04					
Xenorhabdus sp.	WP_099120489.1	64.9%	DSWLLGAI	DVWHLSLI	DISNIGAI
KK7.4					
Xenorhabdus sp.	WP_099109723.1	65.0%	DAWLLGAI	DVWHLSLI	DISNIGAI
KJ12.1					

Table S2 *XBJ1_2367* homologs in *Xenorhabdus* species and their adenylation domain specificity codes.

^a Gene assigned to *X. griffiniae* based on Magnifying Genome (MaGe) platform.

Primer Name	Sequence
ACYC_PacI	GTAAAAATTAATTAATCTCCTTCTTATACTTAACTAATATA
	CTAAGATGG
ACYC_HindIII	GTAAAAAATAAGCTTAAAAAACTCGAGTAACCTAGGCTGCTG
2367_I_PacI	GTAAAAATTTAATTAAATGTCACACAGCCAAAATCG
2367_I_HindIII	GTAAAAATAAGCTTGTTGTACCCAGGTG
2367_II_HindIII	GTAAAAAATAAGCTTTCCGCCCTGAA
2367_II_XhoI	GTAAAAAATCTCGAGTTATTTAGAATAAAAATTCTTTGCTAATT
	TTGT

 Table S3 Primers used in this study

m/z	Retention time (min) ^a	AUC ^b in <i>E. coli</i> BAP1	AUC in X. bovienii SS-2004
567.4221	22.1	1.16E+06	1.01E+07
568.4077	22.7	1.26E+06	3.66E+06
569.4403	24.1	3.55E+06	4.56E+07
570.4243	24.7	6.62E+06	3.28E+07
585.4332	21.5	1.37E+06	2.76E+06
586.4173	22.1	6.48E+05	8.13E+05
595.4544	25.0	1.82E+06	4.23E+06
596.4384	25.5	4.90E+06	5.08E+06
597.4714	27.5	1.30E+06	5.23E+06
598.4537	27.5	4.29E+06	0.00E+00
598.4537	28.0	2.65E+06	6.03E+06
624.4712 ^d	28.2	2.35E+06	0.00E+00
624.4712 ^d	28.6	1.48E+06	1.56E+06
626.4864	30.8	1.43E+06	0.00E+00
652.4999	31.3	6.11E+05	0.00E+00
541.4059	21.1	5.55E+05	3.09E+06
542.3914	21.6	2.61E+05	5.66E+05
584.4384	26.3	2.44E+06	3.57E+06
612.4377	22.7	2.23E+04	0.00E+00
612.4339	23.0	1.19E+05	0.00E+00
614.4481	24.5	7.06E+05	0.00E+00
642.4923	27.5	5.03E+05	0.00E+00
640.4648	24.5	9.81E+04	0.00E+00
557.4021	18.8	8.16E+04	5.83E+05
583.4171	20.0	9.35E+04	1.90E+05
584.4021	20.5	1.65E+04	3.66E+04
598.4648	27.6	4.10E+05	3.61E+05
583.4550	25.8	1.36E+06	4.10E+06

 Table S4 XBJ1
 2367 dependent ions in E. coli BAP1 and X. bovienii

 385.4550
 25.8
 1.36E+06
 4.10E+0

 * Retention time was determined with LC-MS coupled to a Kinetex 5μ C18 100 Å column (250 × 4.6 mm) with a water:acetonitrile gradient from 5 to 100% in 30 minutes.
 b

 * Area under curve.
 *

 • Area under curve.
 *

 • 5-mL cultures of *E. coli* and *X. bovienii* SS-2004 were extracted to compare the relative abundance.

 d These two features are distinct.

