Material and Methods

Mouse Cohort Description and Dietary Intervention

All experiments utilizing animals were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee. C57BL/6J mice were obtained from The Jackson Laboratory (Bar Harbor, ME). Clifford/Koury folate deficient L-amino acid defined rodent diets (Diet # 517777) with conventional (3mg/kg, Diet # 517940), deficient (0.3mg/kg, Diet # 517796), and excess FA (30mg/kg, Diet # 517941) content with 1% succinyl sulfathiazole to inhibit FA synthesis by the intestinal flora were purchased from Dyets, Inc. (Bethlehem, PA).

Female mouse treatment groups

Virgin females 8 weeks of age were randomly assigned to receive either a control diet containing 3 mg FA/kg diet or a FA-deficient diet containing 0.3 mg FA/kg diet, or a FA-supplemented diet containing 30 mg FA/kg for four months prior to the first attempt to mate with mice which were kept on the control diet. Each time, only one of the parents was on testing diet. Female mice were continually maintained on the testing diets until the time the dams were euthanized on E12.5 to harvest embryos.

Male mouse treatment groups

Virgin males 8 weeks of age were randomly assigned to receive either a control diet containing 3 mg FA/kg diet or a FA-deficient diet containing 0.3 mg FA/kg diet, or a FA-supplemented diet containing 30 mg FA/kg for four months prior to the first attempt at mating. Embryos were harvested at E12.5 from pregnant females.

Blood folate measurement

Blood folate levels were measured using a folate competitive analysis as previously reported¹. Briefly, FOLR1 (1 μ L at 50ng/ μ L) was immobilized on microtiter plates in PBS buffer (pH 8.0). The following day, unbound protein was removed by washing three times with tris-buffered saline (pH 7.6). Ligand in the form of FA is used to compete with labeled (e.g., horse radish peroxidase) folic acid (FA-HRP) for competitive binding to FOLR1. Standard dilution (1:2) of FA (6 to 0.8125ng/mL, 0ng/mL) results in FOLR1-folate binding curves.

Whole Genome Sequencing (WGS)

DNA extraction

Mouse embryos and parental tail tissues were collected and maintained at -20°C. Qiagen QIAamp DNA micro-Kit (Cat. No. 56304) was used for DNA extraction with RNase treatment. Qubit assays were performed to validate that all DNA samples met the quality requirements for following sequencing projects.

WGS Data Processing

Extracted genomic DNA from mouse tails or embryos were subjected to WGS on an Illumina NovaSeq. WGS raw FASTQ data (sequencing projects were conducted by Admera Health, LLC) were processed using a pipeline bas ed on GATK Best Practice. Sequence reads were mapped to the reference genome (mm10) with BWA-MEM. After sorting by Samtools, BAM files are further processed with GATK Best Practice workflows, including marking duplicates, realignment of indels, base quality recalibration, as described². Single nucleotide variants and small indels were called with GATK haplotypeCaller.

DNM Calling and Variant Filtering

DNMs were called by TrioDenovo program³. An in-software pipeline for filtering DNSNV was used (https://genome.sph.umich.edu/wiki/Triodenovo). We followed the previously well-described filtering pipeline for the DNM filtering⁴. The hard filters include: (i) an in-cohort MAF = 0; (ii) a minimum 20 total reads, 5 alternate allele reads, and a minimum 20% alternate allele ratio in the embryo if alternate allele reads are greater than 10. If alternate reads are less than 10, a minimum 30% ratio is required. (iii) a minimum depth of 15 reference reads and alternative allele < 3.5% in the parents. All the DNMs were annotated by VEP (Ensembl Variant Effect Predictor). Quality control and validation

