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In this supplementary material, we present a derivation of the equation linking SMS and OAM
from the perspective of mode coupling, and the simulation method in use to calculate mid-field and
far-field radiation patterns from the devices.

I. SUPPLEMENTARY NOTE 1: COUPLED-MODE EQUATIONS

In this section, we give coupled-mode equations linking OAM and SMS, leading to Equation (1) of the main text.
First, the coupled mode equations for the clockwise (�) and counter-clockwise (	) waves in the resonator can be
given by the following:

dÃ�

dt
= (i∆ω − κ0/2) Ã� + iβ Ã	 + i

√
κcS̃�, (1)

dÃ	

dt
= (i∆ω − κ0/2) Ã	 − iβ∗ Ã� + i

√
κcS̃	. (2)

The field amplitudes are normalized so that U� = |Ã�|2 and U	 = |Ã	|2 represent the intracavity optical energy.
The cavity detuning is given by ∆ω = ω − ω0, where ω is the angular frequency and ω0 is the central frequency
of the cavity resonance. Only linear interaction and coupling terms are considered, and all nonlinear interaction
terms are not included. We assume these two propagating waves have identical intrinsic loss rate (κ0) and microring-
waveguide coupling rate (κc). In the selective mode splitting (SMS) case, the backscattering induced by the photonic
crystal structures (β) can always be set to a real parameter, which is equivalent to defining the relevant phases of

two travelling waves by the imprinted modulation pattern. The last terms are source terms, and P� = |S̃�|2 and

P	 = |S̃	|2 represent the clockwise and counter-clockwise input powers in the waveguide. This interaction ends up

renormalizing two propagating waves into two standing waves, Ã± = (Ã� ± Ã	)/
√

2, given by:

dÃ±
dt

= [i(∆ω ∓ β)− κ0/2] Ã± + i
√
κcS̃±. (3)

Here Ã± have the same cavity linewidth of κ0t = κ0 + κc, with the central resonance frequencies at ω± = ω0 ± β,

respectively. The source term follows a similar definition of S̃± = (S̃� ± S̃	)/
√

2.
From previous SMS works [1, 2], β can be calculated for an optical mode with shifting boundaries [3],

β =
ω0

2

∫
dS ·A

[
(εd − εc)|E‖|2 + (1/εc − 1/εd)|D⊥|2

]∫
dV ε(|E‖|2 + |E⊥|2)

, (4)

where E‖ (D‖) and E⊥ (D⊥) are the electric field components (displacement field components) of the unperturbed
optical mode that are parallel (‖) and perpendicular (⊥) to the modulation boundary dS, respectively. ε represents
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the dielectric function of the material, including the dielectric core (ε = εd) and the substrate (ε = εs) or cladding
material (ε = εc). Considering a photonic crystal microring with a fixed outer radius but modulated ring width of
W (φ) = W0 +

∑
nAncos(nφ), the standing-wave mode with a larger frequency has a dominant displacement field

D(ρ, φ, z) = D(ρ, z)cos(mφ). Equation (4) can be written as:

β =
∑
n

Anω0

2

∫
dS(1/εc − 1/εd)|D(ρ, z)|2cos2(mφ)cos(nφ)∫

dV ε(|Ez|2 + |Eφ|2 + |Eρ|2)cos2(mφ)
. (5)

This integral does not contain polar angle (θ), assuming the dominant electric field is in the radial direction and the
sidewall of the modulation is straight. The azimuthal part can be integrated separately, so that:

β =
∑
n

gAn

∫ 2π

0

dφcos2(mφ)cos(nφ)/π =
∑
n

gAn(δn,0 + δn,2m/2) = gmm(A0 +
A2m

2
), (6)

where δi,j = 1 when i = j and vanishes otherwise. g is defined as:

g ≡ ω0

2

∫
dS(1/εc − 1/εd)|D(ρ, z)|2∫
dV ε(|Ez|2 + |Eφ|2 + |Eρ|2)

. (7)

While we derive the Eqs. (4-7) considering the shifting boundary for two standing-wave modes, this same parameter
(β) is also the interaction term for two propagating waves described in Eqs. (1-2). In particular, Eq. (6) can be viewed
as the interaction of clockwise (m) and counter-clockwise (−m) modes with the grating of (n) cells. The phase in the
cos terms are set to zero here, which yields the maximal interaction/coupling rates, as the modes typically tend to
maximize or minimize their energy. However, in specific cases the phase can be shifted, with one example being the
phase shift for the bound standing-wave state at l = 0 OAM, as discussed in the main text.