	5 ^{<i>a</i>}		5 ^{<i>a</i>} 6 ^{<i>b</i>}	
position	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\delta_{ m C}$
1	0.82, t (6.9)	14.38, CH ₃	0.90, t (7.0)	13.00, CH ₃
$2-10^{c}$	1.20-1.33, m	29.39, CH ₂	1.26-1.34, m	22.3, CH
11	1.19, m	29.29, CH ₂	1.59, m	25.7, CH ₂
12	1.44, m	29.67, CH ₂	1.32, m	28.8, CH ₂
13	2.05, m 2.09, m	35.48, CH ₂	2.21, m	35.10, CH ₂
14		173.02, C		175.12, C
15	7.96, d (7.4)		8.09, d (6.4)	
16	4.19, m	51.81, CH	4.26, m	52.36, CH
17	1.39, m	40.88, CH ₂	1.58, m 1.54, m	39.95, CH ₂
18	1.54, m	24.64, CH	1.66, m	24.54, CH
19	0.80, d 6.6)	23.35, CH ₃	0.94, d (6.5)	20.63, CH ₃
20	0.85, d (6.6)	22.01, CH ₃	0.98, d (6.5)	21.90, CH ₃
21		172.77, C		174.04, C
22	8.10, d (7.4)		8.37, d (7.2)	
23	4.21, quin (7.4)	49.31, CH	4.35, quin (7.2)	49.03, CH
24	1.16, d (7.4)	18.53, CH ₃	1.36, d (7.2)	16.57, CH ₃
25		172.37, C		173.39, C
26	7.86, d (8.4)		7.98, d (8.1)	
27	4.11, td (4.82, 8.4)	52.55, CH	4.38, m	51.87, CH
28	1.44, m 1.64, m	29.64, CH ₂	1.75, m 1.91, m	28.30, CH ₂
29	1.29, m	27.04, CH ₂	1.49, m	26.12, CH ₂
30	2.90, m	29.13, CH ₂	3.08, td (2.64, 6.83)	38.58, CH ₂
31		159.17, C		160.65, C
32		174.03, C		175.53, C
33	7.00, d (2.17) 7.24, d (2.28)			

Table S5 ¹H and ¹³C NMR assignments of bovienimide A (5) and bovienimide B (6)

^aDMSO-*d*₆, ^bmethanol-*d*₄, ^cmethylenes comprising C2-10 are indistinguishable

Figure S1 Sequence alignment of C/E domain key residues. (A) Schematic representation of key amino acids in epimerization-condensation didomain proteins and condensation/epimerization dual functional domain. (B) Partial alignment of condensation domains in *XBJ1_2367* and representative C/E domain in xenematide biosynthesis cluster (*XNC1_2713* C4b). Asterisks stand for conserved catalytic residues.

Figure S2 The sequence logo showing the consensus sequences of specificity codes in the A domains. **A**, A1-domain. **B**, A3-domain. **C**, Group I A2-domain. **D**, Group II A2-domain.

Figure S3 Co-expression of pACYC-*XBJ1_2367* and pCDF-*Leup* resulted in higher production of **5** and **6** at 30°C. 5-mL LB culture extracted with ethyl acetate was analyzed by triple quadrupole with dynamic MRM mode with a linear gradient using water and acetonitrile solvent systems containing 0.1% formic acid at 0.3 mL/min, 0-15 min, 20 to 80% acetonitrile. **A**, pACYC-*XBJ1_2367* only expressed at 16°C. **B**, pACYC-*XBJ1_2367* only expressed at 30°C. **C**, pACYC-*XBJ1_2367* co-expressed with pCDF-*Leup* at 16°C. **D**, pACYC-*XBJ1_2367* co-expressed with pCDF-*Leup* at 30°C. **E**, Dose dependence production of bovienimides **5** and **6** against different concentrations of IPTG. Relative abundance was determined by comparing 5-mL cultures with the same extraction and injection methods. *n* =3 biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001. Two-tailed t test.

Figure S4 Key COSY and HMBC correlations of bovienimide B (6).

Figure S5 Tandem MS assignment of proposed compound **1**. Calculated exact mass of peptide fragment ions are shown on the structure.

Figure S6 Tandem MS assignment of proposed compound **2**. Calculated exact mass of peptide fragment ions are shown on the structure. The position and stereochemistry of the hydroxyl group on the acyl chain was not determined.

Figure S7 Tandem MS assignment of proposed compound 3. Calculated exact mass of peptide fragment ions are shown on the structure. Double bond position and configuration was not determined.

Figure S8 Tandem MS assignment of proposed compound 4. Calculated exact mass of peptide fragment ions are shown on the structure. Double bond position and configuration was not determined.

Figure S9 Tandem MS assignment of bovienimide A (5). Calculated exact mass of peptide fragment ions are shown on the structure.

fragment ions are shown on the structure.