All the DNSNVs are then filtered from 'Bamfile' confirmation and filtered with a lowest genotype quality (Qual) > 50. We extracted all of the 'Bamfile' containing the region of each DNSNV and its surrounding 2000bp. We examined each mutation in the three lanes of 'Bamfile' checking process via using Integrative Genomics Viewer. The filters are (i) minimum depth of 15 reference reads and alternative allele < 3.5% in the parents; (ii) mutations in the same read are excluded if it is in the same haplotype. To estimate the true positive rate of our DNSNV dataset, we successfully sequenced 72 DNSNVs, and 70 out of 72 were confirmed by Sanger sequencing (True Positive Rate = 97.2%). Finally, we performed a validation test on our mutation calling pipeline using 'Genome in a bottle' as a reference. Using our pipeline, we obtained a sensitivity of 1039 / (1039 + 5) = 0.9952107, and a specificity of (4121168 - 1044 - 1) / (4121168 - 1044) = 0.9999998.

Whole genome bisulfide sequencing

WGBS data processing

Raw bisulfite sequencing data of mouse embryos is mapped to mm10 mouse reference genome by BSMAP (2.90) with default setting. The contaminated adapters and low-quality bases are removed

with the '-q' and '-A' parameters during alignment. We subsequently used the methratio.py script provided by BSMAP to calculate the methylation levels of CpG sites. CpG sites that are covered less than 4 reads are discarded before the downstream analysis.

De novo differentially methylated regions (DMRs) and DNA methylation canyon calling

We identify *de novo* DMRs between two conditions with the '*de novo*' mode of Metilene (0.2-7)⁵. DMRs with mean methylation change greater than 0.2 and q value less than 0.05 are selected for downstream analysis. The identified DMRs are annotated to the nearest gene. KEGG pathway enrichment and gene ontology analyses were performed by using DAVID. For DNA methylation canyon identification, we used the method described by Mira Jeong⁶. Boxplots were used to depict the mean methylation level of the gene regions for FA-deficient, normal, and FA-high groups. The horizontal line of the box refers to the 25th percentiles, median and 75th percentiles, respectively. Whiskers represents the 1.5X interquartile range. Student's t-test was performed to compare the mean methylation level of gene regions for different FA treatment groups.

Western blotting

Proteins were extracted from NE-4C cells cultured for 72 h in FA control (0.5μM) or FA high (5μM) medium. Antibodies: anti-MTHFR (1:1000, Cat#: ab203786, Abcam, Cambridge, MA, USA), anti-GAPDH (Cat#:5174S, Cell Signaling Technology, Inc, Danvers, MA), anti-H3K36me3 (1:1000, Cat #9763, CST, MA, USA), Anti-Histone H3 (1:10000, ab18521, Abcam, Cambridge, MA, USA) were used. GAPDH and H3 were references for MTHFR and H3K36me3 relative calculation respectively.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)

mRNA was extracted from mice embryos using quick-RNA Tissue/Insect Kit (Cat#:R2030, Zymo Research, Irvine, CA, USA). RNA quantification was measured using Nanodrop 200. RT-qPCR was performed with One Step TB Green PrimerScript RT-PCR kit II (Perfect Real Time) from TakaRa (Cat#RR086A) following the product instruction. PCR was performed on a Bio-Rad CFX96 Optics Module qPCR/RT PCR Thermal Cycler. Primers used were as following: Lig4rtF:CTAGCTACCTGGGACCTGCG; Lig4rtR:GCAAAGGGGACATGAGCTGC; Ubr5rtF:GCTATTGCGGTCAGGGAGC; Ubr5rtR:CATGGTGATGGGACGGCC; AtmrtF:AGGCATTCTGATTCCAAACAAGG; AtmrtR:TCTGGAGCTCTGTGTGGTGG; GapdhrtF:CTTCTTGTGCAGTGCCAGCC; GapdhrtR:TGAAGGGGTCGTTGATGGCA.

Statistical analysis

Differences in DNSNV counts among groups were examined with Wilcoxon signed-rank test or Student's t-test. Fisher's exact test was used to examine the enrichment among different groups. Statistical analyses were conducted using R Studio 3.5.2. A two-tailed *P*-value of <0.05 was considered statistical significance. *P*-adj values were all calculated by FDR correction.