In the OAM cases, for the travelling wave modes, the coupled mode equations are given by:

dÃ�

dt
= [i∆ω − (κ0/2 + β′)] Ã� + i

√
κcS̃�, (8)

dÃ	

dt
= [i∆ω − (κ0/2 + β′)] Ã	 + i

√
κcS̃	. (9)

There are no coupling of the clockwise and counter-clockwise modes induced by the grating. Instead, the grating
introduces couplings from the WGM of azimuthal order m to an ejected free-space OAM mode l = m − N for
m < N < 2m (and −m to −l), and β′ is the scattering rate. For the standing-wave modes, either by accidental mode
splitting created by the random sidewall roughness [4], or another added grating for SMS, as demonstrated in the last
section in the main text, the equation is given by:

dÃ±
dt

= [i∆ω − (κ0/2 + β′)] Ã± + i
√
κcS̃±. (10)

Here the β′ term represents the scattering rate from a standing wave mode with |m| to OAM modes with |l| (consisting
of ±l equally).

From Johnson et al.’s theory [3], the calculation of the coupling of two modes is identical to the energy shift to one
mode itself. The SMS is a perfect example in that β can be considered as either the interaction of two travelling-wave
modes, or the energy shift of a standing-wave mode from the modulated boundary. The OAM case is similar but
more subtle: one can consider the OAM and WGM as being two modes, as the OAM is a radiating mode and the
WGM is a confined mode. Yet, it is also not wrong to consider OAM and WGM to be two parts of the same mode
in a broader definition, for the reason that the OAM mode is directly ejected out of the WGM mode, and they have
the same mode profile before ejection (identical in polarization, linewidth, coupling, etc.). In both cases, if we follow
Johnson et al.’s theory in a similar fashion, we have β′ in the following:

β′ =
ω0

2

∫
dS ·A(1/εc − 1/εd)D⊥D

e
⊥∫

dV ε(|E‖|2 + |E⊥|2)
, (11)

The only difference between Eq. 11 and Eq. 4 is De
⊥ instead of D⊥ (in both cases we assume that E‖ is much

smaller than the perpendicular field components). This term can be estimated from D⊥ by considering three factors:
(1) considering the ejected field has the same cross-sectional mode profile in the microring but without a cavity

enhancement, we have De = D/
√
Ft/(2π) since Ft is defined in terms of energy (hence the square root) and phase
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FIG. S1: Schematic illustration of the WGM and OAM fields at the modulated sidewall. a Cross-sectional drawing
of the microring and the coordinates (ρ, φ, z) in use. The device layer and the cladding have dielectric constants of εd (in gray)
and εc (in white), respectively. The modulated sidewall is emphasized by a black solid line. b For a transverse-electric-like (TE-
like) WGM, the dominant electric displacement is in the radial direction, that is, perpendicular to the sidewall in modulation.
c For the ejected OAM mode, the dominant field direction depends on the nominal ejection angle (θ) that is determined by
angular momentum conservation. We illustrate upward OAM here, and downward OAM possesses mirror symmetry for this
illustration.

(hence the 2π); (2) since we are considering transverse-electric-like WGMs whose dominant field components are in
the radial direction, we have D⊥ ≈ D, as illustrated in Fig. S1(a,b); and (3) the perpendicular projection can be
estimated by the nominal ejection angle of the OAM beam from angular momentum conservation, as discussed in the
main text, that is, De

⊥ = De cos(θ) and θ = (l/m)(π/2), as illustrated in Fig. S1(c). Considering these three factors,
Eq. 11 can thus be written as

β′ =
∑
n

Anω0

2

∫
dS(1/εc − 1/εd)|D(r, z)|2 cos(mφ) cos(lφ) cos(nφ)∫

dV ε(|Ez|2 + |Eφ|2 + |Eρ|2)cos2(mφ)

q0 cos(θ)√
Ft/(2π)