Figure S11 Tandem MS assignment of proposed compound 7. Calculated exact mass of peptide fragment ions are shown on the structure. Double bond position and configuration was not determined.

Figure S12 Tandem MS assignment of proposed compound 8. Calculated exact mass of peptide fragment ions are shown on the structure. Double bond position and configuration was not determined.

Figure S13 Tandem MS assignment of proposed compound 9. Calculated exact mass of peptide fragment ions are shown on the structure.

Figure S14 Tandem MS assignment of proposed compound 10. Calculated exact mass of peptide fragment ions are shown on the structure.

Figure S15 Tandem MS assignment of proposed compound 11. Calculated exact mass of peptide fragment ions are shown on the structure. Double bond position and configuration was not determined.

Figure S16 Configuration analysis of bovienimide B (6) using Marfey's reagent. (A) Structures and exact masses of alanine and leucine FDAA adduct. (B) Hydrolysis of citrulline results in ornithine, which reacted with two equivalents of FDAA to form double addition adduct. (C) LC-MS analysis of derivatized standard amino acids (middle and bottom) and hydrolyzed bovienimide (top). The first three panels were EICs analyzed by HPLC-QTOF with a 10 ppm extraction window. The fourth panel was detected by dynamic multiple reaction monitoring (dMRM) mode. (637.0 - > 547.0, CE = 10).

Figure S17 EICs of methyl (**6c**), ethyl (**6b**, **8b**) and butyl esters (**6d**) in *E. coli* expressing *XBJ1_2367* in the presence of exogenous alcohols. Chloramphenicol stock solutions are prepared in methanol (Cm (MeOH)) and ethanol (Cm (EtOH)), with the addition of ethanol (+EtOH) or *n*-butanol (BuOH).

Figure S18 Tandem MS assignment of proposed compound 6b. Calculated exact mass of peptide fragment ions are shown on the structure.

Figure S19 Tandem MS assignment of proposed compound 8b. Calculated exact mass of peptide fragment ions are shown on the structure. Double bond position and configuration was not determined.

Figure S20 Tandem MS assignment of proposed compound **6c**. Calculated exact mass of peptide fragment ions are shown on the structure.

Figure S21 Tandem MS assignment of proposed compound 6d. Calculated exact mass of peptide fragment ions are shown on the structure.

Figure S22 Maximum likelihood tree of all annotated adenylation domains in *X. bovienii* SS-2004 and *XBJ1_2367* homologues from different *Xenorhabdus* species. Genes from *X. bovienii* SS-2004 are labeled as xbj1 based on MaGe genome annotations. *xbj1_2151 (paxC)* and *xbj1_2152 (paxB)* belong to PAX-peptide synthetase.

Figure S23 ¹H NMR spectrum of bovienimide A (5), 600 MHz, DMSO-*d*₆, 25 °C

Figure S24 gCOSY NMR spectrum of bovienimide A (5), 600 MHz, DMSO-d₆, 25 °C

Figure S25 zTOCSY NMR spectrum of bovienimide A (5), 600 MHz, DMSO-*d*₆, 25 °C

Figure S26 ¹H-¹³C gHSQC NMR spectrum of bovienimide A (5), 600 MHz, DMSO-*d*₆, 25 °C

Figure S27 ¹H-¹³C gHMBC NMR spectrum of bovienimide A (5), 600 MHz, DMSO-*d*₆, 25 °C

Figure S28 ¹H NMR spectrum of bovienimide B (**6**), 600 MHz, MeOD-*d*₄, 25 °C

Figure S29 gCOSY NMR spectrum of bovienimide B (6), 600 MHz, MeOD-d₄, 25 °C

Figure S30 ¹H-¹³C gHSQC NMR spectrum of bovienimide B (6), 600 MHz, MeOD-*d*₄, 25 °C

Figure S31 ¹H-¹³C gHMBC NMR spectrum of bovienimide B (6), 600 MHz, MeOD-*d*₄, 25 °C

Supplementary References

Kroeze, W.K., Sassano, M.F., Huang, X.P., Lansu, K., McCorvy, J.D., Giguere, P.M., Sciaky, N., and Roth, B.L. (2015). PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. *22*, 362-369.