Data access

The raw sequencing data that support the findings of this study were submitted to NIH SRA database (BioProject ID: PRJNA793863 for WGS data and PRJNA791955 for WGBS data).

References:

 Cabrera RM, Souder JP, Steele JW *et al.* The antagonism of folate receptor by dolutegravir: developmental toxicity reduction by supplemental folic acid. *AIDS* 2019; **33**:1967-1976.
McKenna A, Hanna M, Banks E *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 2010; **20**:1297-1303.
Wei Q, Zhan X, Zhong X *et al.* A Bayesian framework for de novo mutation calling in parents-offspring trios. *Bioinformatics* 2015; **31**:1375-1381. 4 Jin SC, Homsy J, Zaidi S *et al.* Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. *Nat Genet* 2017; **49**:1593-1601.

5 Jühling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S. metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. *Genome Res* 2016; **26**:256-262. 6 Jeong M, Sun D, Luo M *et al.* Large conserved domains of low DNA methylation maintained by Dnmt3a. *Nature genetics* 2014; **46**:17.

Supplementary Figure Legends

Supplementary Fig. S1 Blood folate concentrations. Blood folate measurement showed maternal FA deficient diet decreased the blood folate level, while FA high diet increased the blood folate level significantly. One-way ANOVA with Dunnett's multiple comparisons was performed to examine whether the differences are significant.

Supplementary Fig. S2 Overall characterization of DNM distribution and location. a, Chromosome size and DNSNV distribution. Linear Regression p-value < 0.0001. Unit = base pair (bp) b, Genome-wide rainfall plot of DNSNVs of each FA-treated group. d, VEP annotation of DNSNVs from different FA treatment in mm10 genome.

Supplementary Fig. S3 MTHFR and H3K36Me3 relative protein expression in NE4C cells cultured in FA-control and FA-high medium. a, immunoblotting detection of MTHFR, GAPDH, H3K36Me3, and histone H3. b, GAPDH relative amount quantification using GAPDH as reference. c, H3K36Me3 relative amount quantification using histone H3 as reference.

Supplementary Fig. S4 Pathway enrichment of hypomethylated DMRs in FA-deficient group. Both KEGG and Gene Ontology Biological Process pathways are displayed.

Supplementary Fig. S5 Pathway enrichment of hypermethylated DMRs in FA-high group. Both KEGG and Gene Ontology Biological Process pathways are displayed. Pathway enrichment of hypomethylated DMRs in FA-high group was also shown at the right panel.

Pathway enrichment of hypermethylated DMRs in FA-high group

KEGG pathway

Signaling pathways regulating pluripotency of stem cells	9.49
Hippo signaling pathway	8.77
Proteoglycans in cancer	8.60
Pathways in cancer	7.85
Wnt signaling pathway	7.59
Rap1 signaling pathway	4.64
Axon guidance	4.57
Prostate cancer	4.41
Thyroid hormone signaling pathway	4.35
Melanogenesis	4.00

GO_Biological Process

Multicellular organism development	21.74
Nervous system development	14.28
Cell differentiation	10.41
Negative regulation of transcription	8.89
Neural tube closure	6.34
Heart development	6.31
Axon guidance	5.74
Palate development	5.72
Neuron differentiation	5.44
Neuron migration	5.40

Log10 (q-value)

Pathway enrichment of hypomethylated DMRs in FA-high group

KEGG pathway

Tight junction	0.70
Hippo signaling pathway	0.70
Gap junction	0.59

GO_Biological Process

Circulatory system development	1.52
Nervous system development	1.47
Neural tube development	1.00

Log10 (q-value)