. (12)

Here an additional term of q0 is added in, considering that the emitted OAM light can be either upwards or downwards,
which carries an additional factor of 2 compared to backward scattering in the SMS case. The value of this q0 = 2 is
validated in the experiments in the main text as a general trend, but its relationship to the light cone (and asymmetric
cladding) requires further investigation. The azimuthal integral can be separated and yields similar results when
l = m− n, so that Eq. 12 can be reduced to:

β′ = β
q0 cos(θ)√
Ft/(2π)

. (13)

Considering the role of β′ in Eqs. (8-10), we have Eq. (1) in the main text,

κe = 2β′ = q0
2β√
Ft/(2π)

cos(θ). (14)

Though we are considering standing-wave fields here as examples, the ejection rate (κe) is the same for travelling
waves, similar to the coupling rate (β) that is used both in standing-wave and traveling-wave cases for SMS. Also,
while our derivation is for transverse-electric-like fields, transverse-magnetic-like fields have the same results of Eq. 14,
though the major contribution of β and κe is contributed from the parallel field components.

II. SUPPLEMENTARY NOTE 2: SIMULATION METHOD

In this section, we discuss the method to simulate the mid-field and far-field images used in the main text. We employ
finite-difference-time-domain (FDTD) simulations using the commercially available software Lumerical. We note that
in this paper, certain commercial products or names have been identified to foster understanding. Such identification
does not constitute recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the products or names identified are necessarily the best available for the purpose.

To reduce the required simulation resources, we consider smaller ring radii of 5 µm and 12µm as well as a modulation
amplitude of A = 100 nm. We consider devices in three geometries. The first device, shown in Fig. S2(a), consists
of an isolated ring with air cladding on the top and bottom. The second device in Fig. S2(b) has an additional bus
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waveguide below the ring and a 3 µm thick SiO2 bottom cladding. The third device in Fig. S2(c) has a bus waveguide
below the ring, SiO2 bottom cladding, and a Si substrate. The bus waveguide is 750 nm wide and separated from the
ring by a gap of 350 nm. We use the refractive indices of nSiN = 2, nSiO2 = 1.45, and nSi = 3.48. The grid-spacing
used is 30 nm in all three directions (note that we use Lumerical’s ability to automatically set a coarser grid away
from the ring).
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FIG. S2: Examples of cavity modes calculated by FDTD simulations with three different simulation schemes. a
Isolated ring with dipole excitation. b Bus waveguide-coupled ring with 3µm SiO2 bottom cladding. c Bus waveguide-coupled
ring with 3µm thick SiO2 bottom cladding and Si substrate. The four columns of images plot |E|2, midfield: Re[Eρ], Pz, far
field: Re[Eρ], |E|2, respectively.

Figure S2(a) shows an example of the isolated ring with N = 78, which results in a resonant mode at λ = 1677 nm
with m = 74, corresponding to l = −4. The modes are excited using 10 dipole sources evenly distributed over one
period of the waveguide modulation inside the ring. Several dipoles are used to ensure that all longitudinal modes are
excited. The mid-field profile plotted in Fig. S2(a) is calculated as a running Fourier transform of the time-dependent
field amplitude, E(t), in the plane at z = 0. Note that Lumerical offers a setting to multiply the field amplitude
by a ramping-function that eliminates any contribution from the sources. The dipole sources excite both clockwise
and counterclockwise modes and the resulting mode shows an interference pattern between the two. The number
of anti-nodes in |E|2 is therefore 2|l|. In the mid-field images, Re[Eρ] and Pz are plotted in a plane 1µm above
the waveguide surface, and in the far-field images, Re[Eρ] and |E|2 of the far field are calculated using Lumerical’s
built-in far field transformation routine. It is the field recorded 1 µm above the waveguide surface that is used in the
transformation. Besides dipole excitation, standing-wave WGMs can be created by SMS (as described in the main
text), random sidewall backscattering from the microring, and the chip facet reflection. The latter two typically lead
to partial reflection instead of an equal contribution of clockwise and counter-clockwise modes, and will lead to more
blurry (i.e., less visible) interference patterns.