Pathway enrichment of hypomethylated DMRs in FA-low group

KEGG pathway

Pathways in cancer	5.40
Signaling pathways regulating pluripotency of stem cells	2.85
Hippo signaling pathway	2.82
Gap junction	2.77
Melanogenesis	2.36
Oxytocin signaling pathway	2.35
Glutamatergic synpase	2.32
Circadian entrainment	2.28
Cell cycle	2.28
Proteoglycans in cancer	1.96

GO_Biological Process

Multicellular organism development		9.74
Nervous system development	0	9.19
Cell differentiation		3.77
Axon guidance		3.74
Neural tube closure		3.28
Neuron differentiation		3.00
Negative regulation of transcription		2.96
Neuron fate commitment		2.38
Cell fate commitment		2.30
Neuron migration		1.92

-Log10 (q-value)

Suppleme	nt Table S1. 58	DNA repair ge	nes with hy	permethyla	ted DMRs in the promoter						
Chr	Start	End	meth_diff	q_value	Annotation	Detailed.Annotation	Distance.to.TSS Nearest.PromoterID	Entrez.ID Gene.Name	Gene.Description	Gene.Type	gene
chr1	191574849	191575040	0.245	0.000031	promoter-TSS (NM_001306203)	promoter-TSS (NM_001306204)	599 NM_001305233	76843 Dtl	denticleless homolog (Drosophila)	protein-coding	; DTL
chr10	11149374	11149484	0.662	0.000018	promoter-TSS (NM_172937)	promoter-TSS (NM_001077707)	-1 NM_001077707	268281 Shprh	SNF2 histone linker PHD RING helicase	protein-coding	ş SHPRH
chr10	81378275	81378347	0.205	0.000036	promoter-TSS (NM_019757)	promoter-TSS (NM_019757)	59 NM_019757	56371 Fzr1	fizzy/cell division cycle 20 related 1 (Drosophila)	protein-coding	; FZR1
chr11	4637689	4637835	0.280	0.024	promoter-TSS (NM_029291)	promoter-TSS (NM_029291)	-31 NM_029291	75452 Ascc2	activating signal cointegrator 1 complex subunit 2	protein-coding	g ASCC2
chr11	5878084	5878242	0.293	0.000003	promoter-TSS (NM_008894)	promoter-TSS (NM_008894)	93 NM_008894	18972 Pold2	polymerase (DNA directed), delta 2, regulatory subunit	protein-coding	g POLD2
chr11	26386293	26387370	0.214	0.01	promoter-TSS (NR_102382)	promoter-TSS (NM_025923)	-252 NM_025923	67030 Fancl	Fanconi anemia, complementation group L	protein-coding	3 FANCL
chr11	77607912	77608152	0.287	6.4E-18	promoter-TSS (NM_144825)	promoter-TSS (NM_144825)	-217 NM_144825	216965 Taok1	TAO kinase 1	protein-coding	3 TAOK1
chr11	106779472	106779631	0.369	0.000016	promoter-TSS (NR_027785)	promoter-TSS (NR_027785)	-15 NM_015810	50776 Polg2	polymerase (DNA directed), gamma 2, accessory subunit	protein-coding	g POLG2
chr11	119041189	119041305	0.233	0.0064	promoter-TSS (NM_013926)	promoter-TSS (NM_013926)	-334 NM_013926	30951 Cbx8	chromobox 8	protein-coding	g CBX8
chr11	119491356	119491476	0.229	1.4E-07	promoter-TSS (NM_177394)	promoter-TSS (NM_177394)	69 NM_001164636	338371 Endov	endonuclease V	protein-coding	g ENDOV
chr12	11265953	11266028	0.307	0.00066	promoter-TSS (NM 177331)	promoter-TSS (NM 177331)	105 NM 025695	67241 Smc6	structural maintenance of chromosomes 6	protein-coding	z SMC6
chr12	110888600	110888852	0.210	0.0063	promoter-TSS (NM_175336)	promoter-TSS (NM_175336)	419 NM_027223	67236 Cinp	cyclin-dependent kinase 2 interacting protein	protein-coding	g CINP
chr12	111813613	111813729	0.218	0.028	promoter-TSS (NM 026752)	promoter-TSS (NM 026752)	170 NM 028875	74335 Xrcc3	X-ray repair complementing defective repair in Chinese hamster cells 3	protein-coding	z XRCC3
chr13	32801696	32801858	0.280	0.000016	promoter-TSS (NM 030215)	promoter-TSS (NM 030215)	-253 NM 030215	78903 Wrnip1	Werner helicase interacting protein 1	protein-coding	g WRNIP1
chr13	47106392	47106497	0.405	0.000032	promoter-TSS (NM 025900)	promoter-TSS (NM 025900)	-224 NM 025900	110052 Dek	DEK oncogene (DNA binding)	protein-coding	z DEK
chr13	63431597	63431732	0.295	9E-09	promoter-TSS (NM 001042673)	promoter-TSS (NM 001042673)	80 NM 007985	14088 Fancc	Fanconi anemia, complementation group C	protein-coding	FANCC
chr13	92355035	92355135	0.414	0.0001	promoter-TSS (NM 010829)	promoter-TSS (NM 010829)	-82 NM 010829	17686 Msh3	mutShomolog 3 (E. coli)	protein-coding	z MSH3
chr14	16364697	16365045	0.269	0.0076	promoter-TSS (NM 009409)	promoter-TSS (NM 009409)	-335 NM 009409	21974 Top2b	topoisomerase (DNA) II beta	protein-coding	z TOP2B
chr14	32202276	32202429	0.378	1.1E-08	promoter-TSS (NM 016897)	promoter-TSS (NM 016897)	382 NM 011960	26430 Parg	poly (ADP-ribose) glycohydrolase	protein-coding	2 PARG
chr14	52197190	52197584	0.223	1E-16	promoter-TSS (NM 033618)	promoter-TSS (NM 033618)	-148 NM 033618	114741 Sunt16	suppressor of Tv 16	protein-coding	SUPT16
chr14	63193795	63194047	0.262	0.00012	promoter-TSS (NM 201610)	promoter-TSS (NM 201610)	-396 NM 201610	382913 Neil2	nei like 2 (E. coli)	protein-coding	NEIL2
chr15	38078952	38079021	0.457	0.00025	promoter-TSS (NM 001081359)	promoter-TSS (NM_001112721)	-133 NM 001081359	70790 Ubr5	ubiquitin protein ligase F3 component p-recognin 5	protein-coding	IIBR5
chr15	51991754	51991932	0.319	2.95-06	promoter-TSS (NM_009009)	promoter-TSS (NM_009009)	-83 NM 009009	19357 Rad21	RAD 21 homolog (S. nombe)	protein-coding	RAD21
chr15	76479109	76479225	0.227	0.0029	promotor TSS (NM_012481)	promotor TSS (NM 012481)	772 NM 008296	15357 Houz 1	hast check factor 1	protein coding	, 101021
chr16	15637198	15637429	0.237	2 3F-09	promoter-TSS (NM_011159)	promoter-TSS (NM_011159)	86 NM 008565	17217 Mcm4	minichromosome maintenance deficient 4 homolog (S. cerevisiae)	protein-coding	m MCM4
chr17	27555937	27556185	0.222	2.5E 05	promoter-TSS (NM_001166544)	promoter-TSS (NM_001039356)	-513 NM 001166536	15361 Hmga1	high mobility group AT-book 1	protein-coding	HMGA1
chr17	20614769	20614952	0.204	0.0012	promotor TSS (NR 122214)	promotor TSS (NR 123214)	32 NM 031419	59330 Pafe	ring finger protoin 8	protein coding	PNE9