Figure S2(b, c) shows mode profiles of structures including a bus waveguide with symmetric air cladding and with
SiO2 bottom cladding. Figure S2(c) also has a Si substrate underneath the SiO2 bottom cladding. For both structures,
the source of the FDTD simulation is an eigenmode of the bus waveguide propagating from left to right and exciting
only the counterclockwise ring mode. The mode profiles are again only monitored at times after the source has died
out and the fact that only the counterclockwise mode is excited is verified by light only leaking out to the right in
the bus waveguide. We can clearly see that, with such travelling-wave excitation, the field does not show 2|l| beating
patterns in either mid-field Pz or far-field |E|2. In other words, the phase is varied by l = −4, but in intensity it is
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uniform.
In particular, Fig. S2(c) suggests that the substrate reflection, that is, at the SiO2/Si interface, cannot be used to

explain the observed 2|l| beating pattern, in contrast to the facet reflection as shown in Fig. S2(a). Because of the
symmetry, the device in simulation has l = −4 for the upward OAM (into air) and l = 4 for the downward OAM (into
SiO2). The l = 4 light is reflected at the SiO2/Si interface to l = −4. Such reflected light with l = −4 can shift the
phase of the original l = −4 light, but cannot create a beating pattern in intensity.

III. SUPPLEMENTARY NOTE 3: EXTRACTING κ AND β FROM TRANSMISSION SPECTRA.

We show here examples of extracting κ and β from representative transmission spectra for selective mode splitting
(SMS) and orbital angular momentum (OAM) devices, more specifically, six devices with l = {-165, -60} and A = {4,
8, 16} nm in Fig. 3(c) in the main text. In Fig. S3(a-c), SMS devices show increased mode splitting in the targeted
mode when A increases, but the overall optical quality factor (Qt) is not strongly affected (i.e., remains within a
common range of Qt values determined by the uncertainties in the nonlinear least squares fits to the transmission
data). In Fig. S3(d-f), OAM devices have decreased Qt and broader linewidths (κt = ω/Qt, which is used throughout
the main text) when A increases. The cavity transmission becomes under-coupled (shallow in dip) from the perspective
of waveguide coupling, as the microring waveguide coupling rate (κc) stays the same while the OAM ejection rate
(κe) increases.
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FIG. S3: Examples of characterization of selective mode splitting (SMS) and orbital angular momentum (OAM)
devices. a-c Cavity transmission of the SMS devices with N = 165×2 and A from 4 nm to 16 nm. The splitting increases
when A increases. d-f Cavity transmission of the OAM devices with N = 165 and A from 4 nm to 16 nm. The linewidth
increases when A increases. The uncertainty in Qt is given by a 95 % confidence range of nonlinear fitting.

IV. SUPPLEMENTARY NOTE 4: DECREASED OAM EMISSION NEAR l = 0 WITH LARGE A

In the inset of Fig. 3(c) in the main text, a decrease of OAM emission is observed near l = 0 with only large A. Such a
decrease seems abnormal when compared to other sets of data with smaller As, and does not agree with the equation
we proposed (by roughly a factor of 2). In this section, we focus on discussing this abnormal behavior.
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FIG. S4: Understanding the abnormal behavior at l = 0 with large A. a Experimental study of κt at l = 0 for A from
0 nm to 48 nm. b A two-dimensional finite-element-method simulation of normalized dissipation rate for l=1 and l=0 modes,
with index modulated instead of the ring width. The dissipation rate (κt) is normalized to the dissipation rate of a control
microring (κ0

t ) without index modulation (n = n0). For a photonic crystal ring with index modulation, the refractive index
is a function of azimuthal angle φ given by the inset equation, n = n0 + ∆ncos(Nφ)/2, where n0 = 3.5 and the modulation
period N is 6. For m = 6 modes, this device has two l = 0 standing-wave modes with different radiation rates. For m = 7
modes, this device has two degenerate l = 1 modes with the same radiation rates. c Numerical simulation of Er for a WGM
with N = m = 6 (l=0). The topology of the PhCR breaks the degeneracy in this case for two standing-wave modes, the left
one with its field antinodes sitting at the edge with minimal index contrast, the right one with its field antinodes sitting at the
the top and bottom of the grating seeing the maximal index contrast. d Numerical simulation of the electric field distribution
of a WGM with m = 7 in a N = 6 (l=1) photonic crystal microring. These two modes have the same dissipation rates.