chr17	25014708	25014855	0.204	7 45 09	promotor TSS (NM 122662)	promotor TSS (NM 122662)	22 NM_021415	15027 Jor2	immediate early remember 2	protein-coding	, 1602
chr19	21001605	21001095	0.264	2 25 00	promotor TSS (NM_001202011)	promotor TSS (NM 001202011)	117 NM 001202011	E6515 Pof129	ring finger protoin 129	protein coding	DNE129
chr10	5600500	5600755	0.204	0.000095	promotor TSS (NR 027602)	promotor TSS (NR 027602)	24 NR 027602	91601 Kats	Klyring) acatultran foraro 5	protein-coding	, KATE
chr10	7206127	7206214	0.213	0.000083	promoter TSS (NM 124150)	promotor TSS (NM 124150)	62 NM 124150	107260 Otub1	OTIL domain, whigh it is all about a binding 1	protein-coding	, OTUP1
chr10	10202970	10202052	0.409	9.85-08	promotor TSS (NM_134150)	promotor TSS (NM_134150)	37 NM 007000	14156 Ecol	foro domain, doiquitin aldenyde binding 1	protein-coding	, OIUBI
chi19	10205879	10205952	0.277	4 75 10	promoter-135 (NM_007999)	promoter-135 (NM_007999)	27 NM_007999	14150 Fell1	damana sensifia DNA binding sentain 1	protein-coding	, FEN1
-1-2	10005440	10605677	0.340	4.75-10	promoter-135 (NM_015/35)	promoter-133 (NW_013733)	-03 NW_015755	222067 52	damage specific DNA binding protein 1	protein-coding	, DDB1
chir2	49451059	49451102	0.220	4.00-10	promoter-135 (NM_172663)	promoter-133 (NW_172663)	-383 NWL172003	227867 Epc2	(NORO benerica (C. energinica)	protein-coding	; EPC2
-1-2	144370961	144270086	0.240	0.00023	promoter TSS (NM_020374)	promoter-155 (NML_020574)	-114 NMI_020574	74529 Mamol	mitach and sid and maintainean a maintainean a	protein-coding	, NOSO
chir2	144270801	144270986	0.255	0.0071	promoter-135 (NM_001199188)	promoter-133 (NW_001289631)	20 NW_001289630	74328 Mgmei	C 2 averiber valerer 2	protein-coding	, WOND
CIII 2	147015052	147013135	0.295	0.0018	promoter-135 (NM_011917)	promoter-133 (NW_011917)	44 NM_011917	24128 ATT2	5-5 exoribonuclease z	protein-coung	, ARINZ
cnr2	16/6320/3	16/6322/1	0.376	3.2E-12	promoter-ISS (NM_023230)	promoter-ISS (NM_023230)	-167 NM_023230	66589 UBe2V1	ubiquitin-conjugating enzyme E2 variant 1	protein-coding	3 UBEZVI
Chirs	90455519	90433571	0.214	0.0029	promoter-135 (NNI_178878)	promoter-133 (NW_178878)	91 NW_145540	229343 111153	Integrator complex suburit 3	protein-coung	, 10155
chr3	135438685	135439016	0.276	2.2E-09	promoter-ISS (NM_025356)	promoter-ISS (NM_025356)	92 NM_025356	66105 UDe203	ubiquitin-conjugating enzyme E2D 3	protein-coding	J UBEZD3
cnr4	21776022	21776570	0.208	5.5E-11	promoter-ISS (NM_001290425)	promoter-ISS (NM_001290425)	26 NM_152825	7/593 USp45	ubiquitin specific petidase 45	protein-coding	, USP45
cnr4	120924849	120925116	0.250	0.048	promoter-ISS (NM_001160043)	promoter-ISS (NM_028457)	22 NM_028457	/31/2 Ex05	exonuclease 5	protein-coding	, EXUS
chr4	132639019	132639084	0.410	0.000088	promoter-ISS (NM_010166)	promoter-ISS (NM_010166)	6 NM_010166	14050 Eya3	eyes absent 3 homolog (Drosophila)	protein-coding	; EYA3
cnr5	33378516	333/8563	0.317	0.000017	promoter-ISS (NM_001081101)	promoter-ISS (NM_001081101)	-156 NM_001081101	/1101 UVssa	UV stimulated scattold protein A	protein-coding	JUVSSA
chr5	65335710	65335798	0.314	0.0026	promoter-ISS (NM_011258)	promoter-ISS (NM_011258)	-115 NM_011258	19687 Rtc1	replication factor C (activator 1) 1	protein-coding	; RFC1
chr5	114128110	114128499	0.258	1.5E-10	promoter-ISS (NM_175016)	promoter-ISS (NM_175016)	-129 NM_175016	231642 Alkbh2	alkB, alkylation repair homolog 2 (E. coli)	protein-coding	∫ ALKBH2
chr5	144768725	144768858	0.292	1.7E-08	promoter-TSS (NM_001081362)	promoter-TSS (NM_001081362)	0 NM_001081362	100683 Trrap	transformation/transcription domain-associated protein	protein-coding	; TRRAP
chr6	88898667	88898735	0.341	0.014	promoter-TSS (NM_008564)	promoter-TSS (NM_008564)	79 NM_008564	17216 Mcm2	minichromosome maintenance deficient 2 mitotin (S. cerevisiae)	protein-coding	g MCM2
chr6	91473046	91473178	0.326	0.012	promoter-TSS (NM_028766)	promoter-TSS (NM_028766)	311 NM_133928	72170 Chchd4	coiled-coil-helix-coiled-coil-helix domain containing 4	protein-coding	; CHCHD4
chr7	19345006	19345284	0.323	0.04	promoter-TSS (NM_007948)	promoter-TSS (NM_001127324)	74 NM_007948	13870 Ercc1	excision repair cross-complementing rodent repair deficiency, complen	1 protein-coding	; ERCC1
chr7	19381859	19381977	0.217	0.000082	promoter-TSS (NM_007949)	promoter-TSS (NM_007949)	-121 NM_007949	13871 Ercc2	excision repair cross-complementing rodent repair deficiency, complen	1 protein-coding	g ERCC2
chr7	51862284	51862560	0.334	1.9E-09	promoter-TSS (NM_001115087)	promoter-TSS (NM_001115087)	-155 NM_001115087	100040608 Fancf	Fanconi anemia, complementation group F	protein-coding	; FANCF
chr7	126695373	126695539	0.252	1.1E-07	promoter-TSS (NM_175103)	promoter-TSS (NM_175103)	327 NM_029420	75764 Slx1b	SLX1 structure-specific endonuclease subunit homolog B (S. cerevisiae)	protein-coding	; SLX1B
chr8	9976410	9976521	0.248	2.7E-06	promoter-TSS (NM_176953)	promoter-TSS (NM_176953)	-143 NM_176953	319583 Lig4	ligase IV, DNA, ATP-dependent	protein-coding	; LIG4
chr8	22653353	22653504	0.414	4.2E-07	promoter-TSS (NM_011130)	promoter-TSS (NM_011130)	8 NM_011130	18970 Polb	polymerase (DNA directed), beta	protein-coding	; POLB
chr9	31386174	31386307	0.438	2.6E-06	promoter-TSS (NM_172766)	promoter-TSS (NM_172766)	49 NM_172766	235134 Nfrkb	nuclear factor related to kappa B binding protein	protein-coding	3 NFRKB
chr9	44305828	44305941	0.307	0.000094	promoter-TSS (NM_172162)	promoter-TSS (NM_172162)	-214 NM_172162	102423 Hinfp	histone H4 transcription factor	protein-coding	3 HINFP
chr9	53536725	53536945	0.233	9.4E-06	promoter-TSS (NM_001081152)	promoter-TSS (NM_001081152)	-164 NM_007499	11920 Atm	ataxia telangiectasia mutated	protein-coding	; ATM