We first verify this behavior experimentally by measuring many devices with modulation amplitude A of 0 nm to
48 nm, as shown in Fig. S4(a), and focusing on the singular behavior of the dissipation κt at l = 0 for these devices.
Compared to the closest two adjacent modes with l = ±1, it presents distinguishable lower dissipation rates when
A is increased above 16 nm. A recent paper [5] has reported a decrease of radiation loss from the one-dimensional
waveguide grating in silicon nanophotonics, where a state with reduced radiation is induced by the counter-interference
of two radiation channels that are out of phase. Distinctively, for this mode with lower radiation loss, the light has its
field center sitting at the edge of the square grating, instead of the top or bottom of the waveguide grating. Though
a quantitative reduction of the radiation measured in Fig. S4(a) can be difficult to examine in simulation, we present
here a simplified two-dimensional model in Fig. S4(b), using finite-element-method simulation to confirm we have a
similar physics from the microring grating. In particular, using a microring with an index grating of N periods, we
show that the l=0 modes have a splitting in their dissipation rate (given here in normalized units), with a higher-Q
mode that shows a lower dissipation rate than the adjacent l=1 mode, and a lower-Q mode that shows a higher
dissipation rate than the adjacent l=1 mode, for all values of the index modulation strength. In Fig. S4(c)-(d), we
show the electric field distribution of WGMs for the l=0 and l=1 cases. For the l=1 case (m = 7 in a N = 6 photonic
crystal microring) in Fig. S4(d), the two eigenmodes correspond to the standing waves mixed from the degenerate
clockwise and counterclockwise traveling wave modes. As the electric field of each mode interacts with the dielectric
structure in the same way (i.e., in terms of the position of the field antinodes and nodes with respect to the dielectric
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FIG. S5: Infrared images for the devices without and with SMS. a Device without SMS does not show clear visibility
of the beating patterns. Here the mode has m = 162, and three devices have N = {163, 164, 165}, respectively. b Device with
SMS showing clear beating patterns. Besides the OAM modulation in (a), an additional modulation with N = 2×162 is added
to couple and split the traveling wave modes into standing-wave modes. c Normalized intensity distribution as a function of
azimuthal angle (φ) for the devices without (blue) and with (red) SMS. The devices with SMS have a better visibility in the
2|l| beating pattern.

modulation), without imperfections, they have the same frequency and the same loss rate. However, for a numerical
simulation of Er for a WGM with N = m = 6 (l=0 modes in Fig. S4(c)), the topology of the PhCR breaks the
degeneracy, with the field antinodes for the two modes no longer equivalently sampling the dielectric, and gives rise
to two standing-wave modes with different radiation loss.

We note that this phenomenon has been observed before in the photonic crystal ring [6]. That work achieves
single-mode lasing by two factors: (1) the modulation amplitude is set to be quite large so all other modes except
l = 0 have very low optical quality factors that cannot be measured in a transmission spectrum, and (2) the gain
material preferentially selects the l = 0 mode (the only mode left with observable Q). Though the parameter space is
quite different in that work, the fundamental principle seems to be the same, that is, the l = 0 mode has a decreased
radiation compared to other modes when the modulation is large.

V. SUPPLEMENTARY NOTE 5: COMPARING OAM DEVICES WITH AND WITHOUT SMS.

We compare OAM devices with and without SMS for |l| = 1 to 3 in Fig. S5 . The OAM device without SMS has
worse visibility in intensity beating, as the counter-clockwise WGM is likely from the back reflection of the pump
laser, either from the chip facet or from the microring, and is thus much smaller in amplitude than the clockwise
WGM. The method of implementing SMS and OAM has been discussed in the main text. The OAM device with SMS
has standing-wave WGMs (equal clockwise and counter-clockwise WGMs) and hence nearly equal +l and −l OAM,
resulting in more pronounced interference patterns.
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